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1. Introduction

Automata and formal language theory have a place in every undergraduate computer
science curriculum, as this provides students with a simple model of computation,
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2 J. C. M. BAETEN ET AL.

and an understanding of computability. This simple model of computation does not
include the notion of interaction, which is more and more important at a time when
computers are always connected, and not many batch processes remain. Adding
interaction to automata theory leads to concurrency theory:

automata + interaction = concurrency.

The basic ideas of concurrency theory should also be taught to computer science
undergraduates, alongside automata theory. Then, it helps to consider similarities
and differences between the two. Concurrency theory would benefit from an ap-
proach more along the lines of automata theory. We believe that this article, besides
solving a long-standing open problem, will rekindle interest in a deeper study of
the relationships between automata theory and concurrency theory. For one thing,
concurrency theory knows a bewildering variety of different notations, and different
composition operators. By using analogies with automata theory, some standardiza-
tion could occur. For instance, if we all agree on a basic theory of regular processes,
then basic concurrency theory would include the notions of alternative and sequen-
tial composition, and we could all use notations 0 and 1 for the basic constants.

In the past, frequently a stimulating exchange of ideas has taken place between
automata and formal language theory, on the one hand, and concurrency theory,
on the other hand. As examples, we mention the definition of a process interpreta-
tion for context-free languages that facilitated the discovery in Baeten et al. [1993]
of a decidable process theory variant of the undecidable equivalence problem for
context-free languages, and the use of a process calculus in Stirling [2001] for
simplifying the proof of the celebrated result in Sénizergues [2001] that language
equivalence is decidable for deterministic pushdown automata. However, in spite
of a wealth of relationships that have been established, we believe that the corre-
spondences between automata theory and concurrency theory have not yet been
fully explored, and that the results have not been presented in an appealing, unified
form.

A case in point is the question of how natural classes of processes can be charac-
terized in terms of the interaction of paradigmatic processes with finite processes
or with each other. We consider an example. In automata theory, there is the well-
known correspondence between context-free grammars and pushdown automata
under language equivalence. But in concurrency theory, only one half of this cor-
respondence is recovered as the following inclusion: process interpretations of
context-free grammars, which are recursively defined processes in Basic Process
Algebra (recursively definable BPA-processes), only form a proper subclass of the
class of processes that are described by transition graphs of pushdown automata
(“pushdown processes”). However, a pushdown automaton can itself be represented
as a process in which a finite automaton interacts with a stack. Using this fact, it
is possible to show the following characterisation of pushdown processes: a pro-
cess is a pushdown process if and only if it is equivalent to a finite-state process
interacting with Stack, the paradigmatic stack process, which is a recursively de-
finable BPA-process. In other words, the recursively definable BPA-process Stack

is complete for the class of pushdown processes with respect to interaction with
finite-state processes. This raises a host of new questions: Can the paradigmatic
processes Bag (which models the nonterminating process of all possible addition
and removal actions of copies of a finite set of objects to, and respectively from, a
hidden storage) and Queue (which models a first-in first-out queue) also be used to
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characterise interesting classes of processes? And do there exist interesting analoga
for such results in automata theory?

A Turing machine can be viewed as a machine in which a finite control mech-
anism communicates with two copies of Stack simultaneously. This was used in
Baeten et al. [1987] to show that every computable process is definable in the full
concurrency theory ACP; similar results hold also for the well-known process theo-
ries CSP and CCS. However, the rôle of the Church–Turing thesis in process theory
has not yet been investigated thoroughly. In particular, a general theory about which
forms of communication are necessary to yield Turing-complete process models is
still lacking. Therefore, a formulation of a version of the Church–Turing thesis that
is specific to concurrency theory seems a worthwhile undertaking.

In formal language theory, there is a well-known correspondence between regular
expressions and finite automata: for every regular expression a finite determinis-
tic automaton (DFA) can be constructed that accepts the language denoted by the
expression, and for every finite nondeterministic automaton (NFA) a regular expres-
sion can be produced that denotes the language accepted by the automaton. These
transformations define correspondences between regular expressions and DFAs,
and between regular expressions and NFAs, respectively.

But it is also well known that this correspondence of regular expressions under
the language interpretation with DFAs and NFAs breaks down for Milner’s pro-
cess interpretation under bisimilarity, an equivalence that is finer than language
equivalence. For most purposes in concurrency theory, language equivalence is
not suitable, because only completed execution paths are compared: much infor-
mation on intermediate states is lost, and hence interaction that may depend on
transition options in intermediate states cannot be described adequately. Over the
years, a number of other equivalences have been proposed that do not suffer from
this drawback (see van Glabbeek [2001] for an overview). The equivalence that is
most widely used and that keeps all information on transition options in intermedi-
ate states is bisimulation equivalence, also called bisimilarity. It has an intuitively
appealing definition and can be characterized in many different ways.

In this article, we investigate regular expressions under bisimulation equivalence.
By regular expressions, we mean expressions built with the operators +, ·,∗. Some-
times, the operators complementation and intersection are included in the set of
regular operators, but we do not do that here, referring to the situation where these
extra operators are included as “generalized regular expressions”.

Milner [1984] introduced a process interpretation of regular expressions as finite-
state processes and showed that not every nondeterministic finite automaton (or
finite-state process) is bisimulation equivalent to a regular expression, or equiv-
alently, to a closed term in the process algebra with atomic actions, successful
termination and deadlock, choice, sequential composition and iteration. Next to
questions about an axiomatization of bisimilarity with respect to the process inter-
pretation and about whether star height defines a hierarchy for regular expressions
under bisimulation even over singleton alphabets, Milner [1984] posed the question:

“What structural property of finite charts is necessary and sufficient for
star behavior?”

This question can be reformulated in terms of finite-state processes (instead of
relying on the comparable concept “chart” defined by Milner) and by avoiding the
notions “behavior” (a behavior is a bisimulation equivalence class of processes)
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4 J. C. M. BAETEN ET AL.

and “star behavior” (a bisimulation equivalence class of the process interpretation
of a regular expression) as follows:

What structural property characterizes those finite-state processes that
are expressible as regular expressions under Milner’s process interpre-
tation?

By saying that a process is “expressible as a regular expression under the process
interpretation” we mean that this process is bisimilar to the process interpretation
of a regular expression. Here, we solve this open question: we show that there
exists a decision algorithm for determining whether or not a finite-state process is
expressible by a regular expression under the process interpretation. Our solution
is based on, and extends, Baeten and Corradini [2005], where two of the present
authors have defined a set of recursive specifications, called “well behaved”, and
shown that these specifications correspond exactly to processes that are express-
ible as regular expressions. Here we complement that result by proving that it is
decidable whether or not a finite-state process is the solution of a well-behaved
specification. In this way, we establish that expressibility by a regular expression
under the process interpretation is decidable.

As an application of the methods used in our decidability proof that employ
reasoning about well-behaved specifications, we show that the star-height problem
under the process interpretation is solvable: we give an algorithmic solution to the
problem of finding, for a given regular expression e, the least natural number n such
that there exists a regular expression f of star height n with the property that e and f
have bisimilar process interpretations. Finally, as another instance of reasoning with
well-behaved specifications, we give an alternative proof for a result of Hirshfeld
and Moller [2000] that solved the star-height question posed by Milner: for every
natural number n there exists a regular expression over a singleton alphabet that is
not bisimilar to any regular expression of star height less than n.

2. Process Algebra

We start out from the equational theory BPA∗
0,1. Closed terms in this theory corre-

spond exactly to the regular expressions of formal language theory. We use notations
from regular expressions mainly, but want to emphasise the fact that we consider
bisimulation equivalence as our notion of equivalence, and not language equiva-
lence. BPA∗

0,1 extends the basic process algebra BPA (see Bergstra and Klop [1984])
with constants 0 and 1 and iteration operator ∗. We assume we have given a set of
actions A. This set, usually (but not necessarily) finite, is considered a parameter
of the theory. The signature elements are:

—Binary operator + denotes alternative composition or choice. Process x + y
executes either x or y, but not both. The choice is resolved upon execution of the
first action. The notation + is also used for regular expressions.

—Binary operator · denotes sequential composition. We choose to have sequen-
tial composition as a basic operator, different from CCS (see Milner [1989]).
As a result, we have a difference between successful termination (1) and
deadlock (0). As is done for regular expressions, this operator is sometimes not
written.
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TABLE I. AXIOMS OF BPA∗
0,1

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5
x + 0 = x A6
0 · x = 0 A7
1 · x = x A8
x · 1 = x A9
x∗ = 1 + x · x∗ KS1
(x + 1)∗ = x∗ KS2
x∗ · (y · (x + y)∗ + 1) = (x + y)∗ KS3

—Constant 0 denotes inaction (or deadlock), and is the neutral element of alternative
composition. This constant is denoted δ in ACP-style process algebra [Baeten
and Weijland 1990], denoted 0 or nil in CCS-style process algebra [Milner 1989],
and denoted stop in CSP-style process algebra [Hoare 1985]. Process 0 cannot
execute any action, and cannot terminate. In language theory, notations 0 and ∅
are used.

—Constant 1 denotes the empty process or skip. It is the neutral element of sequential
composition. This constant is denoted ε in ACP-style process algebra [Baeten
and Weijland 1990] and skip in CSP-style process algebra [Hoare 1985]. Process
1 cannot execute any action, but terminates successfully. The notation 1 is also
used in language theory.

—We have a constant a for each a ∈ A, a so-called atomic action. Process a executes
action a and then terminates successfully. This coincides with the notation in
language theory. The set of actions A is considered a parameter of the theory.

—There is a unary operator ∗ called iteration or Kleene star. Process x∗ can execute
x any number of times, but can also terminate successfully. This coincides with
the notation in language theory. In Bergstra et al. [1994], a binary version of this
operator is used. We can use the unary version, common in language theory, as
we have a constant 1.

The equational theory BPA∗
0,1 is given by axioms A1-9 and KS1-3 in Table I.

Axioms A1-9 are standard. Compared to language theory, we do not have the law
x · (y + z) = x · y + x · z. This axiom can be called the “wrong” distributivity, as the
terms differ in the moment of choice. We also do not have the law x · 0 = 0; thus,
0 is not a “real” zero: in x · 0, actions from x can be executed but no termination
can take place, whereas in 0, no action at all can be executed.

KS1 defines iteration in terms of a recursive equation. Taking x = 0 yields
0∗ = 1. KS2 expresses that immediate termination can be omitted in iteration
behavior. In language theory, we say that we can assume that the iterated term does
not have the empty word property. We will also use this terminology, so we say that
term t has the empty word property iff it is derivable that t = t + 1. Taking x = 0
in axiom KS2 and using 0∗ = 1 yields 1∗ = 1. KS3 is an axiom that stems from
Troeger [1993].

The regular expressions are the closed terms over this theory, that is, the terms
without variables. Many results in process algebra, like the following normal form
lemma, only hold on the set of closed terms.
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Definition 2.1. We define a set of normal forms inductively:

(1) the constants 0, 1 are normal forms;
(2) if t, s are normal forms, and a is an atomic action, then also a · t and t + s are

normal forms;
(3) if t, s are normal forms, and t does not have the empty word property (i.e.,

t = t + 1 is not derivable), then t∗ · s is a normal form.

PROPOSITION 2.2. Let t be a closed BPA∗
0,1-term. There is an effective algorithm

producing a normal form s such that BPA∗
0,1 � t = s.

PROOF. First of all, every closed BPA∗
0,1-term t can be transformed into a term

t̃ such that BPA∗
0,1 � t = t̃ holds and for each subterm u∗ of t̃ , u does not have

the empty word property (Proposition 6.2 in Milner [1984]). This is a consequence
of the possibility to effectively replace in a given closed BPA∗

0,1-term t , in a top-
down manner, starred subterms u∗ where u has the empty word property by starred
subterms ũ∗ such that ũ does not have the empty word property, resulting in a closed
BPA∗

0,1-term t̃ as required. Such replacements are possible due to the presence of the
axiom KS2 in BPA∗

0,1 as well as due to the following fact, which can be established
in a straightforward manner by structural induction on e : for every closed BPA∗

0,1-
term e that has the empty word property, a closed BPA∗

0,1-term ẽ can be built such
that BPA∗

0,1 � e = 1 + ẽ holds, ẽ does not have the empty word property, and ẽ
does not have greater nesting of ∗ than e.

Next, turn the axioms A3-9 of BPA∗
0,1 into rewrite rules, by orienting them from

left to right. This gives a term rewriting system [TeReSe 2003]. As this is a confluent
and terminating term rewrite system modulo A1-2, every closed term by rewriting
reaches a unique normal form, that cannot be rewritten any further. Given a closed
term t , its normal form may still contain summands of the form a (only an atomic
action) or u∗ (only an iteration). These have to be replaced by a · 1 and u∗ · 1,
respectively, thereby obtaining a normal form as defined above. Note that each
rewriting preserves that iterated terms do not have the empty word property. This
proof is like several examples in Baeten and Weijland [1990] or Baeten and Verhoef
[1995].

As a consequence of this proposition, each closed term over BPA∗
0,1 can be written

as 0, 1 or in the form

a1 · t1 + · · · + an · tn + u∗
1 · v1 + · · · + u∗

m · vm + {1},
for certain n, m ∈ IN with n + m > 0, certain ai ∈ A and normal forms ti , u j , v j
such that each u j does not have the empty word property. The 1 summand may or
may not occur. The additional requirement that terms u j do not have the empty word
property will ensure that the recursive specifications we define below are guarded.

A model of an equational theory is a mathematical structure such that, using
a certain interpretation of the syntax, all equations of the theory are true in the
structure. Elements of a model of an equational theory in concurrency theory are
called processes. In language theory, the set of computations (complete runs) can
be used as a model for the equational theory of regular expressions. This set of
computations can be obtained from an automaton. Stated in another way, a model
is obtained as language equivalence classes of automata.
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TABLE II. TRANSITION RULES FOR BPA∗
0,1 (a ∈ A)

1 ↓ x∗ ↓ a
a→ 1

x
a→ x ′

x + y
a→ x ′

y
a→ y′

x + y
a→ y′

x ↓
x + y ↓

y ↓
x + y ↓

x
a→ x ′

x · y
a→ x ′ · y

x ↓, y
a→ y′

x · y
a→ y′

x ↓, y ↓
x · y ↓

x
a→ x ′

x∗ a→ x ′ · x∗

In concurrency theory, nondeterministic automata are usually called transition
systems. Note that also infinite-state transition systems are considered. Language
equivalence classes of transition systems also yield a model of BPA∗

0,1, but this
model is not preferred as too much is true: we have the wrong distributivity and
the 0 process is a real zero, and this throws away too much information of the
underlying transition systems: we want to keep information of intermediate states.
Therefore, bisimulation equivalence is used instead.

So, we provide a model for BPA∗
0,1 by first associating a transition system to

each term, and then taking the quotient with respect to bisimulation equivalence.
In concurrency theory, there is a standard way to associate a transition system to a
closed term, called Structural Operational Semantics. This technique was initiated
by Plotkin [2004]. Much more information can be found in Aceto et al. [2001].

Structural Operational Semantics (SOS) consists of providing rules for each
operator and constant of the equational theory. The rules in Table II define the
following relations on closed BPA∗

0,1-terms: binary relations .
a→ . (for a ∈ A) and

a unary relation ↓. Intuitively, they have the following meaning:

—x
a→ x ′ means that x can evolve into x ′ by executing atomic action a;

—x ↓ means that x has an option to terminate successfully (without executing an
action)

Thus, the relations concern action execution and termination, respectively; we
do not have need of a mixed relation .

a→ √
as in Baeten and Weijland [1990] or

Baeten and Verhoef [1995].
The first three rules are axioms: they state that process 1 and every iteration has

a termination option, and that process a has an a-labeled transition to 1. The next
two lines state that process x + y has all transitions and terminations of x and of
y, so the possibilities are joined. The first step of x · y can be a first step of x , or a
first step of y if x can terminate. Process x · y can only terminate if both x and y
can do this. Finally, the last rule shows the first step of an iteration.

For a closed term, a transition system can be defined by using the transition
rules: t

a→ s or t ↓ holds iff this is provable from the rules in Table II. By structural
induction on closed terms, it can be shown that the transitions of a given closed
term can be determined algorithmically. Next, we define an equivalence relation on
the resulting transition systems in the standard way.
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Definition 2.3. Let R be a binary symmetric relation on closed terms. We say
R is a bisimulation if the following holds:

—whenever R(x, y) and x
a→ x ′, then there is a term y′ such that y

a→ y′ and
R(x ′, y′)

—whenever R(x, y) and x ↓, then y ↓.

We say two closed terms t, s are bisimulation equivalent or bisimilar, notation
t↔s if there is a bisimulation R with R(s, t).

PROPOSITION 2.4. Bisimulation equivalence is a congruence relation on closed
BPA∗

0,1-terms.

PROOF. This is a standard result following from the format of the transition
rules, see, for example, Baeten and Verhoef [1995].

THEOREM 2.5. The theory BPA∗
0,1 is sound for the model of transition systems

modulo bisimulation, that is, for all closed terms t, s we have

BPA∗
0,1 � t = s =⇒ t↔s.

PROOF. This is also a standard result.

Note that the reverse implication in the theorem above, indicating completeness
of the axiom system, does not hold. In fact, a finite complete equational axiomati-
zation is not possible, as shown by Sewell [1997]. This impossibility is due to the
combination of iteration and the 0 constant. In the absence of iteration, completeness
is straightforward, see, for example, Baeten and Weijland [1990].

In the presence of iteration but without 0, more positive results can be found
in Corradini [2000] and Corradini et al. [2002] where a complete axiomatization
of regular expressions up to bisimulation equivalence is given when the language
of regular expressions satisfies the so-called hereditary nonempty word property
(essentially requiring that the nonempty word property be satisfied at any depth
within a star context).

The previous theorem is a result about the term model, that is, the model generated
by SOS rules for closed BPA∗

0,1-terms only. In the sequel, we will have occasion to
go beyond this model, in particular by adding recursion. Recursion is considered in
the form of recursive equations. Recursive equations are a standard way to specify
processes with possible infinite behavior, see, for example, Baeten and Weijland
[1990] or Baeten and Verhoef [1995]. The first axiom of iteration is an example of
a recursive equation, as the item to be defined (x∗), the left-hand side, occurs again
on the right-hand side.

We proceed to define recursive equations in our setting. In language theory, a
recursive specification would be called a grammar, but there, finiteness is always
required.

Let V be a set of variables ranging over processes. A recursive specification
E = E(V ) is a set of equations E = {X = tX | X ∈ V }, where each tX is a
term over the signature in question (in our case, BPA∗

0,1) and variables from V . A
solution of a recursive specification E(V ) in our theory is a family of processes
{pX | X ∈ V } in some model of the theory such that the equations of E(V ) hold, if
for all X ∈ V , pX is substituted for X . Mostly, we are interested in one particular
variable X ∈ V , called the initial variable.
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TABLE III. TRANSITION

RULES FOR RECURSION (a ∈ A)

〈tX |E〉 a→ y

〈X |E〉 a→ y

〈tX |E〉 ↓
〈X |E〉 ↓

Different models extending the term model introduced above, will have solutions
for different sets of recursive specifications. We proceed to define interesting sets
of recursive specifications.

Let t be a term containing a variable X . We call an occurrence of X in t guarded
if this occurrence of X is preceded by an atomic action (i.e., t has a subterm of the
form a · s, and this X occurs in s).

We call a recursive specification guarded if all occurrences of all its variables in
the right-hand sides of all its equations are guarded or it can be rewritten to such
a recursive specification using the axioms of the theory and the equations of the
specification.

We can formulate the following principles:

—RDP (the Recursive Definition Principle): Each recursive specification has at
least one solution;

—RSP (the Recursive Specification Principle): Each guarded recursive specifica-
tion has at most one solution.

Different models of BPA∗
0,1 will satisfy none, one or both of these principles. Let us

look at particular models extending the term model of transition systems modulo
bisimulation.

Consider a recursive specification E . For each variable X of E , we can add
a new constant 〈X |E〉 to our syntax. Table III provides transition rules for these
constants. The operational meaning of a constant 〈X |E〉 is defined as that of the
process 〈tX |E〉, which is tX with, for all Y ∈ V , all occurrences of Y in tX replaced
by 〈Y |E〉. To be more explicit, if E is a finite recursive specification over variables
X0, . . . , Xn−1, with equations Xi = ti (X0, . . . , Xn−1) (i < n), then 〈ti |E〉 is
defined to be ti (〈X0|E〉, . . . , 〈Xn−1|E〉).

Now if we add such constants 〈X |E〉 for all recursive specifications E to our
syntax, and take the model of transition systems generated by the rules modulo
bisimulation, we obtain a model G∞ for BPA∗

0,1 that satisfies RDP and RSP (see,
e.g., Baeten and Weijland [1990]). If we add constants 〈X |E〉 only for guarded
E , we obtain a model G satisfying RSP. The model G is really smaller than G∞,
since using unguarded recursion we can specify infinitely branching processes
(infinitely branching means that every element of the bisimulation equivalence
class is infinitely branching), whereas for guarded recursion we can always get a
finitely branching solution (the bisimulation equivalence class contains at least one
element that has only finite branching). Thus, RDP doesn’t hold any more on the
second model in full generality; still, all guarded recursive specifications have a
solution. We call this RDP−:

—RDP− (the Restricted Recursive Definition Principle): Each guarded recursive
specification has at least one solution;
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10 J. C. M. BAETEN ET AL.

The set of processes definable by a finite guarded recursive specification over
BPA∗

0,1 can be called the set of context-free processes. Of course, since the star
operator is itself definable by a finite guarded recursive specification, this is the
same as the set of processes definable by a finite guarded recursive specification
over BPA0,1. Sometimes, the set of processes definable by a finite guarded recursive
specification over BPA is called the set of context-free processes. It does make a
difference whether we consider BPA0,1 or the standard theory BPA, since finite
guarded recursion including the constant 1 allows the specification of a process
with unbounded branching (see Bosscher [1997]). Context-free processes were
investigated in Baeten et al. [1993] and Hirshfeld and Moller [1996].

Thus, we looked at the model obtained by adding all constants 〈X |E〉, the model
obtained by adding constants 〈X |E〉 only for guarded E , and the model obtained by
adding these constants only for finite guarded E . The fourth possibility is adding still
fewer constants, adding only 〈X |E〉 for so-called regular recursive specifications.
We call an equation regular if it is in one of the following two forms

(1) X = (0+)a1 · X1 + · · · + an · Xn ,
(2) X = 1 + a1 · X1 + · · · + an · Xn ,

for certain n ∈ IN, ai ∈ A, Xi ∈ V . In this case, each variable corresponds directly
to a state in the generated transition system. We usually present a regular equation
as follows:

X =
∑

1≤i≤n

ai · Xi + {1},

where an empty sum stands for 0 and the 1 summand is optional.
The model IR of BPA∗

0,1 is obtained if we add constants 〈X |E〉 only for finite
regular E . IR is the model of regular processes, it is equivalent to the model of
finite transition systems modulo bisimulation, see, for example, Bergstra and Klop
[1984]. This result is the same result as the result in language theory, that right-linear
grammars correspond to nondeterministic finite automata. Again we can establish
that IR is really smaller than G, a process in the difference is the counter C defined
by the following specification (p standing for plus, m for minus):

C = T · C T = p · S S = m + T · S.

This process is in the difference, as every transition system in its bisimulation
equivalence class must have infinitely many states (there is a different state for
every counter value).

Finally, the term model IP of BPA∗
0,1, obtained by adding no constants 〈X |E〉,

is even smaller than IR. In Bergstra et al. [1994], it is shown that there are regular
processes that cannot be defined just by using iteration. In the model IP, the principle
RSP boils down to the following conditional axiom:

x = y · x + z guarded =⇒ x = y∗ · z RSP*.

The guardedness of this equation would be expressed in language theory as follows:
y does not have the empty word property (y does not have 1 as a summand).
Operationally, this is denoted y �↓, so we will use the following formulation of
RSP*:

x = y · x + z & y �↓ =⇒ x = y∗ · z RSP*.
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It is an open problem whether the addition of principle RSP* to the axiomatization
BPA∗

0,1 provides a complete axiomatization of the model IP.

3. Well-Behaved Specifications

We define a class of recursive specifications over BPA∗
0,1 that we will call well-

behaved. The idea is that the class of well-behaved specifications corresponds
exactly to the class of closed BPA∗

0,1-terms. In this section, after some preliminary
definitions, we define well-behaved specifications and prove that each well-behaved
specification has a closed BPA∗

0,1-term as a solution, in the following section we
prove the reverse direction: how to provide a well-behaved specification for each
closed BPA∗

0,1-term.
Consider sequences of natural numbers ranged over by σ, ρ (sometimes with a

prime or index) (σ, ρ ∈ IN∗). Call a subset S of IN∗ downwards closed if the empty
sequence ε ∈ S, and, whenever σn ∈ S, also σ ∈ S and σk ∈ S for all k < n.

Definition 3.1. A recursive specification E over BPA∗
0,1 is in suitable form if

(1) it is finite and guarded;
(2) the set of variables Xσ is indexed by a downwards closed subset of IN∗;
(3) each equation has the following form:

Xσ = eσ0 · Xσ0 + · · · + eσ (m−1) · Xσ (m−1) + eσ · Xσ + eρ · Xρ + c,
where m ≥ 0, eσ i , eσ , eρ are closed BPA∗

0,1-terms, c ∈ {0, 1}, and ρ is a proper
prefix of σ . The last three terms may or may not be present (of course, if m = 0,
at least one of them must be present). If there is a summand of the form eρ · Xρ

present, we call the variable Xρ a cycling variable;
(4) when Xρ is a cycling variable (it occurs in the right-hand side of an equation

of a variable with longer index) then its equation is of the form
Xρ = 1 · Xρ0 + 1 · Xρ1,

that is, m = 2, eρ0 = eρ1 = 1 and none of the optional summands is present.

A recursive specification is in regular suitable form if it is in suitable form and
all the occurring closed terms eσ are constants, that is, elements of A ∪ {0, 1}.

The variables in a recursive specification in suitable form can be arranged as a
finite tree, with Xε as root, and such that Xσ is below Xρ iff ρ is a prefix of σ .

In addition to the definition of suitable form, we need to define the notion of
“cycling back”. Intuitively, a variable Xσ cycles back to Xρ if Xσ lies on a cycle
(iteration behavior) that is initiated at Xρ . Finally, we define the notion “well be-
haved”, that will give us the specifications that we want. A cycling variable Xρ in
a well-behaved specification has an equation Xρ = 1 · Xρ0 + 1 · Xρ1, and Xρ0 is
the cycling part, in which variables will cycle back to Xρ , whereas Xρ1 is the exit
part, where variables may terminate, or cycle back to a cycling variable higher in
the tree, indexed by a prefix of ρ.

Definition 3.2. Let E be a recursive specification in suitable form over a set of
variables {Xσ : σ ∈ S ⊂ IN∗}. As S is finite, we can define a notion with induction
on the depth of the variable tree below Xσ (so, we define this first for the maximal
sequences σ ∈ S).

Let ρ be a prefix of σ . We say Xσ cycles back to Xρ if:
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12 J. C. M. BAETEN ET AL.

—in case Xσ is cycling (so its equation is of the form Xσ = 1 · Xσ0 +1 · Xσ1), then
Xσ cycles back to Xρ iff Xσ0 cycles back to Xσ and Xσ1 cycles back to Xρ ;

—in case Xσ is not cycling, we require that its equation is of the form

Xσ = eσ0 · Xσ0 + · · · + eσ (m−1) · Xσ (m−1) + eσ · Xσ + eρ · Xρ,

so there is no constant term present, the last two summands are optional, and all
Xσ i cycle back to Xρ . In case m = 0, we must have that the last summand is
present.

Next, we define when a variable Xσ is well behaved, again with induction on the
depth of the variable tree below Xσ . We say Xσ is well behaved if:

—in case Xσ is cycling, we say Xσ is well behaved iff Xσ0 cycles back to Xσ and
Xσ1 is well-behaved;

—in case Xσ is not cycling, we require that its equation is of the form

Xσ = eσ0 · Xσ0 + · · · + eσ (m−1) · Xσ (m−1) + eσ · Xσ + c,

so there is no cycling variable present, the next to last summand is optional, and
all Xσ i are well behaved.

Finally, we call a recursive specification E in suitable form well behaved iff its
initial variable Xε is well behaved.

THEOREM 3.3. Every well-behaved recursive specification E has a closed term
in BPA∗

0,1 as a solution (up to bisimulation equivalence).

In order to prove this theorem, we prove two lemmas. The theorem will follow
from the two lemmas.

In these lemmas, we will use the following notation. Write Xσ ↘ Xρ if the equa-
tion of Xσ contains a summand eρ · Xρ with eρ ↓. ⇓ denotes the transitive closure
of the relation ↘ on recursion variables. A useful characterization of guardedness
is the following: a recursive specification in suitable form is guarded if and only if
for each variable Xσ , we have that Xσ � ⇓ Xσ .

In the lemmas, we reason in the theory BPA∗
0,1 + RSP*. So, given a recursive

specification E , when we derive an equation s = t , we mean BPA∗
0,1+ RSP* +

E � s = t . If variables from E occur in s, t , this means s = t holds for any solution
of E . As a result, if IM is any model of the theory BPA∗

0,1 + RDP− + RSP*, and E
has a solution in IM, then s = t in true in IM.

LEMMA 3.4. Let E be a recursive specification in suitable form, and suppose
Xσ cycles back to Xρ . Then there is a closed term e over BPA∗

0,1 such that � Xσ =
e · Xρ . Moreover, if Xσ � ⇓ Xρ , we can take e such that e �↓.

PROOF. By induction on the depth of the variable tree below Xσ .
In the base case, there are no variables below Xσ , so the equation of Xσ must

be either Xσ = eρ · Xρ or Xσ = eσ · Xσ + eρ · Xρ . By guardedness, eσ �↓. In the
first case, we are done immediately, in the second case, it follows from RSP* that
Xσ = e∗

σ · eρ · Xρ . When Xσ � ⇓ Xρ , we must have eρ �↓, which implies e∗
σ · eρ �↓.

In the induction case, there are two subcases.

—if Xσ is cycling, we have Xσ = 1 · Xσ0 + 1 · Xσ1 and Xσ0 cycles back to Xσ

and Xσ1 cycles back to Xρ . Since Xσ ↘ Xσ0, we must have Xσ0 � ⇓ Xσ . We can
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A Characterization of Regular Expressions under Bisimulation 13

apply the induction hypothesis to Xσ0 and Xσ1, so there are closed terms f0, f1
such that Xσ0 = f0 · Xσ and Xσ1 = f1 · Xρ and f0 �↓. Putting this together, we
obtain Xσ = 1 · Xσ0 + 1 · Xσ1 = Xσ0 + Xσ1 = f0 · Xσ + f1 · Xρ = f ∗

0 · f1 · Xρ .
When Xσ � ⇓ Xρ , then Xσ1 � ⇓ Xρ , and we can take f1 �↓, which implies f ∗

0 · f1 �↓.
—if Xσ is not cycling, we have Xσ = eσ0 · Xσ0 + · · · + eσ (m−1) · Xσ (m−1) +

eσ · Xσ + eρ · Xρ and all Xσ i cycle back to Xρ . Again, eσ �↓. By induction
hypothesis there are closed terms fi such that Xσ i = fi · Xρ . But then Xσ =
eσ0 · Xσ0+· · ·+eσ (m−1) · Xσ (m−1)+eσ · Xσ +eρ · Xρ = eσ0 · f0 · Xρ +· · ·+eσ (m−1) ·
fm−1 ·Xρ +eσ ·Xσ +eρ ·Xρ = eσ ·Xσ +(eσ0 · f0+· · ·+eσ (m−1) · fm−1+eρ)·Xρ =
e∗
σ · (eσ0 · f0 + · · · + eσ (m−1) · fm−1 + eρ) · Xρ . When Xσ � ⇓ Xρ , then eρ �↓,

and moreover for each i < m we have either eσ i �↓ or Xσ i � ⇓ Xρ . In the
latter case we can take fi �↓, so, in all cases, we have eσ i · fi �↓. Consequently
eσ0 · f0 +· · ·+ eσ (m−1) · fm−1 + eρ �↓ and so e∗

σ · (eσ0 · f0 +· · ·+ eσ (m−1) · fm−1 +
eρ) �↓.

LEMMA 3.5. Let E be a recursive specification in suitable form, and suppose
variable Xσ is well behaved. Then, there is a closed term e over BPA∗

0,1 such that
� Xσ = e.

PROOF. By induction on the depth of the variable tree below Xσ .
In the base case, there are no variables below Xσ , so the equation of Xσ must be

either Xσ = c or Xσ = eσ · Xσ +c or Xσ = eσ · Xσ . Note eσ �↓. In the first case, we
are done immediately, in the second case, it follows from RSP* that Xσ = e∗

σ · c;
and in the third case, Xσ = e∗

σ · 0.
In the induction case, there are two subcases.

—if Xσ is cycling, then Xσ = 1 · Xσ0 + 1 · Xσ1 and Xσ0 cycles back to Xσ

and Xσ1 is well behaved. By Lemma 3.4, there is a closed term f such that
Xσ0 = f · Xσ . As Xσ ↘ Xσ0, we must have Xσ0 � ⇓ Xσ , and we can take f �↓.
By induction hypothesis, there is a closed term f ′ such that Xσ1 = f ′. Thus,
Xσ = Xσ0 + Xσ1 = f · Xσ + f ′ = f ∗ · f ′.

—if Xσ is not cycling, we have Xσ = eσ0 · Xσ0+· · ·+eσ (m−1) · Xσ (m−1)+eσ · Xσ +c
and all Xσ i are well behaved. By induction hypothesis this implies that there are
closed terms fi such that Xσ i = fi . Thus, Xσ = eσ0 · Xσ0 + · · · + eσ (m−1) ·
Xσ (m−1) + eσ · Xσ + c = eσ0 · f0 + · · · + eσ (m−1) · fm−1 + eσ · Xσ + c =
e∗
σ · (eσ0 · f0 + · · · + eσ (m−1) · fm−1 + c).

Having proved the two lemmas, we can complete the proof of Theorem 3.3.

PROOF OF THEOREM 3.3. Suppose E is a well-behaved recursive specification.
By 3.5, there is a closed BPA∗

0,1-term for every well-behaved variable of E . Using
reasoning as in the lemmas, we can find a closed term for every variable of E .
These closed terms constitute a solution for E in IP, as IP is a model of BPA∗

0,1 +
RSP*.

Note 3.6. Our notion of cycling was inspired by, but is different from, the notion
of ruling in De Nicola and Labella [2003]; our notion of well behaved was inspired
by their notion of hierarchical. It should be noted that they work in a different
setting, as they use the law x ·0 = 0, which is invalid in the present setting. Another
difference is that the law x + x = x is not valid in their setting, but this is not the
crucial difference for the present results.
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14 J. C. M. BAETEN ET AL.

On the other hand, the present work also can be applied in their setting. Adding
the law x ·0 = 0 amounts to considering the constant 0 as predictable failure in the
words of Baeten and Bergstra [1990]. In Baeten and Bergstra [1990], it is proven
that using this law, every closed term over BPA0 is either equal to 0 or can be written
without 0. This can be extended to BPA∗

0,1, since 0∗ = 1, and using a normal form
without 0 in the sequel will make all results go through.

4. Regular Expressions

Now we consider the reverse direction, how to transform a given regular expres-
sion into a well behaved recursive specification of a particular form. Recall from
Section 2 that each closed term over BPA∗

0,1 can be written as 0, 1 or in the form

a1 · t1 + · · · + an · tn + u∗
1 · v1 + · · · + u∗

m · vm + {1},
for certain n, m ∈ IN with n + m > 0, certain ai ∈ A and normal forms ti , u j , v j ,
with u j �↓. The 1 summand may or may not occur.

Starting from such a normal form, we describe an algorithm to arrive at a recursive
specification. Consider an example, taken from De Nicola and Labella [2003]. Take
e = a(a∗b + c) + (c∗ + a∗b)∗c∗ + a. Since c∗ ↓, we first need to rewrite this to
a(a∗b + c) + (cc∗ + a∗b)∗c∗ + a. Writing this term in normal form, we obtain
e′ = a((a1)∗b1 + c1) + (c(c1)∗1 + (a1)∗b1)∗(c1)∗1 + a1. Associate Xε to e′.

(1) Xε = a X0 + 1X1 + a X2. Thus, X0 is associated to (a1)∗b1 + c1, X1 to
(c(c1)∗1 + (a1)∗b1)∗(c1)∗1 and X2 to 1.

(2) X0 = 1X00 + cX01. Thus, X00 is associated to (a1)∗b1, X01 to 1.
(3) X00 = X000 + X001. Each star-term is split into two parts: a part where the

loop is executed at least once, and a part where the exit is chosen. Such a term
will turn into a cycling variable. Here, X000 corresponds to a1 · X00, and X001
corresponds to b1.

(4) X000 = a X0000.
(5) X0000 = 1X00. Variable X0000 cycles back to X00.
(6) X001 = bX0010.
(7) X0010 = 1.
(8) X01 = 1.
(9) X1 = X10 + X11. Again, a star-term is split into two parts. Here, X10 corre-

sponds to (c(c1)∗1 + (a1)∗b1) · X1, and X11 corresponds to (c1)∗1.
(10) X10 = cX100 + X101. Here, X100 corresponds to (c1)∗1 · X1, and X101 corre-

sponds to (a1)∗b1 · X1.
(11) X100 = X1000 + X1001. Again, a star term.
(12) X1000 = cX10000.
(13) X10000 = 1X100. Variable X10000 cycles back to X100.
(14) X1001 = 1X1. Variable X1001 cycles back to X1.
(15) X101 = X1010 + X1011. Split of star.
(16) X1010 = a X10100.
(17) X10100 = 1X101. Variable X10100 cycles back to X101.
(18) X1011 = bX10110.
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(19) X10110 = 1X1. Variable X10110 cycles back to X1.
(20) X11 = X110 + X111. Split of star.
(21) X110 = cX1100.
(22) X1100 = 1X11.
(23) X111 = 1.
(24) X2 = 1.

Note that the resulting recursive specification is guarded. Furthermore, observe
that the resulting specification is much more restricted than the general format of
well-behaved specifications. It has two special properties:

(1) Every recursive equation is of the form

Xσ = eσ0 · Xσ0 + · · · + eσ (m−1) · Xσ (m−1) + eρ · Xρ + c,

where we have that all expressions eσ i are constants in A∪{1} so different from
0, and the last two summands are optional and, if present, then eρ, c ∈ {0, 1}.

(2) If Xσ ↘ Xτ , then either Xσ or Xτ is a cycling variable.

Let us call a well-behaved specification satisfying these two properties a well-
behaved specification in restricted form. If Xσ has a summand of the form a · Xτ ,
we write Xσ

a→ Xτ . The notation Xσ ↘ Xτ used in the previous section now
means that Xσ has a summand of the form 1 · Xτ .

In general, we define a well-behaved recursive specification in restricted form
with solution a given BPA∗

0,1-term e by structural induction on e.

PROPOSITION 4.1. Let e be a closed BPA∗
0,1-term. There is an effective algorithm

giving a well-behaved recursive specification in restricted form with solution e.

PROOF. The proof goes by structural induction on e, assuming e is given as
a normal form as given in Section 2. In the base case, e ∈ {0, 1}, and we get the
specification Xε = e, so the results are immediate (the variable is not cycling).

In the induction step, we have e = a0 · t0 + · · · + an−1 · tn−1 + u∗
0 · v0 +

· · · + u∗
m−1 · vm−1 + {1} for certain n, m ∈ IN with n + m > 0, certain ai ∈

A and simpler terms ti , u j , v j , with u j �↓. By induction hypothesis, we can
produce well-behaved recursive specifications Ei , Fj , G j in restricted form with
these terms as solutions. We proceed to define a recursive specification as
follows:

(1) Xε = a0 · X0 + · · · + an−1 · Xn−1 + Xn + · · · + Xn+m−1 + {1}.
(2) For each i = 0, . . . , n − 1, the set of equations E ′

i which is produced from Ei
by replacing each occurring variable Xσ by Xiσ .

(3) For each j = 0, . . . , m − 1, the equation Xn+ j = X (n+ j)0 + X (n+ j)1.
(4) For each j = 0, . . . , m − 1, the set of equations F ′

j which is produced from
Fj by replacing each occurring variable Xσ by X (n+ j)0σ and replacing each
constant summand c by c · Xn+ j .

(5) For each j = 0, . . . , m − 1, the set of equations G ′
j which is produced from

G j by replacing each occurring variable Xσ by X (n+ j)1σ .

Now fix j ∈ {0, . . . , m − 1}, and consider the specification defined for Xn+ j in
the last three items.

Journal of the ACM, Vol. 54, No. 2, Article 6, Publication date: April 2007.
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First of all, note that this specification is guarded: for all variables X (n+ j)1σ

in G ′
j we have X (n+ j)1σ � ⇓ X (n+ j)1σ as Xσ � ⇓ Xσ in G j ; on the other hand, if

for some variable X (n+ j)0σ in F ′
j we would have X (n+ j)0σ ⇓ X (n+ j)0σ , this can-

not be due to a cycle of 1-steps in Fj by the same argument, so we must have
X (n+ j)0σ ⇓ Xn+ j ⇓ X (n+ j)0σ . This implies X (n+ j)0 ⇓ Xn+ j , and in turn that the
initial variable of Fj satisfies ↓, which means u j ↓ and this is a contradiction.
Finally, the guardedness of X (n+ j)1 and X (n+ j)0 imply the guardedness of Xn+ j .

Next, variable Xn+ j is a cycling variable: its equation is in the required form,
and every exit c in Fj is turned into a term c · Xn+ j that cycles back. Further,
cycling variables in F ′

j , G ′
j exactly correspond to cycling variables in Fj , G j

(just a prefix added to the index). Thus, the specification of Xn+ j is in suitable
form.

Further, variable Xn+ j is well behaved: each variable X (n+ j)1σ is well behaved
in G ′

j as the corresponding Xσ is well behaved in G j , and each variable X (n+ j)0σ

cycles back to Xn+ j as the corresponding Xσ is well behaved in Fj . Taking σ = ε
yields the well behavedness of Xn+ j . It is easy to show that the specification is in
restricted form.

Finally, using RDP and RSP, from the fact that u j is a solution of Fj we can infer
X (n+ j)0 = u j · Xn+ j , and so Xn+ j = X (n+ j)0 + X (n+ j)1 = u j · Xn+ j + v j = u∗

j · v j ,
where the last step follows from RSP* since u j �↓.

Now this is established for each j ∈ {0, . . . , m − 1}, we can consider the whole
specification. Establishing guardedness and preservation of cycling variables is
easier than in the previous case, thus the specification is in suitable form. All
variables Xi are well behaved, since the initial variables of Ei are well behaved,
and so Xε is well behaved. It is easy to show that the specification is in restricted
form. Finally, using RDP and RSP, from the fact that ti is a solution of Ei we can
infer Xi = ti , and so Xε = a0 · X0 +· · ·+an−1 · Xn−1 + Xn +· · ·+ Xn+m−1 +{1} =
a0 · t0 + · · · + an−1 · tn−1 + u∗

0 · v0 + · · · + u∗
m−1 · vm−1 + {1} = e.

Thus, for each closed BPA∗
0,1-term we can find a well-behaved recursive speci-

fication in restricted form that has this term as a solution.

5. A Decision Procedure

Next, we give a decision procedure in order to decide whether a given finite transition
system has a well-behaved recursive specification or not. Suppose we have given a
finite transition system.

The following proposition is reminiscent of the pumping lemma in formal lan-
guage theory. It provides a bound on the set of well-behaved recursive specifications
we need to consider.

PROPOSITION 5.1. Let a finite transition system be given with n states and
branching degree of k (k ≥ 2). If this transition system is bisimilar to a well-
behaved specification, then it is bisimilar to a restricted well-behaved specification
with index set S where all sequences in S have length less than (n + 1)3 · 23k and
entries less than k.

PROOF. Let a finite transition system be given with n states and branching
degree of k that is bisimilar to a well-behaved specification. Due to the results of
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the previous two sections, we can take a restricted well-behaved specification E
that is bisimilar to the given transition system. Each variable in the specification is
bisimilar to a state or a substate of the given transition system (if some outgoing
transitions of a state are omitted, we get a substate of this state; thus, if Xσ ↘ Xρ ,
then Xρ corresponds to a substate of the state given by Xσ ). A descending path in
the specification is a sequence of variables Xσ , Xσ i1, Xσ i1i2, . . . such that for each
pair of consecutive variables Xτ , Xτ i we have either Xτ

a→ Xτ i or Xτ ↘ Xτ i . The
proposition follows from the following three key observations.

(1) We can assume that each descending path of length n + 1 contains a cycling
variable.

(2) We can assume that each equation of each variable has at most k summands.
(3) We can assume that each descending path contains at most n2 · 23k cycling

variables.

For, if we have these three observations, then we can assume that each descending
path starts with a series of steps of at most n+1 to the first cycling variable, followed
by a series of steps of at most n + 1 to the next cycling variable, and so on, so we
have at most n2 · 23k + 1 blocks between at most n2 · 23k cycling variables, and we
can limit the length of any descending path to (n + 1)3 · 23k . Thus, the index set of
variables only needs to contain sequences of length at most (n + 1)3 · 23k , and the
number of summands in any given equation is bounded by k.

It remains to show the three observations. For the first one, suppose there is
a descending path of length n + 1 without a cycling variable. By the restricted
format, this means that for each pair of consecutive variables Xτ , Xτ i there must
be some atomic action a such that Xτ

a→ Xτ i , and each variable in the descending
path, except maybe the first one, corresponds to a state in the given transition
system. As a result, two distinct variables in this path, say Xσ and Xσρ , must
correspond to the same state in the given transition system. Now consider the
specification where the part below Xσ is replaced by the part below Xσρ , that
is, we throw out all equations of variables of the form Xσπ , and we put in new
equations

Xσπ = c0 · Xσπ0 + · · · + cm−1 · Xσπ (m−1) + cm · Xξ + cm+1

whenever there was an equation

Xσρπ = c0 · Xσρπ0 + · · · + cm−1 · Xσρπ (m−1) + cm · Xξ ′ + cm+1

skipping the ρ part in the summands. If an occurring cycling variable Xξ

has a σρ prefix, then also there the ρ part can be skipped; otherwise, it
must lie before Xσ , and can remain unchanged. The resulting specification is
again well-behaved, and in restricted form, because E is in restricted form
and Xσ , Xσρ are not cycling variables. This procedure can be repeated until
the specification has no descending paths of length n + 1 without a cycling
variable.

For the second observation, suppose there is a variable Xσ whose equation con-
tains more than k summands. In this case, Xσ must be bisimilar to a state or a
substate s of the given transition system. A substate of a state is obtained by leaving
out some outgoing transitions. This (sub)state has a number of transitions s

a→ s ′,
and maybe a termination option s ↓, numbering in total at most k. By bisimulation,
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each of these transitions or termination option must be matched by at least one
of the summands of Xσ . For each of them, pick one of the summands where it
is matched, in total at most k. Now all other summands can be left out (together
with their entire subspecifications), resulting in an equivalent specification. Next,
some renaming is required to obtain again a downwards closed index set. Due to
the fact that in this simplification step cycling variables are only removed together
with incoming transitions as well as with their entire subspecifications, the resulting
specification is again in restricted form.

For the third observation, first we do both reductions of the two previous cases,
so we can assume that each descending path of length n + 1 contains a cycling
variable, and each variable has at most k summands.

CLAIM 5.2. Cycling variables can be nested only n · 22k deep, that is, there are
at most n · 22k cycling variables where each variable is in the cycling part of the
previous one.

In order to prove the claim, suppose not. Each cycling variable is bisimilar to
a state or a substate of the given transition system. As this transition system has
at most n states, and a branching degree at most k, it has at most n · 2k substates.
If there are more than n · 2k nested cycling variables, there must be two that are
bisimilar, so there are Xσ , Xσρ such that Xσρ is in the cycling part of Xσ , that is, it
is below Xσ0. Now Xσ , Xσρ are bisimilar, but it need not be the case that Xσ0, Xσρ0
are bisimilar, as the split into the cycling and the exit part can be done differently
in the two cases. But notice that there are only 2k different cycling parts possible,
as each outgoing transition will belong to the cycling part or not. Thus, if there
are more than n · 22k nested cycling variables, there must be two that are bisimilar
and that moreover have bisimilar cycling parts. Thus, it must be the case that there
are Xσ , Xσρ such that Xσρ is below Xσ0, and Xσ , Xσρ are bisimilar, and moreover
Xσ0, Xσρ0 are bisimilar.

Now consider the specification where the part from Xσ0 is replaced by the part
from Xσρ0, that is, we replace the cycling part of the cycling variable Xσ and
keep the exit part (the part from Xσ1). This replacement is done in the same way
as outlined in the proof of the first observation, skipping the ρ part in the cycling
variables. The result is a well-behaved specification in restricted form that has fewer
cycling variables and still is bisimilar to the given transition system. This means
we have proved the claim.

Next, notice that we can assume that there are at most n · 2k consecutive cycling
variables on a descending path such that each cycling variable is in the exit part of the
previous one. For, if not, then there must be two cycling variables that correspond
to the same substate of the given transition system, and we can replace the first one
by the second one, resulting in a bisimilar well-behaved specification in restricted
form.

Now, given these observations, it can still happen that there is a sequence of
cycling variables, that alternatingly occur in the cycling part and in the exit part.
This means there can be cycling variables Xσ , Xσρ, Xσρπ such that Xσ is bisimilar to
Xσρπ , Xσρ is below Xσ1 (the exit part of Xσ ) and Xσρπ is below Xσρ0 (the cycling
part of Xσρ). To illustrate this phenomenon, we give an example. Consider the
regular expression ab∗c(db∗c)∗e. This expression gives rise to the following well-
behaved recursive specification (omitting all the extra 1’s induced by the normal
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form):

Xλ = aX0
X0 = X00 + X01
X00 = bX0
X01 = cX010
X010 = X0100 + X0101
X0100 = d X01000
X01000 = X010000 + X010001
X010000 = bX01000
X010001 = cX010
X0101 = e.

Now cycling variables X0 and X01000 correspond to bisimilar states of the process.
The second one occurs inside the cycling part of variable X010, the first one does
not. In the case of this specification, it turns out that it cannot be reduced to a simpler
well-behaved specification.

However, combining the last observation with the claim, we see that the total
number of cycling variables on a descending path is bounded by n2 · 23k . For, the
total number of nested cycling variables is at most n ·22k , and between one of these
and the following, there can be at most n · 2k cycling variables each of which is in
the exit part of the previous one.

This proposition gives a bound on the size of the specification that we need
to consider. We expect that this bound can be tightened further, in fact we have a
further reduction that reduces (n +1)3 ·23k to (n +1)3 ·22k . This bound immediately
gives rise to a decision procedure, as there are only finitely many regular recursive
specifications within the bound. We can check for each one, whether or not it
is bisimilar to the given transition system, as bisimulation is decidable on finite
transition systems.

To give an example of a transformation into well-behaved form, consider the
guarded recursive specification {X = aY, Y = bX + aZ , Z = cX + aY }. In this
form, it is not a well-behaved recursive specification. It turns into one, by replacing
X by aY everywhere on the right-hand side. We get the following specification:

Xλ = aX0
X0 = X00 + X01
X00 = bX000 + aX001
X000 = aX0
X001 = cX0010 + aX0
X0010 = aX0
X01 = 0.

6. Star Height

In this section, we give two applications of the concept of a well-behaved specifica-
tion, of the results linking these specifications with the process interpretation, and
of the methods used for obtaining the decidability result in the previous section. In
particular, we consider two questions involving the minimal star height of regular
expressions under bisimulation. We solve the star height problem for the process
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interpretation, and give an alternative proof of a result by Hirshfeld and Moller
[1996] concerning the star-height question posed by Milner [1984].

In formal language theory, the determination of the star height of a regular lan-
guage is an old problem, which originated with Eggan [1963]. The star height of
a regular expression e is defined syntactically as the maximum number of nested
stars that e contains.

Definition 6.1. Let t be a closed BPA∗
0,1-term. The star height of t , sh(t) is

defined inductively:

(1) sh(0) = sh(1) = sh(a) = 0 (for all actions a ∈ A);
(2) sh(t + s) = sh(t · s) = max{sh(t), sh(s)};
(3) sh(t∗) = 1 + sh(t).

In language theory, the interest is in the star height of regular languages: the
star height of a regular language L , sh(L), is the least natural number n such that
sh(e) = n for some regular expression e that represents L . Again, it has to be noted
that complementation and intersection are not included as regular operators. When
these are included, we talk about generalized star height.

Many results concerning the star height of regular languages are known (still only
much less is known about generalized star height, but see, e.g., Pin et al. [2001]),
of which we only mention three:

(1) Every regular language over a single-letter alphabet is of star height at most
one.

(2) There are regular languages with any preassiged star height over any alphabet
containing at least two letters [McNaughton 1966].

(3) There exists an algorithm for computing the star height of a regular language
given by a regular expression [Hashiguchi 1983]; this famous statement estab-
lished that the star-height problem in formal language theory is solvable.

Here we are interested in counterparts for regular expressions under the process
interpretation of these star-height results for regular languages. For this purpose, we
define, in analogy to the star height of a regular language, the minimal star height
of a regular expression under the process interpretation.

Definition 6.2. The minimal star height of a regular expression e (under the
process interpretation) is the least natural number n such that there exists a regular
expression f with sh( f ) = n and f ↔e.

We start by investigating a counterpart for the star-height problem under the
process interpretation. Thus, this is the problem of determining the minimal star
height of a given regular expression under the process interpretation.

In analogy to the result of Hashiguchi [1983], we show that this problem is
algorithmically solvable, making use of our results concerning the relationship
between regular expressions under bisimulation and well-behaved specifications,
and of our decidability result in the previous section.

Given the correspondence between regular expressions and well-behaved
specifications proved earlier, star height can also be defined for well-behaved
specifications.
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Definition 6.3. Let E be a recursive specification over BPA∗
0,1 in suitable form

over variables {Xσ : σ ∈ S ⊂ IN∗}. Define, for each variable Xσ , its star height
sh(Xσ ) by induction on the variable tree below Xσ :

—If Xσ is a cycling variable, define sh(Xσ ) = max{1 + sh(Xσ0), sh(Xσ1)};
—If Xσ is not a cycling variable, its equation is of the form

Xσ = eσ0 · Xσ0 + · · · + eσ (m−1) · Xσ (m−1) + eσ · Xσ + eρ · Xρ + c,

and we define

sh(Xσ ) = max{sh(eσ0), sh(Xσ0), . . . , sh(eσ (m−1)), sh(Xσ (m−1)), sh(e∗
σ ), sh(eρ)}.

Finally, the star height of E is defined by sh(E) = sh(Xε).

Now Lemmas 3.4 and 3.5 can be strengthened to obtain the following two
lemmas, which can be proved by following step by step the earlier proofs,
using the definition just given. The first lemma is used in the proof of the
second.

LEMMA 6.4. Let E be a recursive specification in suitable form, and suppose
Xσ cycles back to Xρ . Then, there is a closed term e over BPA∗

0,1 with sh(e) =
sh(Xσ ) such that Xσ = e · Xρ .

LEMMA 6.5. Let E be a recursive specification in suitable form, and suppose
variable Xσ is well-behaved. Then, there is a closed term e over BPA∗

0,1 with
sh(e) = sh(Xσ ) such that Xσ = e.

As an immediate consequence of the second lemma and of its proof as hinted
above, the next lemma states that, for every well-behaved recursive specification
E , a solution process in the form of a closed term of the same star height as E can
be found algorithmically.

LEMMA 6.6. There is a procedure that on the input of a well-behaved recursive
specification E over BPA∗

0,1 outputs a closed term e over BPA∗
0,1 such that e is a

solution of E and sh(e) = sh(E) holds.

Conversely, the procedure of Section 4 assigns to each regular expression a
well-behaved recursive specification of the same star height. This is the state-
ment of the following lemma. The result can again be found by following
the procedure step by step, checking that star height is preserved at every
step.

LEMMA 6.7. There is a procedure that on the input of a closed term e over
BPA∗

0,1 outputs a well-behaved specification E in restricted form with e as a solution
that satisfies sh(E) = sh(e).

Based on the last two lemmas, the star-height problem can be solved.

THEOREM 6.8. The star-height problem in BPA∗
0,1 is solvable: There is an al-

gorithm that, for all closed terms e over BPA∗
0,1, on input e computes the minimal

star height of e.

PROOF. We describe an algorithm for computing, on the input of a closed term
e, its minimal star height m.
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(1) With the procedure described in Section 4, produce a well-behaved recursive
specification E that has e as a solution. Then, sh(E) = sh(e) holds due to
Lemma 6.7.

(2) Using the operational rules of Table II, produce the finite transition system of
e. Let n be the number of states of this transition system, and k its branching
degree. Define N = (n + 1)3 · 23k .

(3) Generate successively the finite number of well-behaved specifications over
BPA∗

0,1 in restricted form with depth less than N and with branching degree less
than or equal to k. For each of these recursive specifications E , check whether
E has e as a solution, and if so, then compute the star height sh(E) of E . In
the search through this finite number of specifications determine the minimum
m of the star heights of specifications E generated that have e as a solution.
The number m is well defined here because by applying Proposition 5.1 to the
specification E obtained in the first step there exists at least one well-behaved
specification with the properties desired.

Finally, output m as the minimal star height of e.
In order to show that this output m is really the minimal star height of e, we

first observe that the minimal star height of e is less than or equal to m: by the
definition of m, there exists a well-behaved specification D in restricted form of
star height m with e as solution. By Lemma 6.6, there exists a solution d of D with
sh(d) = sh(D) = m. Since d↔e, the minimal star height of e is at most m.

Now it remains to show that the minimal star height of e is at least m. For this,
suppose f is an arbitrary closed term over BPA∗

0,1 that is bisimilar to e. We have to
show sh( f ) ≥ m.

By Lemma 6.7, there exists a well-behaved specification F in restricted form
with f as a solution such that sh(F) = sh( f ). By using the simplifications to well-
behaved specifications described in the proof of Proposition 5.1, from F a well-
behaved specification F ′ can be found that is equivalent to F , has depth less than N
and branching degree less than or equal to k. Furthermore, sh(F ′) ≤ sh(F) holds,
because the simplifications used in the proof of Proposition 5.1 do not increase (but
may decrease) the star height of the specification. It follows that sh(F ′) ≤ sh( f ).

Term e is also a solution of F ′, because e is bisimilar to f , F ′ is equivalent to
F , and f is a solution of F . Due to this and the fact that the depth of F ′ is less
than N and that its branching degree is less than or equal to k, the specification
F ′ is generated in the third step of the algorithm on input e, and F ′ is taken into
account when determining the minimum m. It follows that sh(F ′) ≥ m, and so
sh( f ) ≥ m.

Regarding a possible counterpart of the first statement of the star height of regular
languages over a singleton alphabet, Milner [1984] conjectured that the predicate
“minimal star height is less or equal to n” defines a proper hierarchy on the set of
regular expressions even over singleton alphabets under bisimulation. In particular,
he suggested the sequence { fn} of regular expressions defined inductively by

f1 = a∗ , fn+1 = ( fn · a)∗ (for all n > 0) , (1)

and conjectured that the minimal star height of fn is actually n. Hirshfeld and
Moller [2000] showed that this is indeed the case.
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THEOREM 6.9. [HIRSHFELD AND MOLLER 2000]. For every n > 0, there exists
a regular expression fn over the single-letter alphabet {a} such that the minimal
star height of fn under the process interpretation is n. This is witnessed by the
sequence { fn}n that is defined inductively by (1).

As a consequence of this theorem, the predicate “minimal star height is less or
equal to n”, where n is a natural number, defines a proper hierarchy on the set of
regular expressions over indeed every non-empty alphabet. This contrasts with the
first star-height result for regular languages, while not with the second result, for
the language interpretation of regular expressions.

It is easy to recognise that in the case of empty alphabets an analogous result as for
regular languages holds for the minimal star height under the process interpretation:
if the set of atomic actions is empty, then each closed term is bisimilar to one of
the constants 0 or 1, and hence all closed terms have minimal star height 0. This
corresponds with the fact that the regular language over the empty alphabet has star
height zero.

We will give an alternative proof for Theorem 6.9. For this, we first need to
develop a number of auxiliary statements.

For all n > 0, we denote by Fn the regular recursive specification that contains
precisely the following equations:

Yn = a · Y1 + · · · + a · Yn + 1
Yn−1 = a · Y1 + · · · + a · Yn

· · ·
Y1 = a · Y1 + a · Y2.

PROPOSITION 6.10. Consider the recursive specification Fn. Then Yi ↔ Y j ⇐⇒
i = j for all i, j ∈ {1, . . . , n}.

PROOF. The proposition is an easy consequence of the fact that, for all i ≤ n,
the shortest execution trace of Yi that leads to termination consists of n − i transi-
tions.

Note that for i < j , Yi is bisimilar to a substate of Y j . We can express this as
shown in the following lemma.

PROPOSITION 6.11. Consider again specification Fn. Then Yi + Y j↔Y j ⇐⇒
i ≤ j , for all i, j ∈ {1, . . . , n}.

The following lemma relates the closed terms of the family { fn} defined above
with each other via derivability.

LEMMA 6.12. For all n > 0 the following equation is derivable from BPA∗
0,1 +

RSP*:

fn = a f1 · · · a fn + a f2 · · · a fn + · · · + a fn−1a fn + a fn + 1.

PROOF. A straightforward induction on n.

Based on this lemma, the next lemma relates the closed terms fn with the recursive
specifications Fn introduced above.

LEMMA 6.13. For all n > 0, fn is a solution of the recursive specification Fn.
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PROOF SKETCH. The sequence of terms f1a f2a · · · fn−1a fn , f2a · · · fn−1
a fn, . . . , fn−1a fn , fn can be substituted for the recursion variables Y1, Y2, . . . ,
Yn−1, Yn , respectively.

In order to determine the minimal star height of fn we need to consider arbitrary
well-behaved specifications E that have fn as a solution, and hence specifications
that are equivalent to the specification Fn defined above. The following lemma
states that for a well-behaved specification E in restricted form equivalent to Fn ,
and a variable Xσ in E , this variable must be bisimilar to a state Yi , or to a substate
of Yi , for a variable Yi of Fn .

LEMMA 6.14. Let n > 0, and let E be a well-behaved specification in restricted
form such that E is equivalent to Fn. Then, for each Xσ in E, there is i ≤ n such
that Xσ + Yi↔Yi .

Thus, each variable Xσ is bisimilar to a substate of some Yi . We will need the
least such i for each σ , so we define

iσ = min{i ∈ {1, . . . , n} | Xσ + Yi↔Yi }.
The next lemma now states a key property. When a variable cycles back to another
variable, then this least i increases, unless there is a path consisting only of 1-steps.

LEMMA 6.15. Let E be a well-behaved specification in restricted form that is
equivalent to the regular specification Fn. Then for all σ, ρ such that Xσ cycles
back to Xρ one of the following two statements holds: either iσ < iρ , or iσ = iρ
and Xσ ⇓ Xρ .

PROOF HINT. By induction on n − iσ .

Now we get to the key lemma needed in the proof of the following theorem.

LEMMA 6.16. Let E be a well-behaved specification in restricted form equiv-
alent to Fn. Let σ be such that Xσ is well-behaved, or, for some ρ, Xσ cycles back
to Xρ and Xσ � ⇓ Xρ . Furthermore, let i > 0, i ≤ n be such that either Xσ↔Yi , or
there exists a ξ such that Xσξ cycles back to Xσ , Xσξ ⇓ Xσ and Xσξ↔Yi . Then
sh(Xσ ) ≥ i holds.

PROOF HINT. The lemma can be shown by induction on i , with a subinduction
on the depth of the variable tree below Xσ in E . The induction step is a careful, but
tedious analysis of a number of possible cases. A crucial tool is Lemma 6.15.

This key lemma now enables us to show that every well-behaved specification
in restricted form that is equivalent to the regular specification Fn must have star
height greater than or equal to n.

THEOREM 6.17. Let E be a well-behaved specification in restricted form that
is equivalent to the specification Fn, for some n > 0. Then, sh(E) ≥ n.

PROOF. The theorem is an immediate consequence of Lemma 6.16 in view
of the fact that the leading variable Xε of a well-behaved specification E is well
behaved.

Now we are finally in a position to give our proof for Theorem 6.9.
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PROOF OF THEOREM 6.9. We have to show that, for all n > 0, the minimal star
height of fn is n.

We first notice that sh( fn) = n holds for all n > 0: this follows by straight-
forward induction on n using the inductive definition of the closed terms fn . As a
consequence, the minimal star height of fn is at most n.

Therefore, it remains to show that the minimal star height of fn is at least n. For
this, take n > 0 and let e be an arbitrary closed term with e↔ fn . We aim to show
sh(e) ≥ n.

Starting from the closed term e, we build, by using the procedure guaranteed
by Lemma 6.7, a well-behaved specification E in restricted form that has e as a
solution. Due to Lemma 6.7 we find sh(E) = sh(e). Since e↔ fn , since e is a
solution of E , and fn is, due to Lemma 6.13, a solution of the regular specification
Fn , it follows that the specifications E and Fn are equivalent, that is, they have the
same solutions. Thus Xε↔Yn . By Theorem 6.17, this implies sh(e) ≥ n.

In this way, we have shown, for arbitrary e↔ fn that sh(e) ≥ sh( fn) = n. Hence,
the minimal star height of the term fn , for all n > 0, is at least n. It follows that the
closed terms fn have minimal star height n.

In this proof, we have made use of the structure of well-behaved specifications
to show that if e↔ fn (entailing that e is a solution of the regular specification
Fn) and e is a solution of a well-behaved specification E in restricted form, then
sh(E) ≥ n. From this we concluded that the minimal star height of fn is greater
or equal to n, and finally, that it is equal to n. In contrast to this, Hirshfeld and
Moller in their proof of Theorem 6.9 reason about “decorated regular expressions”
containing specially bracketted subterms which allow to get insight into the star
nesting structure of a closed term e that is a solution to a specification Fn in the
course of infinite execution paths from e.

Apart from this conceptual aspect, another difference consists in the fact that
our proof, and in particular the proof of Lemma 6.16, proceeds by an induction in
direction bottom-up, starting close to the bottom of the specification considered,
whereas the proof in Hirshfeld and Moller [2000] works essentially top-down. In
particular, Hirshfeld and Moller [2000] show, by induction on j , that the following
statement holds for all n > 0 :

If e↔ fn holds for a closed term e, then there exist, for all j ∈ {1, . . . , n−
1}, terms e j such that e can evolve to e j in a number of steps such that
e j↔Yn− j , and such that sh(e j ) ≥ j + 1.

By letting j = n − 1, and by using the fact that transitions do not increase (but
may decrease) the star height of terms, it then follows that all closed terms e that
are bisimilar to fn have star height at least n. In comparison to this proof, it can be
shown that Lemma 6.16 entails the rather similar, but different, statement saying it
holds for all n > 0 :

If e↔ fn holds for a closed term e, then there exist, for all i ∈ {1, . . . , n},
terms ei such that e evolves to ei in a number of steps and ei↔Yn−i+1
and sh(ei ) ≥ n − i + 1.

Following the induction in the proof of Lemma 6.16, it can be said that this statement
is established by induction on n− i +1. By letting i = 1, also this statement implies
that all closed terms e that are bisimilar to fn have star height greater or equal to n.
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It is possible to cast the proof of Hirshfeld and Moller [2000] as an argument
about well-behaved specifications in restricted form, using a top-down induction.
We have not done this here, for two reasons: first, the definition of well-behaved
specifications and all proofs here have been carried out in a bottom-up manner,
starting with recursion variables at the bottom of the specification; and second, we
arrived at our proof in the way described here.

7. Conclusion

We have defined a set of well-behaved recursive specifications that corresponds
exactly to the set of regular expressions, using bisimulation as the notion of equiv-
alence. The same result holds if we restrict to the set of well-behaved recursive
specifications in restricted form, that have a rather direct interpretation as a set of
finite transition systems. Thus, we can say that we have defined a structural prop-
erty that characterizes the set of finite automata which are expressible by a regular
expression (modulo bisimulation). This means we have solved the open question
of Milner [1984].

Given a finite transition system, we have presented a decision procedure to
determine whether or not this transition system is equivalent to a well-behaved
specification. This decision procedure may still require a large number of spec-
ifications to be checked. We are working on a more direct algorithm that will
construct a regular expression if one exists. Note that Bosscher [1997] describes
an algorithm that decides the analogous problem in the absence of the constant
0, and another algorithm in the absence of the two constants 0, 1. An obvi-
ous question that remains is the following. What is the precise complexity of
the decision algorithm, described in the proof of Proposition 5.1, for BPA∗

0,1-
definability of finite transition systems? Is it possible to implement this proce-
dure as a back-tracking algorithm that is able to decide BPA∗

0,1-definability of
“small” finite transition systems? Are substantial improvements of this algorithm
possible?

Our results can be adapted to the setting of De Nicola and Labella [2003], where
the constant 0 really acts as the zero process.

The way Milner [1984] put the open questions suggests that he expected that the
solution of the problem we solved here should also lead to a complete axiomatization
of regular expresssions under the process interpretation. In fact, we have tried to
show that the presented axiomatization of BPA∗

0,1 together with the principle RSP*
is complete, but have not succeeded as of yet.

As an application of our results, we give an algorithm to determine the star height
of a regular expression (under bisimulation). We give an alternative proof of the fact
that the star height hierarchy is nontrivial, even in the case of a singleton alphabet.

We find that the expressive power of iteration in concurrency theory is not large,
as not all regular processes can be written as a star term. Still, there are specification
languages and programming languages that contain both parallel composition and
iteration (e.g., van Beek et al. [2006]). More investigation is needed to see if there
are operators that also capture an intuitive notion, but have more expressive power.
Some investigations are reported in Bergstra et al. [2001].

The notion of a regular process in concurrency theory is clear: it can be given by
a finite transition system, and by a finite regular recursive specification. It remains

Journal of the ACM, Vol. 54, No. 2, Article 6, Publication date: April 2007.



A Characterization of Regular Expressions under Bisimulation 27

to capture this in terms of an extra operator, or several extra operators, on top of
BPA∗

0,1. The notion of a context-free process is not so well developed: it can be given
by a finite recursive specification over BPA∗

0,1, but we do not have a characterization
in terms of transition systems, or in terms of algebraic operators. This is a matter
of future research.

The same questions can be asked if we add additional operators: foremost among
these is parallel composition, with or without communication. Some results can
already be found in Baeten and Bergstra [1988], but many questions remain. Let us
denote the theory obtained from BPA∗

0,1 by adding parallel composition as PA∗
0,1.

It is easy to see that, like BPA∗
0,1 definable processes, PA∗

0,1 definable processes are
bisimilar to finite-state processes. In the very similar situation of the theories BPA∗

0
and PA∗

0 (where a binary variant of iteration should be used), it is shown in Bergstra
et al. [1994] that the expressivity of PA∗

0 is strictly between that of BPA∗
0 and that

of the finite state processes. In particular, it is shown there that the PA∗
0-process

((ab)∗c) ‖ d cannot be expressed in BPA∗
0. Using the characterisation, proved in

this paper, of BPA∗
0,1-definable processes as processes that are solutions of well-

behaved specifications, it is not difficult to show that this process is not definable in
BPA∗

0,1 either. It follows that the expressivity of PA∗
0,1 is strictly greater than that of

BPA∗
0,1. We conjecture that the expressivity of PA∗

0,1 is also strictly less than that of
the finite-state processes. But this raises analogous questions, now for the slightly
more expressive system PA∗

0,1, to those that have been solved in this article, namely
what structural property characterises the PA∗

0,1-definable processes? Is there a
decision method for the problem of recognising those finite transition systems that
are the process interpretations of closed PA∗

0,1-terms?
We can also have a look at extra operators that are used in language theory, such

as complementation and intersection, and try to interpret them in the process setting.
Complementation should be done with respect to a kind of universal process, that
can show all possible behavior. A candidate for such a process is the Chaos process
of CSP [Hoare 1985].
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