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overzicht

▸ wat ik van Vincent heb geleerd, en blijf leren:
▸ hogere-orde herschrijven
▸ optimale reductie in de λ-calculus (Lambdascope)
▸ hogere-orde naar eerste-orde vertaling:

λ-calculus naar orthogonale TRS

▸ toepassingen:
▸ maximal sharing (met Jan Rochel)
▸ geneste termgrafen (met Vincent)

▸ andere leermomenten:
▸ paradoxaal interveniëren
▸ diep
▸ gewoon
▸ het Vincents
▸ moeten?
▸ university management
▸ voetbal
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onderwijs samen met Vincent:

▸ datastructuren (bachelor CKI)

▸ models of computation (master CAI)



paradoxaal interveniëren (V)

▸ een ‘typische Vincent opmerking’

▸ volgt vaak letterlijke betekenissen van woorden, of bijbetekenissen

▸ gebruikt betekenissen waar anderen helemaal niet aan denken

▸ gevolgd door: ‘oooh, je bedoelde eigenlijk . . . ’, ‘zeg dat dan’

▸ is speels, maar verruimt (in een oopopslag) het referentiekader

▸ en leidt daarmee tot gezamenlijke nieuwe energie, soms ook inzichten



paradoxaal interveniëren (psychotherapie)

Alfred Adler (1870–1937)

▸ in gezinstherapie

▸ doel van de therapeut: weerstand van de client elimineren
▸ therapeut

▸ neemt letterlijk wat de client zegt
▸ bemoedigt de client om door te gaan met het symptomatisch gedrag
▸ suggereert het tegenovergestelde van wat logica/rede zou ingeven

▸ wordt op ethisch-verantwoorde manier toegepast

▸ de onredelijk lijkende suggestie dwingt de client om na te denken

▸ wat ook de gekozen reactie is, de client beseft
dat zij/hij meer controle heeft dan gedacht



gradaties van optimale reductie [VvO, plaatje 2008/10]
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hogere orde termherschrijven
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hogere orde termherschrijven

Yuri Gurevich



hogere orde termherschrijven

herschrijven: ‘equationeel redeneren, één kant op, naar het antwoord toe’

hogere-orde herschrijven: herschr. van syntactische objecten met binding

▸ prototypische voorbeeld: λ-calculus (λ)

▸ verschillende formaten zoals:
▸ Combinatory Reduction Systems (CRSs) [Klop]
▸ Higher-Order Rewrite Systems (HRSs) [Nipkow]

▸ HRS-introductie voor filosofen geschreven door Vincent in:

G, Joop Leo, Vincent van Oostrom, Albert Visser: On the
termination of Russell’s description elimination algorithm, RSL’2011.
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λ-calculus Blanc/Lévy/ Wadsworth ’71 extended-scope
(weak-β red. →wβ) Maranget ’05/’07 Shivers/Wand ’04 sharing

orthogonal TRS
VvO ’03 (Terese)

Staples ’80
subterm sharing(induced VvO ’03 (Terese)

rewrite relation →)



gradaties van optimale reductie

optimale evaluatie in λ-calculus vermijdt:

▸ onnodig werk

▸ dubbel werk

calculus
labelling

graph rewriting
sharing notion

(rewrite relation) implementation

λ-calculus
(β-reduction →β)
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Lambdascope [VvO, van de Looij, Zwitserlood, 2003]

agents:

Note that using the extrusion rules, the first step of Exam-
ple 2, indeed factorises in the way which was displayed
above. In particular, note that S2 →λ 2 holds since 2 is
closed. Here a generalised λ-term t is closed if 0" t in the
following inference system (cf. [6]):

Si" 0
0

Si"St
S

i" t

i"λt
λ

Si" t

i" t1t2
@

i" t1 i" t2

The intuitive reading of the index i in a judgment i" t, read:
term t is well-formed under index i, is as the (number of)
variables bound by λs above this subterm.

Example 3 That 2 is indeed closed is witnessed by

0"λλ(S0)((S0)0)
λ

S0"λ(S0)((S0)0)
λ

SS0" (S0)((S0)0)
@

SS0"S0
S

S0" 0
0

SS0" (S0)0
@

SS0"S0
S

S0" 0
0

SS0" 0
0

As usual, any λ-term can be closed (made well-formed un-
der 0), by putting enough abstractions. Hence it is no re-
striction to prove our results for closed terms only and we
will do so. Moreover, we will abbreviate indices by natural
numbers in sans-serif e.g. SSS0 is abbreviated to 3.

3. From terms to nets

We present our translation of the namefree λ-terms to a
class of graphs known as interaction nets [9]. The signa-
ture of an interaction nets consists of symbols each having
a number of ports among which a designated principal port.
The interaction net signature we employ is

@

function
argument λ bind

body
i i

applicator abstractor delimiter duplicator eraser

where ◦s indicate ports and •s indicate principal ports, i.e.
ports along which a symbol may interact (see the rules be-
low). Here i ranges over arbitrary indices, making the sig-
nature infinite.
Apart from@ and λwhich will have the meaning one ex-

pects, the signature has symbols for explicitly representing
the different operations of the factorisation of β-reduction,
as presented in the previous section. In particular, the du-
plicator !i (share, fan) and the eraser " (garbage) will to-
gether serve to represent replication, as usual in graph im-
plementations of first-order rewriting. The delimiter $i rep-
resents the higher-order aspect of scope. By default, when

we do not write the index i for a duplicator or delimiter, it
is assumed to be 0.
Interaction nets are graphs the nodes of which are la-

belled by symbols of the signature, and the edges of which
connect to the ports of the (symbols of the) nodes. To every
port at most one edge may be connected. If no edge is con-
nected to a port, then the port is called free. A net is closed
if it does not have free ports.
The function # : Λ→IN mapping closed terms to closed

interaction nets is defined in two phases. First, a well-
formed term i" t is mapped to a net having i+ 1 free ports,
which is defined by induction and cases (0, S, λ, and @) on
the definition of well-formedness as:

i i! t

i

i

Si! t
i i

i

i! t1 i! t2

@λ

After that a "-node (the root) is connected to the free port.
Here a number i next to a slashed edge represents that in
fact the edge is a ‘bus’ consisting of i edges.

Example 4 The translation #(2) of 2 is recursively ob-
tained from the inference displayed in Example 3

@

@

λ

λ

Since the translation is uniform, it is on the one hand easy
to prove properties about, but on the other hand very in-
efficient: it generates many duplicator-eraser combinations
whose net-effect will be (see the reduction rules below) the
same as that of an edge. Removing these yields the net 2

basic rules:

=

@

λ

λ

@

useless duplicator-
eraser combo, and
result of removing
it from!(2)

where the north port of the second application has been ro-
tated to the west, in order to highlight the correspondence
between the interaction net representation of 2 and its syn-
tax tree, as displayed above.

4. Interaction net reduction

The intuitive meaning of the symbols in our interaction
net signature, as presented above, is operationalised by just
two rule schemes, for f ,g arbitrary but distinct, and a rule
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f ′f ′

. . .

m
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f

annihilate commute

g
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g
′

f g

disintegrate

λ. . . . . .
. . .. . .

@

where f ′ and g′ are either identical to or updates of the sym-
bols f and g, respectively. An update is an increment of the
index i (if any) of either symbol, which takes place iff the
other symbol is either λ or !j , with i ≥ j. Instances of the
two schemes are called x-rules.

Example 5 Annihilate, commute, and commute with up-
date, respectively, are exemplified by the following x-rules

1

11 λ

λ

1 1

Disintegration is only half of a rule; the rule Beta is defined
by post-composing it with an annihilation of its @:

λ

@

disintegrate annihilate

@

@

=

The set B of interaction rules which interest us is defined to
be the union of x and Beta (but not disintegrate).
Note that the effect of operators is indeed as expected:

the eraser acts as a garbage collector erasing anything it
can interact with; the duplicator acts as a copier duplicat-
ing anything it can interact with; the delimiter acts as an
extruder putting anything it can interact with into its scope.
All act locally in the sense that they affect one node at the
time. This restriction, which comes with the interaction net
framework, explains our use of indexed delimiters: roughly
speaking, the way in which the recursive definition of min-
imal lifting of the previous section is implemented, is to
record the superscript there as an index to the delimiter.

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representation of 4. How to
retrieve this term from the net is the topic of the next section.
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5. From nets to terms

The function " : IN→Λ mapping closed nets to closed
terms is defined in three phases, each consisting of normal-
ising w.r.t. an action first and the x-rules next. (Without
touching the root-#.) This yields the syntax tree of a unique
(derivation of a) term, which is taken as the result of "(ν).
The three phases are named after their actions given by:

λ λ
S@ @

i

unwind loop cut

! P s

scope remove

Here the S is a new node type, the interaction of which is
governed by the x-rules, i.e. S behaves as a non-indexed!i.
After the unwinding action, both abstractions and appli-

cation have their north port as principal port. This makes
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result of removing
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between the interaction net representation of 2 and its syn-
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The intuitive meaning of the symbols in our interaction
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where f ′ and g′ are either identical to or updates of the sym-
bols f and g, respectively. An update is an increment of the
index i (if any) of either symbol, which takes place iff the
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two schemes are called x-rules.
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The set B of interaction rules which interest us is defined to
be the union of x and Beta (but not disintegrate).
Note that the effect of operators is indeed as expected:

the eraser acts as a garbage collector erasing anything it
can interact with; the duplicator acts as a copier duplicat-
ing anything it can interact with; the delimiter acts as an
extruder putting anything it can interact with into its scope.
All act locally in the sense that they affect one node at the
time. This restriction, which comes with the interaction net
framework, explains our use of indexed delimiters: roughly
speaking, the way in which the recursive definition of min-
imal lifting of the previous section is implemented, is to
record the superscript there as an index to the delimiter.

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representation of 4. How to
retrieve this term from the net is the topic of the next section.

xBeta

@

@

2

B

2
@

λ

λ

1 1

1 1 11

λ

2

@

λ

λ

@

2

@

λ

@@ @

5. From nets to terms

The function " : IN→Λ mapping closed nets to closed
terms is defined in three phases, each consisting of normal-
ising w.r.t. an action first and the x-rules next. (Without
touching the root-#.) This yields the syntax tree of a unique
(derivation of a) term, which is taken as the result of "(ν).
The three phases are named after their actions given by:
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Here the S is a new node type, the interaction of which is
governed by the x-rules, i.e. S behaves as a non-indexed!i.
After the unwinding action, both abstractions and appli-

cation have their north port as principal port. This makes



Lambdascope [VvO, van de Looij, Zwitserlood, 2003]

agents:

Note that using the extrusion rules, the first step of Exam-
ple 2, indeed factorises in the way which was displayed
above. In particular, note that S2 →λ 2 holds since 2 is
closed. Here a generalised λ-term t is closed if 0" t in the
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As usual, any λ-term can be closed (made well-formed un-
der 0), by putting enough abstractions. Hence it is no re-
striction to prove our results for closed terms only and we
will do so. Moreover, we will abbreviate indices by natural
numbers in sans-serif e.g. SSS0 is abbreviated to 3.

3. From terms to nets

We present our translation of the namefree λ-terms to a
class of graphs known as interaction nets [9]. The signa-
ture of an interaction nets consists of symbols each having
a number of ports among which a designated principal port.
The interaction net signature we employ is
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body
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applicator abstractor delimiter duplicator eraser

where ◦s indicate ports and •s indicate principal ports, i.e.
ports along which a symbol may interact (see the rules be-
low). Here i ranges over arbitrary indices, making the sig-
nature infinite.
Apart from@ and λwhich will have the meaning one ex-

pects, the signature has symbols for explicitly representing
the different operations of the factorisation of β-reduction,
as presented in the previous section. In particular, the du-
plicator !i (share, fan) and the eraser " (garbage) will to-
gether serve to represent replication, as usual in graph im-
plementations of first-order rewriting. The delimiter $i rep-
resents the higher-order aspect of scope. By default, when

we do not write the index i for a duplicator or delimiter, it
is assumed to be 0.
Interaction nets are graphs the nodes of which are la-

belled by symbols of the signature, and the edges of which
connect to the ports of the (symbols of the) nodes. To every
port at most one edge may be connected. If no edge is con-
nected to a port, then the port is called free. A net is closed
if it does not have free ports.
The function # : Λ→IN mapping closed terms to closed

interaction nets is defined in two phases. First, a well-
formed term i" t is mapped to a net having i+ 1 free ports,
which is defined by induction and cases (0, S, λ, and @) on
the definition of well-formedness as:
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After that a "-node (the root) is connected to the free port.
Here a number i next to a slashed edge represents that in
fact the edge is a ‘bus’ consisting of i edges.

Example 4 The translation #(2) of 2 is recursively ob-
tained from the inference displayed in Example 3
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Since the translation is uniform, it is on the one hand easy
to prove properties about, but on the other hand very in-
efficient: it generates many duplicator-eraser combinations
whose net-effect will be (see the reduction rules below) the
same as that of an edge. Removing these yields the net 2
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where the north port of the second application has been ro-
tated to the west, in order to highlight the correspondence
between the interaction net representation of 2 and its syn-
tax tree, as displayed above.

4. Interaction net reduction

The intuitive meaning of the symbols in our interaction
net signature, as presented above, is operationalised by just
two rule schemes, for f ,g arbitrary but distinct, and a rule
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where f ′ and g′ are either identical to or updates of the sym-
bols f and g, respectively. An update is an increment of the
index i (if any) of either symbol, which takes place iff the
other symbol is either λ or !j , with i ≥ j. Instances of the
two schemes are called x-rules.

Example 5 Annihilate, commute, and commute with up-
date, respectively, are exemplified by the following x-rules
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Disintegration is only half of a rule; the rule Beta is defined
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The set B of interaction rules which interest us is defined to
be the union of x and Beta (but not disintegrate).
Note that the effect of operators is indeed as expected:

the eraser acts as a garbage collector erasing anything it
can interact with; the duplicator acts as a copier duplicat-
ing anything it can interact with; the delimiter acts as an
extruder putting anything it can interact with into its scope.
All act locally in the sense that they affect one node at the
time. This restriction, which comes with the interaction net
framework, explains our use of indexed delimiters: roughly
speaking, the way in which the recursive definition of min-
imal lifting of the previous section is implemented, is to
record the superscript there as an index to the delimiter.

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representation of 4. How to
retrieve this term from the net is the topic of the next section.
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be the union of x and Beta (but not disintegrate).
Note that the effect of operators is indeed as expected:
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speaking, the way in which the recursive definition of min-
imal lifting of the previous section is implemented, is to
record the superscript there as an index to the delimiter.

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representation of 4. How to
retrieve this term from the net is the topic of the next section.
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λ
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5. From nets to terms

The function " : IN→Λ mapping closed nets to closed
terms is defined in three phases, each consisting of normal-
ising w.r.t. an action first and the x-rules next. (Without
touching the root-#.) This yields the syntax tree of a unique
(derivation of a) term, which is taken as the result of "(ν).
The three phases are named after their actions given by:

λ λ
S@ @

i

unwind loop cut

! P s

scope remove

Here the S is a new node type, the interaction of which is
governed by the x-rules, i.e. S behaves as a non-indexed!i.
After the unwinding action, both abstractions and appli-

cation have their north port as principal port. This makes



Lambdascope [VvO, van de Looij, Zwitserlood, 2003]

agents:

Note that using the extrusion rules, the first step of Exam-
ple 2, indeed factorises in the way which was displayed
above. In particular, note that S2 →λ 2 holds since 2 is
closed. Here a generalised λ-term t is closed if 0" t in the
following inference system (cf. [6]):

Si" 0
0

Si"St
S

i" t

i"λt
λ

Si" t

i" t1t2
@

i" t1 i" t2

The intuitive reading of the index i in a judgment i" t, read:
term t is well-formed under index i, is as the (number of)
variables bound by λs above this subterm.

Example 3 That 2 is indeed closed is witnessed by

0"λλ(S0)((S0)0)
λ

S0"λ(S0)((S0)0)
λ

SS0" (S0)((S0)0)
@

SS0"S0
S

S0" 0
0

SS0" (S0)0
@

SS0"S0
S

S0" 0
0

SS0" 0
0

As usual, any λ-term can be closed (made well-formed un-
der 0), by putting enough abstractions. Hence it is no re-
striction to prove our results for closed terms only and we
will do so. Moreover, we will abbreviate indices by natural
numbers in sans-serif e.g. SSS0 is abbreviated to 3.

3. From terms to nets

We present our translation of the namefree λ-terms to a
class of graphs known as interaction nets [9]. The signa-
ture of an interaction nets consists of symbols each having
a number of ports among which a designated principal port.
The interaction net signature we employ is

@

function
argument λ bind

body
i i

applicator abstractor delimiter duplicator eraser

where ◦s indicate ports and •s indicate principal ports, i.e.
ports along which a symbol may interact (see the rules be-
low). Here i ranges over arbitrary indices, making the sig-
nature infinite.
Apart from@ and λwhich will have the meaning one ex-

pects, the signature has symbols for explicitly representing
the different operations of the factorisation of β-reduction,
as presented in the previous section. In particular, the du-
plicator !i (share, fan) and the eraser " (garbage) will to-
gether serve to represent replication, as usual in graph im-
plementations of first-order rewriting. The delimiter $i rep-
resents the higher-order aspect of scope. By default, when

we do not write the index i for a duplicator or delimiter, it
is assumed to be 0.
Interaction nets are graphs the nodes of which are la-

belled by symbols of the signature, and the edges of which
connect to the ports of the (symbols of the) nodes. To every
port at most one edge may be connected. If no edge is con-
nected to a port, then the port is called free. A net is closed
if it does not have free ports.
The function # : Λ→IN mapping closed terms to closed

interaction nets is defined in two phases. First, a well-
formed term i" t is mapped to a net having i+ 1 free ports,
which is defined by induction and cases (0, S, λ, and @) on
the definition of well-formedness as:

i i! t

i

i

Si! t
i i

i

i! t1 i! t2

@λ

After that a "-node (the root) is connected to the free port.
Here a number i next to a slashed edge represents that in
fact the edge is a ‘bus’ consisting of i edges.

Example 4 The translation #(2) of 2 is recursively ob-
tained from the inference displayed in Example 3

@

@

λ

λ

Since the translation is uniform, it is on the one hand easy
to prove properties about, but on the other hand very in-
efficient: it generates many duplicator-eraser combinations
whose net-effect will be (see the reduction rules below) the
same as that of an edge. Removing these yields the net 2

basic rules:

=

@

λ

λ

@

useless duplicator-
eraser combo, and
result of removing
it from!(2)

where the north port of the second application has been ro-
tated to the west, in order to highlight the correspondence
between the interaction net representation of 2 and its syn-
tax tree, as displayed above.

4. Interaction net reduction

The intuitive meaning of the symbols in our interaction
net signature, as presented above, is operationalised by just
two rule schemes, for f ,g arbitrary but distinct, and a rule
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where f ′ and g′ are either identical to or updates of the sym-
bols f and g, respectively. An update is an increment of the
index i (if any) of either symbol, which takes place iff the
other symbol is either λ or !j , with i ≥ j. Instances of the
two schemes are called x-rules.

Example 5 Annihilate, commute, and commute with up-
date, respectively, are exemplified by the following x-rules

1

11 λ

λ

1 1

Disintegration is only half of a rule; the rule Beta is defined
by post-composing it with an annihilation of its @:

λ

@

disintegrate annihilate

@

@

=

The set B of interaction rules which interest us is defined to
be the union of x and Beta (but not disintegrate).
Note that the effect of operators is indeed as expected:

the eraser acts as a garbage collector erasing anything it
can interact with; the duplicator acts as a copier duplicat-
ing anything it can interact with; the delimiter acts as an
extruder putting anything it can interact with into its scope.
All act locally in the sense that they affect one node at the
time. This restriction, which comes with the interaction net
framework, explains our use of indexed delimiters: roughly
speaking, the way in which the recursive definition of min-
imal lifting of the previous section is implemented, is to
record the superscript there as an index to the delimiter.

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representation of 4. How to
retrieve this term from the net is the topic of the next section.
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5. From nets to terms

The function " : IN→Λ mapping closed nets to closed
terms is defined in three phases, each consisting of normal-
ising w.r.t. an action first and the x-rules next. (Without
touching the root-#.) This yields the syntax tree of a unique
(derivation of a) term, which is taken as the result of "(ν).
The three phases are named after their actions given by:
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unwind loop cut

! P s

scope remove

Here the S is a new node type, the interaction of which is
governed by the x-rules, i.e. S behaves as a non-indexed!i.
After the unwinding action, both abstractions and appli-

cation have their north port as principal port. This makes
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tated to the west, in order to highlight the correspondence
between the interaction net representation of 2 and its syn-
tax tree, as displayed above.

4. Interaction net reduction

The intuitive meaning of the symbols in our interaction
net signature, as presented above, is operationalised by just
two rule schemes, for f ,g arbitrary but distinct, and a rule
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where f ′ and g′ are either identical to or updates of the sym-
bols f and g, respectively. An update is an increment of the
index i (if any) of either symbol, which takes place iff the
other symbol is either λ or !j , with i ≥ j. Instances of the
two schemes are called x-rules.

Example 5 Annihilate, commute, and commute with up-
date, respectively, are exemplified by the following x-rules
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Disintegration is only half of a rule; the rule Beta is defined
by post-composing it with an annihilation of its @:

λ
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The set B of interaction rules which interest us is defined to
be the union of x and Beta (but not disintegrate).
Note that the effect of operators is indeed as expected:

the eraser acts as a garbage collector erasing anything it
can interact with; the duplicator acts as a copier duplicat-
ing anything it can interact with; the delimiter acts as an
extruder putting anything it can interact with into its scope.
All act locally in the sense that they affect one node at the
time. This restriction, which comes with the interaction net
framework, explains our use of indexed delimiters: roughly
speaking, the way in which the recursive definition of min-
imal lifting of the previous section is implemented, is to
record the superscript there as an index to the delimiter.

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representation of 4. How to
retrieve this term from the net is the topic of the next section.
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5. From nets to terms

The function " : IN→Λ mapping closed nets to closed
terms is defined in three phases, each consisting of normal-
ising w.r.t. an action first and the x-rules next. (Without
touching the root-#.) This yields the syntax tree of a unique
(derivation of a) term, which is taken as the result of "(ν).
The three phases are named after their actions given by:

λ λ
S@ @

i

unwind loop cut

! P s

scope remove

Here the S is a new node type, the interaction of which is
governed by the x-rules, i.e. S behaves as a non-indexed!i.
After the unwinding action, both abstractions and appli-

cation have their north port as principal port. This makes
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graph rewrite tool on Hackage:

http://hackage.haskell.org/package/graph-rewriting-0.7.5

http://hackage.haskell.org/package/graph-rewriting-0.7.5


gradaties van optimale reductie [VvO, plaatje 2008/10]



gradaties van optimale reductie

calculus
labelling

graph rewriting
sharing notion
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subterm sharing(induced VvO ’03 (Terese)

rewrite relation →)
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λ-calculus Blanc/Lévy/ Wadsworth ’71 extended-scope
(weak-β red. →wβ) Maranget ’05/’07 Shivers/Wand ’04 sharing

orthogonal TRS
VvO ’03 (Terese)

Staples ’80
subterm sharing(induced VvO ’03 (Terese)

rewrite relation →)



gradaties van optimale reductie

calculus
labelling

graph rewriting
sharing notion

(rewrite relation) implementation

λ-calculus
(β-reduction →β)
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λ-calculus Blanc/Lévy/ Wadsworth ’71 extended-scope
(weak-β red. →wβ) Maranget ’05/’07 Shivers/Wand ’04 sharing

orthogonal TRS
VvO ’03 (Terese)

Staples ’80
subterm sharing(induced VvO ’03 (Terese)

rewrite relation →)



review [VvO, 2005]

Evaluation

The paper should be published since both the weak λ-calculus and the main result for it (identically
labeled redex-patterns entails identical subterms) is interesting, and I agree with the authors that
the proofs are not as easy as one naively could expect.1 That being said, by the λ-calculus
considered being weak, its theory becomes closer to first-order TRSs than to λ-calculus; a rather
useful connection (corroborated by ad hoc first-order implementations like supercombinators),
which the authors do not mention. Therefore, since for TRSs it is known that dags suffice, it is
not that surprising that they suffice for the weak λ-calculus as well. Even stronger, I think that
this connection could and should have been exploited also technically (see the Interpretation in
TRSs below). It would not only show that the results are not as difficult as the authors suggest
now, but it could also help to improve the presentation, with which at present there are several
issues:

• The motivation from practice as put forward in the abstract and introduction is not con-
vincing: the weak λ-calculus is not a calculus found in implementations, as these lack even
the weak form of the ξ-rule present in the weak λ-calculus.

• There are many misspellings and ungrammaticalities.

• I fail to see the use of repeating material from Section 4 of [19] as Section 2 here, and find
it unsettling that the proof of Proposition 1, which is supposed to wrap the section up, is
omitted just as it was in [19]. Since moreover no relationship with the other sections is given,
I suggest to drop Section 2 altogether.2

• The results are sound, I believe, but at present it mainly is a technical exercise, and no
intuitive explanations are provided. E.g.: What are your proof ideas? What is a labeling?
Why is the labeling as in the paper chosen? In what sense is it minimal? How does it relate
to ordinary Lévy labeling? Why should the main result hold for this choice of labeling?
Would other choices be possible as well?

I propose the paper be revised, addressing the above issues using the comments below.

Interpretation in TRSs

The restriction that for a subterm to be a redex in the weak λ-calculus it mustn’t contain variables
bound outside it, entails that residuals behave like residuals in first-order TRSs; as you remark
yourself on page 7, in the weak λ-calculus residuals of disjoint redexes remain disjoint. Since the
whole theory of optimality is based on residuals, this seems to make the situation you are dealing
with in the paper analogous to that in first-order TRSs, as can be found e.g. in the book Term
Rewriting Systems, CUP, 2003, by the writers collective Terese (which includes Klop). I’ll try to
make this a bit more precise now, but beware, I have not checked the details! If it does not work
out in the end, I apologize and only hope to see some remark on where things break down.

Any λ-abstraction λx.M can be uniquely written as C[�F ] with each element of the vector F a
maximal free subterm not containing the bound variable x, so one could call C a minimal bound
context (cf. λ-lifting). Then we define the pattern of a weak β-redex (λx.M)N to be (λx.C[�Z])X

for meta-variables �Z and X. For instance, the pattern of the weak β-redex (λx.Ix(λy.Ixy))S is
(λx.Z1x(λy.Z2xZ3))X giving rise to the ‘first-order’ rule (λx.Z1x(λz.Z2xZ3))X→Z1X(λy.Z2XZ3),

1As an aside it is interesting to note the duality between the situations for the ordinary and weak λ-calculi. For
the former a theory of sharing was first developed via a labeled λ-calculus (Lévy) and it took a long time to develop
a graph implementation (Lamping). For the latter a graph implementation (Wadsworth) was first developed and
it took a long time to develop a labeled λ-calculus.

2It puzzles me why this section was put in in the first place, and why as the first section after the introduction.
First presenting the weak λ-calculus and only then its explicit version as in [19] would seem more logical?

2



weak β-step

(λx .I x (λy .I y x))K →wβ I K (λy .I K)

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

F I I K
→

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

I K (G I K)



weak β-step

(λx .I x (λy .I y x))K →wβ I K (λy .I K)

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

F I I K
→

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

I K (G I K)



scope versus extended scope

(λx .I x (λy .I y x))K

→wβ I K (λy .I K)

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

F I I K
→

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

I K (G I K)



oTRS vertaling van λ-calculus [VvO, review, 2005]

(λx .I x (λy .I y x))K →wβ I K (λy .I K)

f (w1,w2)X → x1 X g(w2,X )
g(z1, z2)Y → z1 Y z2

f (I , I )K
→

f (w1,w2)X → x1 X g(w2,X )
g(z1, z2)Y → z1 Y z2

I K g(I ,K)

orthogonal term rewrite system (applicative notation)



oTRS vertaling van λ-calculus [VvO, review, 2005]

(λx .I x (λy .I y x))K →wβ I K (λy .I K)

@(f (w1,w2),X) → @(@(x1,X), g(w2,X))

@(g(z1, z2),Y ) → @(@(z1,Y ), z2)

@(f (I , I ),K)
→

@(f (w1,w2),X) → @(@(x1,X), g(w2,X))

@(g(z1, z2),Y ) → @(@(z1,Y ), z2)

@(@(I ,K), g(I ,K))

orthogonal term rewrite system



oTRS vertaling van λ-calculus [VvO, review, 2005]

(λx .I x (λy .I y x))K →wβ I K (λy .I K)

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

F I I K
→

F w1 w2 x → w1 x (g w2 x)
G z1 z2 y → z1 y z2

I K (G I K)

super combinator system (result of fully-lazy lambda-lifting)



gradaties van optimale reductie

calculus
labelling

graph rewriting
sharing notion

(rewrite relation) implementation

λ-calculus
(β-reduction →β)

Lévy labelling ’78

Lamping ’89

context sharing

Kathail ’90
Abdadi/Gonthier/

/Levy ’92
Asperti/Guerrini ’93

VvO ’03 (Terese)

λ-calculus Blanc/Lévy/ Wadsworth ’71 extended-scope
(weak-β red. →wβ) Maranget ’05/’07 Shivers/Wand ’04 sharing

orthogonal TRS
VvO ’03 (Terese)

Staples ’80
subterm sharing(induced VvO ’03 (Terese)

rewrite relation →)



diep

▸ ‘ik begrijp echt niet wat mensen bedoelen met diepe resultaten’

▸ zijn deze diep omdat:
▸ geloof mij maar?
▸ ik heb zo een gevoel?

▸ acceptabel:
‘A verklaart B, en is daarom dieper of verklarender dan B’

▸ ‘Was sich überhaupt sagen lässt, lässt sich klar sagen; [. . . ]’

(Wittgenstein, TLP)



gewoon

▸ ‘let maar eens op als mensen gewoon zeggen

— meestal klopt er dan iets niet’

▸ empirisch feit

▸ mogelijke oorzaken? — behoefte van mensen om
▸ niet verder na te denken
▸ ergens bij te horen



het Vincents

▸ variant1 van het Nederlands

▸ er is maar een enkeling die het correct spreekt

▸ correctheid wordt duidelijk beargumenteerd

▸ Nederlands als daarover maar goed genoeg was nagedacht

▸ bijv.: gegevens worden ‘aangehecht’ bij een e-mail niet ‘bijgesloten’

▸ fout: ‘per omgaande’ voor situaties zonder analogie met de postbode

▸ gekenmerkt door grote kennis van en groot interesse voor streektalen

▸ altijd inspirerend:
speurt betekenissen van uitdrukkingen nauwkeurig na

1van Dale: variant = ‘vorm die enigszins afwijkt van de gewone’
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moeten?

▸ echt?

▸ waarom?

▸ van wie? wie zegt dat?

▸ wie gaat over de deadline? is deze redelijk?

▸ woord beter niet gebruiken?

▸ mogelijk om een ander woord te gebruiken?

soms ja:

▸ ‘dienen te’

▸ A ‘zou het graag zien’ als N gebeurt



maximal sharing [G/Rochel, ICFP’14]

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT |↓ |↓

λf .let r = f (f r) in r

λ

@

0 @

0

λf .let r = f r in r

λ

@

0

λf .f (f (. . . )) |↓

J⋅Kλ∞

rb

J⋅KT

J⋅Kλ∞

J⋅KT



maximal sharing [G/Rochel, ICFP’14]
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maximal sharing [G/Rochel, ICFP’14]

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT |↓ |↓

1. term graph translation J⋅K⋅
of program L into:

a. higher-order term graph G = JLKH
b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb
of f-o term graph G0

into program L0 = rb(G0).

▸ tool on Hackage:
http://hackage.haskell.org/package/maxsharing/

▸ paper (ICFP’14) and report (arXiv):
G/Rochel: Maximal Sharing in the λ-calculus with letrec.

http://hackage.haskell.org/package/maxsharing/


higher-order and first-order term graph interpretations

let f = λx .(λy .f x) x in f

λ

@

λ

@

0

0

λ() va

@(va)

λ(va) vb 0(va)

0(va)

@(va)

λ

@

0

0

S

@

λ

@

S

naive term graph
interpretation

λ-h-o-term-graph
interpretation

λ-term-graph
interpretation



generalized de Bruijn index form [Patterson/Bird, VvO/Hendriks]

(λx .I x (λy .I y x))K

λ (I )dB 0 (λ (I )dB 0 1) λ (S (I )gdB) 0 (λ (S (I )gdB) 0 (S 0))



nested

‘a group of objects made to fit close together or one within another’

x =

√

2 +

√

2 +
√

2 +
√

2 + . . .

for i = 0 to 9 do

for j = 0 to 9 do

for k = 0 to 9 do

sum = sum + i*100

+ j*10 + k + 1;



nested scopes

λ

@

λ λ

@ @

@

v v λ

v

term graph with Σ = {λ/1, @/2, v/0}
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λx .(λy .let α = x α in α) (λz .let β = x (λw .w)β in β)
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nested scopes _ nested term graph
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nested term graph

gletrec
n() = λx .f1(x)f2(x ,g())

f1(X1) = λx .letα = X1α inα
f2(X1,X2) = λy .letβ = X1(X2β) inβ

g() = λz .z
in

n()

i

λ

@

i i

λ λ

@ @

o1 @

v o1 o2

v i

λ

v

n

f1

g

f2



nested term graph
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signature

A signature for nested term graphs (ntg-signature) is a signature Σ
that is partitioned into:

▸ atomic symbol alphabet Σat

▸ nested symbol alphabet Σne

▸ interface symbols alphabet IO = I ∪O
▸ I = {i} with i unary
▸ O = {o1,o2,o3, . . .} with oi nullary



recursive graph specification

r0

i

λ

@

f2 f2

v v g

R0

rec0

i

λ

v

Grec0

i

λ

@

@

o1 o2

F2

rec0

rec0

Σat = {λ/1, @/2, v/0}, Σne = {r0/0, f2/2, g/0}, I = {i/1}, O = {o1/0,o2/0, . . .}.



recursive graph specification

Definition
Let Σ be an ntg-signature.
A recursive graph specification (a rgs) R = ⟨rec , r⟩ consists of:

– specification function

rec ∶ Σne Ð→ TG(Σ ∪ IO)

f z→ rec(f /k) = F ∈ TG(Σ ∪ {i,o1, . . . ,ok})

where F contains precisely one vertex labeled by i, the root,
and one vertex each labeled by oi , for i ∈ {1, . . . , k};

– nullary root symbol r ∈ Σne.

rooted dependency ARS ⟜ of R:

▸ objects: nested symbols in Σne

▸ steps: for all f ,g ∈ Σne:

p ∶ f ⟜ g ⇐⇒ g occurs in the term graph rec(f ) at position p
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recursive graph specification
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dependency ARS: f2
⊸

⊸
r0 ⟜ g is a dag (but not a tree).



nested term graph

Definition
Let Σ be an ntg-signature.
A nested term graph over Σ is an rgs N = ⟨rec , r⟩ such that
the rooted dependency ARS ⟜ is a tree.



nested term graph
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nested term graph
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bisimulation clause

f1

1 i n1

i

o1 oi on1

F1

rec1
f2

1 j n2

i

o1 oj on2

F2

rec2

φ φ

φφ

G1 G2



implementation by first-order term graphs [G/VvO, Termgraph’14]

Theorem

Let Σ be an ntg-signature, and Σ′
= Σ ∪ I ∪ {o/2, ir/1,or/1}.

There are functions

T ∶ NG(Σ)→ TG(Σ′
) and N ∶ TG(Σ′

)→ NG(Σ) such that:

1 N ○ T = idNG(Σ) (i.e. T is a retraction of N , N is a section of T )

2 T and N preserve and reflect →.

3 T and N are efficiently computable.



implementation by first-order term graph
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implementation by first-order term graph
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gradaties van optimale reductie [VvO, plaatje 2008/10]



gradaties van optimale reductie

calculus
labelling

graph rewriting
sharing notion

(rewrite relation) implementation

λ-calculus
(β-reduction →β)

Lévy labelling ’78

Lamping ’89

context sharing

Kathail ’90
Abdadi/Gonthier/

/Levy ’92
Asperti/Guerrini ’93

VvO ’03 (Terese)

λ-calculus Blanc/Lévy/ Wadsworth ’71 extended-scope
(weak-β red. →wβ) Maranget ’05/’07 Shivers/Wand ’04 sharing

orthogonal TRS
VvO ’03 (Terese)

Staples ’80
subterm sharing(induced VvO ’03 (Terese)

rewrite relation →)



bijkomende gradaties van optimale reductie

calculus
labelling

graph rewriting
sharing notion

(rewrite relation) implementation

Lévy labelling ’78

Lamping ’89

context sharing

Kathail ’90
Abdadi/Gonthier/

/Levy ’92
λ-calculus Asperti/Guerrini ’93

(β-reduction →β) VvO ’03 (Terese)

?
term/port graph

scope sharing
implementation

?
nested term graph extended scope

implementation sharing

λ-calculus Blanc/Lévy/ Wadsworth ’71 extended-scope
(weak-β red. →wβ) Maranget ’05/’07 Shivers/Wand ’04 sharing

orthogonal TRS
VvO ’03 (Terese)

Staples ’80
subterm sharing(induced VvO ’03 (Terese)

rewrite relation →)



university management

‘Traditionally, a university was regarded as an institution
whose primary function was the furtherance of learning and
knowledge. Money was needed to maintain the infrastructure
and pay the staff, but the money was a means to an end, not
an end in itself.’

‘However, it seems that this quaint notion is now rejected in
favour of a model of a university whose success is measured in
terms of its income, not in terms of its intellectual capital.’

‘Management [. . . ] just doesn’t seem to get a very basic
fact about running a university: Its academic staff are vital for
the university’s goal of achieving academic excellence. They
need to be fostered, not bullied.’

Dorothy Bishop
‘The university as Big Business’

22–06–2014



voetbal

Alles wat ik zeker weet over moraal en verplichtingen van
de mens, heb ik aan voetbal te danken.

Albert Camus
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