# A Coinductive Version of Milner's Proof System for Regular Expressions Modulo Bisimilarity

#### Clemens Grabmayer





SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Department of Computer Science L'Aquila, Italy



CALCO2021 September 2, 2021



procsem

# Process semantics [.] P of regular (star) expr's (Milner, 1984)

```
0 \stackrel{P}{\longmapsto} \text{deadlock } \delta, no termination
```

- $1 \stackrel{P}{\longmapsto}$  empty process  $\epsilon$ , then terminate
- $a \stackrel{P}{\longmapsto}$  atomic action a, then terminate

$$e + f \xrightarrow{P}$$
 alternative composition of  $[e]_P$  and  $[f]_P$ 

$$e \cdot f \stackrel{P}{\longmapsto} \text{sequential composition of } [\![e]\!]_P \text{ and } [\![f]\!]_P$$

$$e^* \stackrel{P}{\longmapsto}$$
 unbounded iteration of  $[e]_P$ , option to terminate

$$\llbracket e \rrbracket_{\boldsymbol{P}} := [\boldsymbol{P}(e)]_{\underline{\leftrightarrow}}$$
 (bisimilarity equivalence class of process  $\boldsymbol{P}(e)$ )
$$:= [\mathcal{C}(e)]_{\boldsymbol{\leftrightarrow}}$$
 (bisimilarity equivalence class of chart  $\mathcal{C}(e)$ )

### Chart interpretation (example) (via TSS or Antimirov's partial deriv's)



 $cMil \Rightarrow Mil$ procsem Mil question(s)  $Mil \Rightarrow cMil$ 

### Chart interpretation (example) (via TSS or Antimirov's partial deriv's)



procsem Mil

stion(s)

# Milner's proof system Mil = Mil- + RSP\*

#### Axioms:

Inference rules: equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* \text{ (if } f \ddagger\text{)}$$

# Milner's axiomatization question

#### Question (Milner, 1984)

Is Milner's system Mil = Mil<sup>-</sup>+RSP\* complete for bisimilarity of process interpretations of regular expressions?

$$\forall e, f \text{ reg. expr's } (\vdash_{\mathsf{Mil}} e = f) \xrightarrow{\mathsf{complete}?} e =_{\llbracket \cdot \rrbracket_P} f)?$$

"Yes" for restrictions to subclasses: Zantema/Fokkink (1994), Fokkink (1996), Corradini, De Nicola, Labella (2002), G/Fokkink (2020).

#### Proposition (G, CMCS 2006)

The system Mil-+USP, where:

USP: unique solvability of guarded, linear systems of equations, is (sound and) complete.

#### Question (investigated here)

How can the derivational power be characterized that the fixed-point rule RSP\* adds to the purely equational part Mil<sup>-</sup> of Milner's system?

# Answer developed

#### We use:

- the loop existence and elimination property (LEE) of charts
  - implies expressibility by a star expression
  - ▶ led to completeness result for 1-free star expressions (G/Fokkink, 2020)

#### We introduce:

■ a coinductive version cMil = (Mil<sup>-</sup>+LCoProof) of Mil = (Mil<sup>-</sup>+RSP\*) based on LEE-witnessed coinductive proofs over Mil<sup>-</sup>.

#### We construct/obtain:

- ▶ a proof transformation: Mil → cMil, (RSP\* inst's → LCoProof inst's),
- ▶ a proof transformation: Mil ← cMil, (bottom-up extraction procedure),
- ▶ theorem equivalence Mil ~ cMil :

$$\vdash_{\mathsf{Mil}} e = f \iff \vdash_{\mathsf{cMil}} e = f.$$

### LEE



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



### LEE, and LLEE-witness





#### Definition

A chart C satisfies LEE (loop existence and elimination) if:

$$\exists \mathcal{C}_0 \left( \mathcal{C} \Longrightarrow_{\mathrm{elim}}^* \mathcal{C}_0 \Longrightarrow_{\mathrm{elim}}^* \right. \\ \wedge \left. \mathcal{C}_0 \text{ permits no infinite path} \right).$$









procsem Mil question(s) answer here LEE cMil Mil ⇒ cMil

### Chart interpretation (example)



$$\mathcal{C}((a^* \cdot b^*)^*)$$



 $cMil \Rightarrow Mil$ 

$$\mathcal{C}((a+b)^*)$$

procsem Mil question(s) answer here LEE cMil Mil ⇒ cMil

### Chart interpretation (example)



$$\mathcal{C}((a^* \cdot b^*)^*)$$



 $cMil \Rightarrow Mil$ 

$$\mathcal{C}((a+b)^*)$$

















$$\underline{\mathcal{C}}((a^* \cdot b^*)^*)$$

$$\mathcal{C}((a+b)^*)$$

### LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)



### LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)





Right- and left-hand sides are Mil-provable solutions in every vertex.

$$((1 \cdot a^*) \cdot b^*) \cdot (a^* \cdot b^*)^* = 1 \cdot (a + b)^*$$

$$a \uparrow [1] \qquad b \qquad (1 \cdot b^*) \cdot (a^* \cdot b^*)^* = 1 \cdot (a + b)^*$$

$$(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* = (a + b)^* \qquad [1] \uparrow b$$

$$b^* \cdot (a^* \cdot b^*)^* = (a + b)^* \qquad [1]$$

$$b^* \cdot (a^* \cdot b^*)^* = (a + b)^* \qquad [1]$$

Right- and left-hand sides are Mil-provable solutions in every vertex.

$$(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* =_{\mathsf{Mil}}$$



Right- and left-hand sides are Mil-provable solutions in every vertex.

$$(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* =_{\mathsf{Mil}}$$



Right- and left-hand sides are Mil-provable solutions in every vertex.

$$(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* =_{\mathsf{Mil}^{-}}$$

$$=_{\mathsf{Mil}^{-}} \mathbf{1} \cdot (a^{*} \cdot b^{*})^{*} + \mathbf{a} \cdot (((1 \cdot a^{*}) \cdot b^{*}) \cdot (a^{*} \cdot b^{*})^{*}) + \mathbf{b} \cdot ((1 \cdot b^{*}) \cdot (a^{*} \cdot b^{*})^{*})$$

### LEE-witnessed coinductive proof over Mil-

$$((1 \cdot a^*) \cdot b^*) \cdot (a^* \cdot b^*)^* = 1 \cdot (a + b)^*$$

$$a \uparrow [1]$$

$$(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* = (a + b)^*$$

$$b \downarrow b \downarrow b$$

$$(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* = (a + b)^*$$

$$v_1 \downarrow b \downarrow b$$

$$v_2 \downarrow b \downarrow b$$

$$v_3 \downarrow b \downarrow b$$

$$v_4 \downarrow b \downarrow b$$

$$v_5 \downarrow b \downarrow b$$

$$v_6 \downarrow b \downarrow b$$

$$v_7 \downarrow b \downarrow b$$

$$v_8 \downarrow b \downarrow b$$

$$v_8 \downarrow b \downarrow b$$

$$v_9 \downarrow$$

Right- and left-hand sides are Mil<sup>-</sup>-provable solutions in every vertex. E.g. in  $v_1$ :

$$\begin{split} & (a^* \cdot b^*) \cdot (a^* \cdot b^*)^* =_{\text{Mil}^-} ((1 + a \cdot a^*) \cdot (1 + b \cdot b^*)) \cdot (a^* \cdot b^*)^* \\ & =_{\text{Mil}^-} (1 \cdot 1 + a \cdot a^* \cdot 1 + 1 \cdot b \cdot b^* + a \cdot a^* \cdot b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ & =_{\text{Mil}^-} (1 + a \cdot a^* + a \cdot a^* \cdot b \cdot b^* + b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ & =_{\text{Mil}^-} (1 + a \cdot a^* \cdot (1 + b \cdot b^*) + b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ & =_{\text{Mil}^-} (1 + a \cdot a^* \cdot b^* + b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ & =_{\text{Mil}^-} 1 \cdot (a^* \cdot b^*)^* + \frac{a}{a} \cdot (((1 \cdot a^*) \cdot b^*) \cdot (a^* \cdot b^*)^*) + \frac{b}{a} \cdot ((1 \cdot b^*) \cdot (a^* \cdot b^*)^*) \end{split}$$



Right- and left-hand sides are Mil-provable solutions in every vertex.

$$(a+b)^* =_{Mil}$$



Right- and left-hand sides are Mil-provable solutions in every vertex.

$$(a+b)^* =_{Mil}$$

### LEE-witnessed coinductive proof over Mil-



Right- and left-hand sides are Mil-provable solutions in every vertex.

$$(a+b)^* =_{\mathsf{Mil}^-}$$

$$=_{Mil^{-}} 1 \cdot (a+b)^* + a \cdot (1 \cdot (a+b)^*) + b \cdot (1 \cdot (a+b)^*)$$

# LEE-witnessed coinductive proof over Mil-

$$((1 \cdot a^*) \cdot b^*) \cdot (a^* \cdot b^*)^* = 1 \cdot (a+b)^*$$

$$(1 \cdot b^*) \cdot (a^* \cdot b^*)^* = 1 \cdot (a+b)^*$$

$$(1 \cdot b^*) \cdot (a^* \cdot b^*)^* = 1 \cdot (a+b)^*$$

$$(1 \cdot b^*) \cdot (a^* \cdot b^*)^* = (a+b)^*$$

$$(1 \cdot b^*) \cdot (a^* \cdot b^*)^* = (a+b)^*$$

$$(1 \cdot b^*) \cdot (a^* \cdot b^*)^* = (a+b)^*$$

$$(1 \cdot b^*) \cdot (a^* \cdot b^*)^* = (a+b)^*$$

Right- and left-hand sides are Mil<sup>-</sup>-provable solutions in every vertex. E.g. in  $v_1$ :

$$(a+b)^* =_{Mil^-} (a+b)^* + (a+b)^* =_{Mil^-} 1 + (a+b) \cdot (a+b)^* + 1 + (a+b) \cdot (a+b)^*$$

$$=_{Mil^-} 1 + 1 + (a+b) \cdot (a+b)^* + a \cdot (a+b)^* + b \cdot (a+b)^*$$

$$=_{Mil^-} 1 + (a+b) \cdot (a+b)^* + a \cdot (1 \cdot (a+b)^*) + b \cdot (1 \cdot (a+b)^*)$$

$$=_{Mil^-} 1 \cdot (a+b)^* + a \cdot (1 \cdot (a+b)^*) + b \cdot (1 \cdot (a+b)^*)$$



Right- and left-hand sides are Mil-provable solutions in every vertex.

# Coinductive proof systems

Rule scheme for combining LEE-witnessed coinductive proofs:

$$\frac{g_1 = h_1 \quad \dots \quad g_n = h_n \quad \mathcal{LCP}(e = f)}{e = f} \quad \mathsf{LCoProof}_n$$

▶  $\mathcal{LCP}(e = f)$  is a LEE-witnessed coinductive proof of e = f over Mil<sup>-</sup>+{ $g_1 = h_1, \ldots, g_n = h_n$ }.

We define the proof systems:

CLC := rules 
$$\{\mathsf{LCoProof}_n\}_{n\in\mathbb{N}}$$
  
 $\mathsf{cMil} := \mathsf{Mil}^- + \{\mathsf{LCoProof}_n\}_{n\in\mathbb{N}}$ 

Lemma CLC ~ cMil

# Coinductive proof systems

Rule scheme for combining coinductive proofs:

$$\frac{g_1 = h_1 \quad \dots \quad g_n = h_n \quad \mathcal{CP}(e = f)}{e = f} \quad \mathsf{CoProof}_n$$

 $ightharpoonup \mathcal{CP}(e=f)$  is a coinductive proof of e=f over  $Mil^- + \{g_1 = h_1, \dots, g_n = h_n\}$ .

#### We define the proof systems:

CLC := rules 
$$\{\text{LCoProof}_n\}_{n\in\mathbb{N}}$$
  
 $\text{cMil} := \text{Mil}^- + \{\text{LCoProof}_n\}_{n\in\mathbb{N}}$ 

$$CC := rules \{CoProof_n\}_{n \in \mathbb{N}}$$
  
 $\overline{CMil} := Mil^- + \{CoProof_n\}_{n \in \mathbb{N}}$ 

#### Lemma

- (i) CC ~ cMil.
- (ii) <del>cMil</del> ~ Mil-+USP,
- (iii) CC and  $\overline{\text{cMil}}$  are complete for  $=_{\llbracket . \rrbracket_P}$ .

Mil

# Coinductive proof systems

Rule scheme for combining coinductive proofs:

$$\frac{g_1 = h_1 \quad \dots \quad g_n = h_n \quad \mathcal{CP}(e = f)}{e = f} \operatorname{CoProof}_n$$

 $\triangleright$   $\mathcal{CP}(e=f)$  is a coinductive proof of e=f

over 
$$Mil^- + \{g_1 = h_1, \dots, g_n = h_n\}.$$

We define the proof systems:

CLC := rules 
$$\{\mathsf{LCoProof}_n\}_{n\in\mathbb{N}}$$
  
 $\mathsf{cMil} := \mathsf{Mil}^- + \{\mathsf{LCoProof}_n\}_{n\in\mathbb{N}}$ 

$$\frac{\mathsf{CC} \coloneqq \mathsf{rules} \left\{ \mathsf{CoProof}_n \right\}_{n \in \mathbb{N}}}{\mathsf{\overline{cMil}} \coloneqq \mathsf{Mil}^- + \left\{ \mathsf{CoProof}_n \right\}_{n \in \mathbb{N}}}$$

### Lemma

CLC ~ cMil

### Consequence

cMil ~ CLC ≾ CC ~ cMil.

### Lemma

- (i) CC ~ cMil.
- (ii) cMil ~ Mil+USP,
- (iii) CC and cMil are complete for  $=_{\llbracket . \rrbracket_p}$ .

### Proof transformation Mil → cMil

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{RSP*}$$

$$\longmapsto \frac{e = f \cdot e + g}{e = f \cdot e + g} \frac{\mathcal{LCP}_{\text{Mil}^- + \{e = f \cdot e + g\}}(e = f^* \cdot g)}{e = f^* \cdot g} \text{LCoProof}_1$$

### Proof transformation Mil → cMil

$$\frac{\overbrace{(a+b)^*}^e = \overbrace{((a \cdot a^* + b) \cdot b^*)}^f \cdot \overbrace{(a+b)^* + 1}^e}{(a+b)^* = \underbrace{((a \cdot a^* + b) \cdot b^*)}^f \cdot \underbrace{1}_g} RSP^*$$

$$\frac{\overbrace{(a+b)^*}^e = \overbrace{((a \cdot a^* + b) \cdot b^*)}^f \cdot \overbrace{(a+b)^* + 1}^e}{(a+b)^* = \underbrace{((a \cdot a^* + b) \cdot b^*)}^f \cdot \underbrace{1}_g} RSP^*$$

$$\frac{\underbrace{(a+b)^*}_{e} = \underbrace{((a \cdot a^* + b) \cdot b^*)}_{f^*} \cdot \underbrace{(a+b)^* + 1}_{g}}{(a+b)^* = \underbrace{((a \cdot a^* + b) \cdot b^*)}_{f^*} \cdot \underbrace{1}_{g}}$$
RSP\*



$$\frac{\underbrace{(a+b)^*}_{e} = \underbrace{((a \cdot a^* + b) \cdot b^*)}_{f^*} \cdot \underbrace{(a+b)^* + 1}_{g}}{\underbrace{(a+b)^*}_{g} = \underbrace{((a \cdot a^* + b) \cdot b^*)}_{g^*} \cdot \underbrace{1}_{g}}$$
RSP\*



$$\frac{\overbrace{(a+b)^*}^e = \overbrace{((a\cdot a^* + b)\cdot b^*)}^f \cdot \overbrace{(a+b)^* + 1}^e}{(a+b)^* = \underbrace{((a\cdot a^* + b)\cdot b^*)^*}_{f^*} \cdot \underbrace{1}_g}$$
RSP\*



$$\frac{e}{(a+b)^*} = \underbrace{((a \cdot a^* + b) \cdot b^*) \cdot (a+b)^* + 1}_{g} + \underbrace{((a \cdot a^* + b) \cdot b^*)^* \cdot 1}_{g} \cdot \underbrace{1}_{g}$$
RSP\*



LEE-witnessed coinductive proof over Mil<sup>-</sup>+{ $e = f \cdot e + g$ }

### Proof transformation Mil → cMil

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{RSP*}$$

$$\longmapsto \frac{e = f \cdot e + g}{e = f \cdot e + g} \frac{\mathcal{LCP}_{\text{Mil}^- + \{e = f \cdot e + g\}}(e = f^* \cdot g)}{e = f^* \cdot g} \text{LCoProof}_1$$

### Proof transformation Mil → cMil

#### **Theorem**

### Mil ≾ cMil, because:

every derivation in Mil with conclusion e = f can be transformed effectively into a derivation in cMil with conclusion e = f.

#### Proof idea.

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{RSP*}$$

$$\longmapsto \frac{e = f \cdot e + g}{e = f \cdot e + g} \frac{\mathcal{LCP}_{\text{Mil}^+ + \{e = f \cdot e + g\}}(e = f^* \cdot g)}{e = f^* \cdot g} \text{LCoProof}_1$$

### Corollary

Mil ~ cMil ~ CLC.

### Proof transformation cMil → Mil

#### Lemma

For all star expression e, f, and equations  $\Gamma \subseteq =_{Mil}$ :

$$e \stackrel{\mathsf{LEE}}{=}_{\mathsf{Mil}^- + \Gamma} f \implies e =_{\mathsf{Mil}} f$$

 $\mathcal{C}, \hat{\mathcal{C}}$ 

## Extraction of Mil-derivation from LEE-witn. coind. proof

### Proof transformation cMil → Mil

### Lemma (extraction and unique solvability)

Let C be a LEE-1-chart.

- ▶ From  $\mathcal{C}$  a Mil<sup>-</sup>-(hence Mil-)provable solution can be extracted.
- ▶ Any two Mil-provable solutions of  $\underline{C}$  are Mil-provably equal.

#### Lemma

For all star expression e, f , and equations  $\Gamma \subseteq {\sf =_{Mil}}$  :

$$e \stackrel{\mathsf{LEE}}{=}_{\mathsf{Mil}^- + \Gamma} f \implies e =_{\mathsf{Mil}} f$$

#### **Theorem**

every derivation in cMil with conclusion e = f can be transformed effectively into a derivation in Mil with conclusion e = f.

## Summary

#### We define:

- ► (LEE-witnessed) coinductive proofs over Mil⁻:
  - ▶ 1-charts  $\underline{C}$  (with LEE) whose vertices are labeled by equations between the values of two provable solutions of C
- proof systems
  - systems cMil / CLC with LEE-witnessed coind. proofs over Mil-
  - systems cMil / CC with coinductive proofs over Mil<sup>-</sup>

#### Results:

- ► Mil = (Mil<sup>-</sup>+RSP\*) ~ (Mil<sup>-</sup>+LCoProof) = cMil ~ CLC
- Mil ≤ (Mil⁻+USP) ~ (Mil⁻+CoProof) = cMil ~ CC ((clearly) complete).

Desired application: proof strategy for completeness proof of Mil

- $\blacktriangleright \vdash_{\mathsf{Mil}} e = f \iff \vdash_{\mathsf{cMil}} e = f \iff e =_{\llbracket \cdot \rrbracket_{\mathsf{P}}} f$
- ► Technical report: arxiv:2108.13104















 $procsem \qquad Mil \qquad question(s) \qquad answer here \qquad LEE \qquad cMil \qquad Mil \Rightarrow cMil \qquad summ$ 





































# LEE, and LLEE-witness, induced process graph



 $Mil \Rightarrow cMil$ cMil ⇒ Mil

## LEE-charts: properties and results

#### Lemmas

- (I) Chart interpretations of 1-free star expressions satisfy LEE.
- (SU) LEE-charts have unique provable solutions up to Mil-provability.
  - (C) LEE is preserved under bisimulation collapse.

#### Theorem (G/Fokkink, LICS 2020)

The adaptation BBP of Mil to 1-free star expressions is complete.

#### Consequence of lemmas used

(E) A chart  $\mathcal{C}$  is expressible by a 1-free star expr. modulo bisimilarity  $\iff$  the bisimulation collapse of  $\mathcal{C}$  is a LEE-chart.

Hence expressible not expressible by 1-free star expressions:







