A Coinductive Version of Milner's Proof System for Regular Expressions Modulo Bisimilarity

Clemens Grabmayer

G	S	GRAN SASSO SCIENCE INSTITUTE
S	1	SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Department of Computer Science

L’Aquila, Italy

CALCO2021
September 2, 2021

Process semantics $\llbracket \|_{p}$ of regular (star) expr's (Mileer, 1984)

$0 \stackrel{P}{\longmapsto}$ deadlock δ, no termination
$1 \stackrel{P}{\longmapsto}$ empty process ϵ, then terminate
$a \stackrel{P}{\longmapsto}$ atomic action a, then terminate
$e+f \quad \stackrel{P}{\longmapsto} \quad$ alternative composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e \cdot f \xrightarrow{P}$ sequential composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e^{*} \stackrel{P}{\longmapsto}$ unbounded iteration of $\llbracket e \rrbracket_{P}$, option to terminate

$$
\begin{array}{rll}
\llbracket e \rrbracket_{P} & :=[P(e)]_{\leftrightarrows} & \\
& \text { (bisimilarity equivalence class of process } P(e)) \\
& :=[\mathcal{C}(e)]_{\leftrightarrows} & \text { (bisimilarity equivalence class of chart } \mathcal{C}(e))
\end{array}
$$

Chart interpretation (example) (via TSS or Antimirov's partial deriv's)

$$
\begin{aligned}
\mathcal{C}\left(\left(a^{*} \cdot b^{*}\right)^{*}\right) & \leftrightarrow & \mathcal{C}\left((a+b)^{*}\right) \\
\llbracket\left(a^{*} \cdot b^{*}\right)^{*} \rrbracket_{P} & = & \llbracket(a+b)^{*} \rrbracket_{P}
\end{aligned}
$$

Chart interpretation (example) (via TSS or Antimirov's partial deriv's)

$$
\begin{array}{ccc}
\mathcal{C}\left(\left(a^{*} \cdot b^{*}\right)^{*}\right) & \longleftrightarrow & \mathcal{C}\left((a+b)^{*}\right) \\
\left(a^{*} \cdot b^{*}\right)^{*} & ==_{\llbracket \|_{P}} & (a+b)^{*}
\end{array}
$$

Milner's proof system Mil $=\mathrm{Mil}^{-}+\mathrm{RSP}^{*}$

Axioms:

```
        \((\operatorname{assoc}(+)) \quad(e+f)+g=e+(f+g)\)
        (neutr(+)) \(\quad e+0=e\)
        (comm \((+)) \quad e+f=f+e\)
(idempot(+)) \(\quad e+e=e\)
    \((\operatorname{assoc}(\cdot)) \quad(e \cdot f) \cdot g=e \cdot(f \cdot g)\)
    \((r-\operatorname{distr}(+, \cdot)) \quad(e+f) \cdot g=e \cdot g+f \cdot g\)
```

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { RSP }^{*} \quad \text { (if } f \downarrow \text {) }
$$

Milner's axiomatization question

Question (Milner, 1984)

Is Milner's system Mil $=$ Mil $^{-}+$RSP* * complete for bisimilarity of process interpretations of regular expressions?

$$
\forall e, f \text { reg. expr's }\left(\vdash_{\text {Mil }} e=f \underset{\text { sound }}{\stackrel{\text { complete }}{\Longleftrightarrow}} \quad e=\llbracket_{\llbracket \cdot \rrbracket_{p}}^{\Longrightarrow} f\right) ?
$$

"Yes" for restrictions to subclasses: Zantema/Fokkink (1994), Fokkink (1996),
Corradini, De Nicola, Labella (2002), G/Fokkink (2020).

Proposition (G, CMCS 2006)

The system Mil ${ }^{-}$USP, where:
USP: unique solvability of guarded, linear systems of equations, is (sound and) complete.

Question (investigated here)

How can the derivational power be characterized that the fixed-point rule RSP* adds to the purely equational part Mil- of Milner's system?

Answer developed

We use:

- the loop existence and elimination property (LEE) of charts
- implies expressibility by a star expression
- led to completeness result for 1-free star expressions (G/Fokkink, 2020)

We introduce:

- a coinductive version cMil $=\left(\mathrm{Mil}^{-}+\right.$LCoProof $)$of $\mathrm{Mil}=\left(\mathrm{Mil}^{-}+\mathrm{RSP}^{*}\right)$ based on LEE-witnessed coinductive proofs over Mil-.

We construct/ obtain:

- a proof transformation: Mil \longmapsto cMil, (RSP* inst's \mapsto LCoProof inst's),
- a proof transformation: Mil \longleftrightarrow cMil, (bottom-up extraction procedure),
- theorem equivalence Mil ~ cMil:

$$
\vdash_{\text {Mil }} e=f \quad \Longleftrightarrow \quad \vdash_{\text {CMil }} e=f .
$$

LEE

Loop charts (interpretations of innermost iterations in 1 -free expressions)

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Immediate termination is only possible at the start vertex.

(L1),(L2)
(L1),(L2),(L3)

Loop charts (interpretations of innermost iterations in 1 -free expressions)

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Immediate termination is only possible at the start vertex.

(L1),(L2)
(L1),(L2),(L3)

Loop charts (interpretations of innermost iterations in 1 -free expressions)

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Immediate termination is only possible at the start vertex.

(L1),(L2)
(L1),(L2),(L3)
loop chart

Loop charts (interpretations of innermost iterations in 1 -free expressions)

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Immediate termination is only possible at the start vertex.

(L1),(L2)
(L1),(L2),(L3)
loop chart

Loop charts (interpretations of innermost iterations in 1 -free expressions)

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Immediate termination is only possible at the start vertex.

(L1), (L2)

(L1),(L2),(L3)
loop subchart

LEE, and LLEE-witness

LEE

Definition

A chart \mathcal{C} satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists \mathcal{C}_{0} & \left(\mathcal{C} \Longrightarrow{ }_{\text {elim }}^{*} \mathcal{C}_{0} \nsupseteq\right. \text { elim } \\
& \left.\wedge \mathcal{C}_{0} \text { permits no infinite path }\right) .
\end{aligned}
$$

LEE

Chart interpretation (example)

Chart interpretation (example)

$\mathcal{C}\left(\left(a^{*} \cdot b^{*}\right)^{*}\right)$

$\mathcal{C}\left((a+b)^{*}\right)$

Chart interpretation (example)

$\mathcal{C}\left(\left(a^{*} \cdot b^{*}\right)^{*}\right)$

$\mathcal{C}\left((a+b)^{*}\right)$

Chart interpretation (example)

Chart interpretation (example)

Chart interpretation (example)

LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

$$
\underline{\mathcal{C}}\left(\left(a^{*} \cdot b^{*}\right)^{*}\right)
$$

$$
\underline{\mathcal{C}}\left((a+b)^{*}\right)
$$

LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.
E.g. in v_{1} :
$\left(a^{*} \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*}=_{\text {Mil }^{-}}$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil $^{-}$-provable solutions in every vertex.
E.g. in v_{1} :
$\left(a^{*} \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*}=_{\text {Mil }^{-}}$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.
E.g. in v_{1} :
$\left(a^{*} \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*}=_{\text {Mil }^{-}}$

$$
={ }_{\mathrm{Mil}}{ }^{-1} 1 \cdot\left(a^{*} \cdot b^{*}\right)^{*}+a \cdot\left(\left(\left(1 \cdot a^{*}\right) \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*}\right)+b \cdot\left(\left(1 \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*}\right)
$$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.
E.g. in v_{1} :

$$
\begin{aligned}
\left(a^{*} \cdot b^{*}\right) \cdot & \left(a^{*} \cdot b^{*}\right)^{*}=\text { Mil }\left(\left(1+a \cdot a^{*}\right) \cdot\left(1+b \cdot b^{*}\right)\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*} \\
& =_{\text {Mil }^{-}}\left(1 \cdot 1+a \cdot a^{*} \cdot 1+1 \cdot b \cdot b^{*}+a \cdot a^{*} \cdot b \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*} \\
& =\text { Mil }^{-}\left(1+a \cdot a^{*}+a \cdot a^{*} \cdot b \cdot b^{*}+b \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*} \\
& =\text { Mil }^{-}\left(1+a \cdot a^{*} \cdot\left(1+b \cdot b^{*}\right)+b \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*} \\
& =\text { Mil }^{*}\left(1+a \cdot a^{*} \cdot b^{*}+b \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*} \\
& =_{\text {Mil }} 1 \cdot\left(a^{*} \cdot b^{*}\right)^{*}+a \cdot\left(\left(\left(1 \cdot a^{*}\right) \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*}\right)+b \cdot\left(\left(1 \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{*}\right)^{*}\right)
\end{aligned}
$$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.
E.g. in v_{1} :
$(a+b)^{*}={ }_{\text {Mil }}$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.
E.g. in v_{1} :
$(a+b)^{*}={ }_{\text {Mil }}$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.
E.g. in v_{1} :
$(a+b)^{*}={ }_{\text {Mil }}$

$$
={ }_{\text {Mil }} 1 \cdot(a+b)^{*}+a \cdot\left(1 \cdot(a+b)^{*}\right)+b \cdot\left(1 \cdot(a+b)^{*}\right)
$$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.
E.g. in v_{1} :

$$
\begin{aligned}
(a+b)^{*} & =\text { Mil }(a+b)^{*}+(a+b)^{*}=_{\text {Mil }^{-}} 1+(a+b) \cdot(a+b)^{*}+1+(a+b) \cdot(a+b)^{*} \\
& =\text { Mil }^{*} 1+1+(a+b) \cdot(a+b)^{*}+a \cdot(a+b)^{*}+b \cdot(a+b)^{*} \\
& =\text { Mil }^{*} 1+(a+b) \cdot(a+b)^{*}+a \cdot\left(1 \cdot(a+b)^{*}\right)+b \cdot\left(1 \cdot(a+b)^{*}\right) \\
& =\text { Mil }^{-} 1 \cdot(a+b)^{*}+a \cdot\left(1 \cdot(a+b)^{*}\right)+b \cdot\left(1 \cdot(a+b)^{*}\right)
\end{aligned}
$$

LEE-witnessed coinductive proof over Mil-

Right- and left-hand sides are Mil^{-}-provable solutions in every vertex.

Coinductive proof systems

Rule scheme for combining LEE-witnessed coinductive proofs:

$$
\frac{g_{1}=h_{1} \quad \ldots \quad g_{n}=h_{n} \quad \mathcal{L C P}(e=f)}{e=f} \text { LCoProof }_{n}
$$

- $\operatorname{LCP}(e=f)$ is a LEE-witnessed coinductive proof of $e=f$

$$
\text { over Mil }{ }^{-}+\left\{g_{1}=h_{1}, \ldots, g_{n}=h_{n}\right\} .
$$

We define the proof systems:
CLC := rules $\left\{\text { LCoProof }_{n}\right\}_{n \in \mathbb{N}}$
cMil := Mil ${ }^{-}+\left\{\text {LCoProof }_{n}\right\}_{n \in \mathbb{N}}$
Lemma
CLC ~ cMil

Coinductive proof systems

Rule scheme for combining coinductive proofs:

$$
\frac{g_{1}=h_{1}}{} \quad \ldots \quad g_{n}=h_{n} \quad \mathcal{C P}(e=f)\left(\operatorname{CoProof}_{n}\right.
$$

- $\mathcal{C P}(e=f)$ is a coinductive proof of $e=f$

$$
\text { over Mil }{ }^{-}+\left\{g_{1}=h_{1}, \ldots, g_{n}=h_{n}\right\} .
$$

We define the proof systems:

$$
\begin{array}{ll}
\text { CLC := rules }\left\{\text { LCoProof }_{n}\right\}_{n \in \mathbb{N}} & \text { CC }:=\text { rules }\left\{\operatorname{CoProof}_{n}\right\}_{n \in \mathbb{N}} \\
\text { cMil }:=\text { Mil }^{-}+\left\{\text {LCoProof }_{n}\right\}_{n \in \mathbb{N}} & \overline{\text { cMil }}:=\text { Mil }^{-}+\left\{\operatorname{CoProof}_{n}\right\}_{n \in \mathbb{N}}
\end{array}
$$

Lemma

Lemma

(i) $\mathrm{CC} \sim \overline{\mathrm{cMil}}$.
(ii) $\overline{\mathrm{CMil}} \sim \mathrm{Mil}^{-}+\mathrm{USP}$,
(iii) CC and cMil are complete for $=_{\llbracket \cdot \|_{p}}$.

Coinductive proof systems

Rule scheme for combining coinductive proofs:

$$
\frac{g_{1}=h_{1}}{} \quad \ldots \quad g_{n}=h_{n} \quad \mathcal{C P}(e=f)\left(\operatorname{CoProof}_{n}\right.
$$

- $\mathcal{C P}(e=f)$ is a coinductive proof of $e=f$

$$
\text { over Mil }{ }^{-}+\left\{g_{1}=h_{1}, \ldots, g_{n}=h_{n}\right\} .
$$

We define the proof systems:

$$
\begin{array}{ll}
\text { CLC := rules }\left\{\text { LCoProof }_{n}\right\}_{n \in \mathbb{N}} \quad \text { CC }:=\text { rules }\left\{\operatorname{CoProof}_{n}\right\}_{n \in \mathbb{N}} \\
\text { cMil }:=\text { Mil }^{-}+\left\{\text {LCoProof }_{n}\right\}_{n \in \mathbb{N}} & \overline{\text { CMil }}:=\text { Mil }^{-}+\left\{\operatorname{CoProof}_{n}\right\}_{n \in \mathbb{N}}
\end{array}
$$

Lemma
CLC ~ cMil

Consequence

cMil ~ CLC $~ C C C \overline{c M i l}$.

Lemma

(i) $\mathrm{CC} \sim \overline{\mathrm{cMil}}$.
(ii) $\overline{\mathrm{CMil}} \sim \mathrm{Mil}^{-}+\mathrm{USP}$,
(iii) CC and cMil are complete for $=_{\llbracket \cdot \|_{p}}$.

Proof transformation Mil $\longmapsto \mathrm{cMil}$

$$
\begin{aligned}
& \frac{e}{e}=f \cdot e+g \\
& e= f^{*} \cdot g \\
& \Longleftrightarrow \quad \frac{e=f P^{*}}{} \\
& \Longleftrightarrow \quad e+g \quad \mathcal{L C P} \mathrm{Mil}^{-}+\{e=f \cdot e+g\} \\
& e=f^{*} \cdot g
\end{aligned}
$$

Proof transformation Mil $\longmapsto \mathrm{cMil}$

$$
\begin{aligned}
& \overbrace{(a+b)^{*}}^{e}=\overbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)}^{f} \cdot \overbrace{(a+b)^{*}}^{e}+\overbrace{1}^{g} \\
& (a+b)^{*}
\end{aligned}=\underbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)^{*}}_{f^{*}} \cdot \underbrace{1}_{g} \mathrm{RSP}^{*}
$$

From fixed-point rule instances to coinductive proofs

$$
\begin{aligned}
& \overbrace{(a+b)^{*}}^{e}=\overbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)}^{f} \cdot \overbrace{(a+b)^{*}}^{e}+\overbrace{1}^{g} \\
& (a+b)^{*} \\
& =\underbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)^{*}}_{f^{*}} \cdot \underbrace{1}_{g} \\
& R^{*}
\end{aligned}
$$

From fixed-point rule instances to coinductive proofs

$$
\begin{aligned}
& \overbrace{(a+b)^{*}}^{e}=\overbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)}^{f} \cdot \overbrace{(a+b)^{*}}^{e}+\overbrace{1}^{g} \\
& (a+b)^{*}
\end{aligned}=\underbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)^{*}}_{f^{*}} \cdot \underbrace{1}_{g} \text { RP* }^{*}
$$

From fixed-point rule instances to coinductive proofs

$$
\begin{aligned}
& \overbrace{(a+b)^{*}}^{e}=\overbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)}^{f} \cdot \overbrace{(a+b)^{*}}^{e}+\overbrace{1}^{g} \\
& (a+b)^{*}
\end{aligned}=\mathrm{RSP}^{*}
$$

From fixed-point rule instances to coinductive proofs

$$
\begin{aligned}
& \overbrace{(a+b)^{*}}^{e}=\overbrace{\left(\left(a \cdot a^{*}+b\right) \cdot b^{*}\right)}^{f} \cdot \overbrace{(a+b)^{*}}^{e}+\overbrace{1}^{g} \\
& (a+b)^{*}
\end{aligned}=\mathrm{RSP}^{*}
$$

From fixed-point rule instances to coinductive proofs

$\left(\left(1 \cdot a^{*}\right) \cdot b^{*}\right) \cdot e=\left(\left(\left(1 \cdot a^{*}\right) \cdot b^{*}\right) \cdot f^{*}\right) \cdot g$

$$
\left(1 \cdot b^{*}\right) \cdot e=\left(\left(1 \cdot b^{*}\right) \cdot f^{*}\right) \cdot g
$$

$\left.\left(1 \cdot a^{*}\right) \cdot b^{*}\right) \cdot e=\left(\left(\left(1 \cdot a^{*}\right) \cdot b^{*}\right) \cdot f^{*}\right) \cdot g$
$\left(1 \cdot b^{*}\right) \cdot e=\left(\left(1 \cdot b^{*}\right) \cdot f^{*}\right) \cdot g$

LEE-witnessed coinductive proof over Mil ${ }^{-}+\{e=f \cdot e+g\}$

Proof transformation Mil $\longmapsto \mathrm{cMil}$

$$
\begin{aligned}
& \frac{e}{e}=f \cdot e+g \\
& e= f^{*} \cdot g \\
& \Longleftrightarrow \quad \frac{e=f P^{*}}{} \\
& \Longleftrightarrow \quad e+g \quad \mathcal{L C P} \mathrm{Mil}^{-}+\{e=f \cdot e+g\} \\
& e=f^{*} \cdot g
\end{aligned}
$$

Proof transformation Mil $\longmapsto \mathrm{cMil}$

Theorem

Mil $\lesssim c M i l$, because:
every derivation in Mil with conclusion $e=f$ can be transformed effectively into a derivation in cMil with conclusion $e=f$.

Proof idea.

$$
\begin{aligned}
& \frac{e}{e=}=f \cdot e+g \\
& e=f^{*} \cdot g \text { RSP }^{*} \\
& \Longleftrightarrow \quad \frac{e=f \cdot e+g \quad \mathcal{L C P}_{\text {MiI }^{-}+\{e=f \cdot e+g\}}\left(e=f^{*} \cdot g\right)}{e=f^{*} \cdot g} \text { LCoProof }_{1}
\end{aligned}
$$

Corollary
 Mil ~ cMil ~ CLC.

Proof transformation cMil \longmapsto Mil

Lemma

For all star expression e, f, and equations $\Gamma \subseteq=_{\text {mil }}$:

$$
e \stackrel{\text { LEE }}{=}_{\mathrm{Mil}^{-}+\Gamma} f \quad \Longrightarrow \quad e=\text { Mil } f
$$

Extraction of Mil-derivation from LEE-witn. coind. proof

$$
\underline{\mathcal{C}}, \underline{\hat{\mathcal{C}}}
$$

$$
L_{i}\left(v_{2}\right)={ }_{\mathrm{Mil}^{-}}^{(\mathrm{sol})} b \cdot L_{i}\left(v_{21}\right)+1 \cdot L_{i}(v)=_{\mathrm{Mil}^{-}} b \cdot L_{i}\left(v_{2}\right)+L_{i}(v)
$$

$$
\Downarrow \text { applying RSP* }
$$

$$
L_{i}\left(v_{2}\right)=\text { Mil } b^{*} \cdot L_{i}(v)
$$

$$
L_{i}\left(v_{11}\right)==_{\mathrm{Mil}^{-}}^{(\mathrm{sol})} 1 \cdot L_{i}\left(v_{1}\right)=_{\mathrm{Mil}^{-}} L_{i}\left(v_{1}\right)
$$

$$
L_{i}\left(v_{1}\right)={ }_{\text {Mill }^{-}} a \cdot L_{i}\left(v_{11}\right)+b \cdot L_{i}\left(v_{21}\right)+1 \cdot L_{i}(v)
$$

$$
=\mathrm{Mil} a \cdot L_{i}\left(v_{1}\right)+\left(b \cdot b^{*}+1\right) \cdot L_{i}(v)
$$

$$
=_{\text {Mil }^{-}} a \cdot L_{i}\left(v_{1}\right)+b^{*} \cdot L_{i}(v)
$$

$$
\Downarrow \text { applying RSP* }
$$

$$
L_{i}\left(v_{1}\right)=\text { Mil } a^{*} \cdot\left(b^{*} \cdot L_{i}(v)\right)=_{\text {Mill }^{-}}\left(a^{*} \cdot b^{*}\right) \cdot L_{i}(v)
$$

$$
L_{i}(v)==_{\text {Mil }^{-}}^{(\mathrm{sol})} 1+a \cdot L_{i}\left(v_{11}\right)+b \cdot L_{i}\left(v_{21}\right)=_{\text {Mill }^{-}} 1+a \cdot L_{i}\left(v_{1}\right)+b \cdot L_{i}\left(v_{2}\right)
$$

$$
=\text { Mil }\left(a \cdot\left(a^{*} \cdot b^{*}\right)+b \cdot b^{*}\right) \cdot L_{i}(v)+1
$$

\Downarrow applying RSP*

$$
L_{i}(v)=\operatorname{Mil}\left(a \cdot\left(a^{*} \cdot b^{*}\right)+b \cdot b^{*}\right)^{*} \cdot 1=_{\text {Mil }^{-}}\left(a \cdot\left(a^{*} \cdot b^{*}\right)+b \cdot b^{*}\right)^{*}=s_{\underline{\hat{\mathcal{C}}}}(v)
$$

Proof transformation cMil \longmapsto Mil

Lemma (extraction and unique solvability)
Let $\underline{\mathcal{C}}$ be a LEE-1-chart.

- From $\underline{\mathcal{C}}$ a Mil--(hence Mil-)provable solution can be extracted.
- Any two Mil-provable solutions of $\underline{\mathcal{C}}$ are Mil-provably equal.

Lemma

For all star expression e, f, and equations $\Gamma \subseteq=_{\text {mil }}$:

$$
e \stackrel{\text { LEE }}{=}_{\text {Mil }^{-}+\Gamma} f \quad e==_{\text {Mil }} f
$$

Theorem

cMil § Mil, because:
every derivation in cMil with conclusion $e=f$ can be transformed effectively into a derivation in Mil with conclusion $e=f$.

Summary

We define:

- (LEE-witnessed) coinductive proofs over Mil':
- 1-charts $\underline{\mathcal{C}}$ (with LEE) whose vertices are labeled by equations between the values of two provable solutions of $\underline{\mathcal{C}}$
- proof systems
- systems cMil / CLC with LEE-witnessed coind. proofs over Mil-
- systems $\overline{\mathrm{cMil}}$ / CC with coinductive proofs over Mil-

Results:

- Mil $=\left(\right.$ Mil $^{-}+$RSP $\left.*\right) ~ ~\left(\right.$ Mil $^{-}+$LCoProof $)=$cMil \sim CLC
- Mil $\lesssim\left(\right.$ Mil $^{-}+$USP $) \sim\left(\right.$ Mil $^{-}+$CoProof $)=\overline{\text { cMil }} \sim$ CC ((clearly) complete $)$.

Desired application: proof strategy for completeness proof of Mil
$\stackrel{\vdash_{\text {Mil }}}{ } e=f \Longleftarrow \vdash_{\text {cMil }} e=f \Longleftarrow e=_{\llbracket!\rrbracket_{p}} f$

- Technical report: arXiv:2108.13104

Layered LEE-witness

Layered LEE-witness

v

Layered LEE-witness

v

Layered LEE-witness

LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

LEE, and LLEE-witness, induced process graph

LEE-charts: properties and results

Lemmas

(I) Chart interpretations of 1-free star expressions satisfy LEE.
(SU) LEE-charts have unique provable solutions up to Mil-provability.
(C) LEE is preserved under bisimulation collapse.

Theorem (G/Fokkink, LICS 2020)

The adaptation BBP of Mil to 1 -free star expressions is complete.
Consequence of lemmas used
(E) A chart \mathcal{C} is expressible by a 1 -free star expr. modulo bisimilarity \Longleftrightarrow the bisimulation collapse of \mathcal{C} is a LEE-chart.

Hence expressible|not expressible by 1 -free star expressions:

