
Modeling Terms by Graphs with Structure Constraints (Two Illustrations)

Clemens Grabmayer

Department of Computer Science Vrije Universiteit Amsterdam The Netherlands

TERMGRAPH 2018 Oxford, UK July 7, 2018

Overview

LEE-witnesses: graph labelings based on a loop-condition LEE

- 2. Maximal sharing of functional programs
 - higher-order λ -term graphs

Overview

- 1. Process interpretation of regular expressions
 - Milner's questions, known results
 - structure-constrained process graphs:
 - ▶ LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
 - readback: from graph labelings to regular expressions
- 2. Maximal sharing of functional programs
 - higher-order λ -term graphs

Overview

- 1. Process interpretation of regular expressions
 - Milner's questions, known results
 - structure-constrained process graphs:
 - LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
 - readback: from graph labelings to regular expressions
- 2. Maximal sharing of functional programs
 - from terms in the λ -calculus with letrec to:
 - higher-order λ -term graphs
 - first-order λ -term graphs
 - λ -NFAs, and λ -DFAs
 - minimization / readback / efficiency / Haskell implementation

Overview

- Comparison desiderata
- 1. Process interpretation of regular expressions
 - Milner's questions, known results
 - structure-constrained process graphs:
 - ▶ LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
 - readback: from graph labelings to regular expressions
- 2. Maximal sharing of functional programs
 - from terms in the λ -calculus with letrec to:
 - higher-order λ -term graphs
 - first-order λ -term graphs
 - λ -NFAs, and λ -DFAs
 - minimization / readback / efficiency / Haskell implementation
- Comparison results

 Regular expressions under process semantics (bisimilarity ↔)

 Given: process graph interpretation [[·]]_P, studied under ↔

 ▶ not closed under →, and ↔, modulo ↔ incomplete

$\lambda\text{-calculus}$ with letrec under unfolding semantics

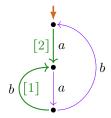
 $\lambda\text{-calculus}$ with letrec under unfolding semantics

 λ -calculus with letrec under unfolding semantics

Not available: term graph interpretation that is studied under \Leftrightarrow

 graph representations used by compilers were not intended for use under ↔

 $\lambda\text{-calculus}$ with letrec under unfolding semantics


Not available: term graph interpretation that is studied under \Leftrightarrow

▶ graph representations used by compilers were not intended for use under ↔

Desired: term graph interpretation that:

- natural correspondence with terms in $\lambda_{ ext{letrec}}$
- supports compactification under \leq
- efficient translation and readback

(current work with Wan Fokkink)

Regular Expressions

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f ::= 0 \mid 1 \mid a \mid (e+f) \mid (e \cdot f) \mid (e^{\star})$$
 (for $a \in A$).

Regular Expressions

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f ::= 0 | 1 | a | (e + f) | (e \cdot f) | (e^*)$$
 (for $a \in A$).

Note, here:

- ▶ symbol 0 instead of Ø
- ▶ symbol 1 used (often dropped, definable as 0^{*})
- no complementation operation \overline{e}
 - is not expressible under language interpretation

O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Language interpretation $\llbracket \cdot \rrbracket_L$ (S.C. Kleene, 1951)

$$\begin{array}{cccc} \mathbf{0} & \stackrel{\left[\cdot \right]_{L}}{\mapsto} & \text{empty language } \varnothing \\ \mathbf{1} & \stackrel{\left[\cdot \right]_{L}}{\mapsto} & \{\epsilon\} & (\epsilon \text{ the empty word}) \\ a & \stackrel{\left[\cdot \right]_{L}}{\mapsto} & \{a\} \end{array}$$

Language interpretation $\llbracket \cdot \rrbracket_L$ (S.C. Kleene, 1951)

$$\begin{array}{cccc} \mathbf{0} & \stackrel{\|\cdot\|_{\mathcal{L}}}{\longmapsto} & \text{empty language } \varnothing \\ \mathbf{1} & \stackrel{\|\cdot\|_{\mathcal{L}}}{\longmapsto} & \{\epsilon\} & (\epsilon \text{ the empty word}) \\ & \stackrel{\|\cdot\|_{\mathcal{L}}}{\parallel} & \epsilon \end{array}$$

$$a \xrightarrow{\mathbb{I}^{\cdot}\mathbb{J}_L} \{a\}$$

$$\begin{array}{ccc} e+f & \stackrel{\llbracket\cdot\rrbracket_L}{\longrightarrow} & \text{union of } \llbracket e \rrbracket_L \text{ and } \llbracket f \rrbracket_L \\ e \cdot f & \stackrel{\llbracket\cdot\rrbracket_L}{\longrightarrow} & \text{element-wise concatenation of } \llbracket e \rrbracket_L \text{ and } \llbracket f \rrbracket_L \\ e^* & \stackrel{\llbracket\cdot\rrbracket_L}{\longrightarrow} & \text{set of words formed by concatenating words in } \llbracket e \rrbracket_L \end{array}$$

Process interpretation $\llbracket \cdot \rrbracket_P$ (R. Milner, 1984)

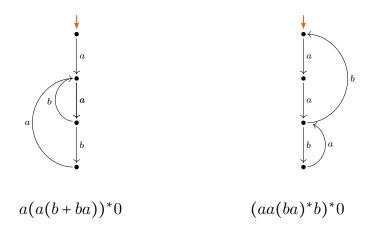
т т

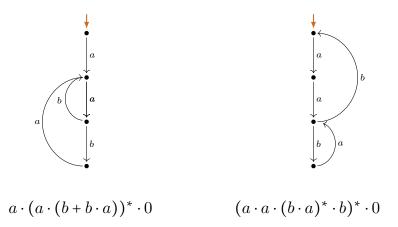
$$0 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ deadlock } \delta, \text{ no termination}$$

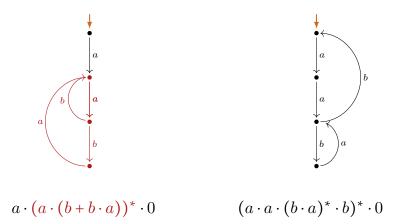
$$1 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ empty process } \epsilon, \text{ then terminate}$$

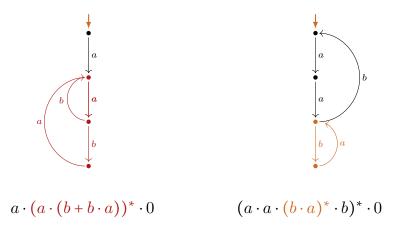
$$a \xrightarrow{\|\cdot\|_P}$$
 atomic action a , then terminate

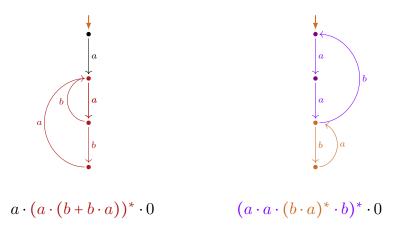
Process interpretation $\llbracket \cdot \rrbracket_{P}$ (R. Milner, 1984)

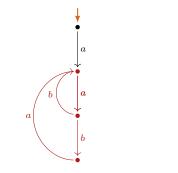

. .

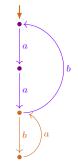

$$0 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ deadlock } \delta, \text{ no termination}$$

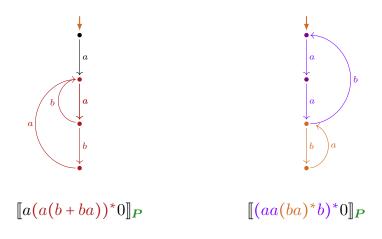

$$1 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ empty process } \epsilon, \text{ then terminate}$$

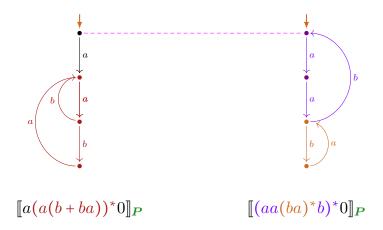

$$a \xrightarrow{\|\cdot\|_P}$$
 atomic action a , then terminate

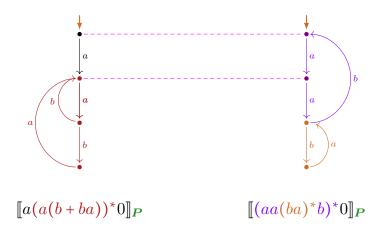

$$\begin{array}{ccc} e+f & \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} & \text{alternative composition between } \llbracket e \rrbracket_P & \text{and } \llbracket f \rrbracket_P \\ e \cdot f & \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} & \text{sequential composition of } \llbracket e \rrbracket_P & \text{and } \llbracket f \rrbracket_P \\ e^* & \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} & \text{unbounded iteration of } \llbracket e \rrbracket_P, \text{ option to terminate} \end{array}$$

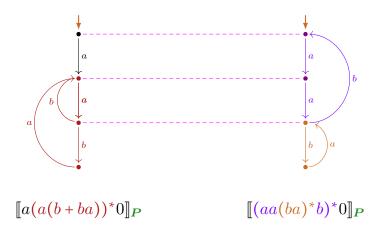


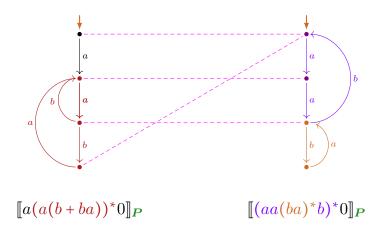


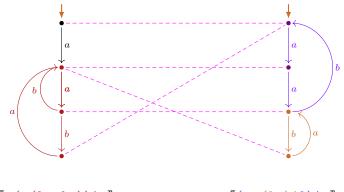


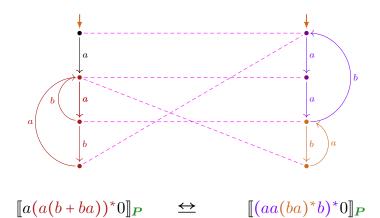


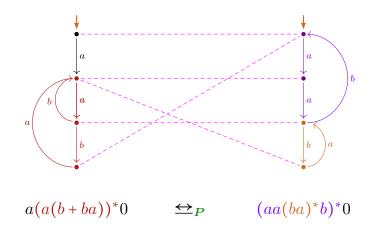



 $\llbracket a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \rrbracket_{\mathbf{P}}$


 $\llbracket (a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0 \rrbracket_{P}$







 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $\llbracket (aa(ba)^*b)^*0 \rrbracket_{\boldsymbol{P}}$

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider <u>finite</u> and <u>start-vertex connected</u> process graphs.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider <u>finite</u> and start-vertex connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

nondeterministic finite-state automata (NFAs),

that are studied under bisimulation, not under language equivalence.

Definition

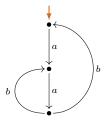
A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

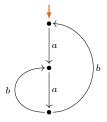
Restriction

Here we only consider <u>finite</u> and start-vertex connected process graphs.

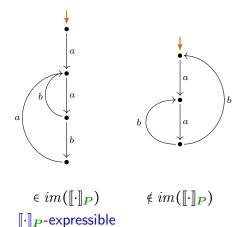
Correspondence with NFAs

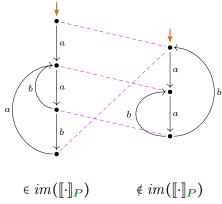

With the finiteness restriction, process graphs can be viewed as:

nondeterministic finite-state automata (NFAs),

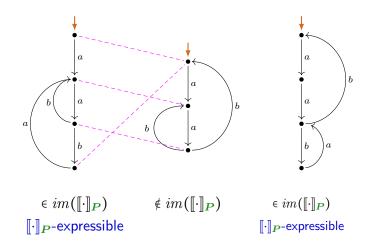

that are studied under bisimulation, not under language equivalence.

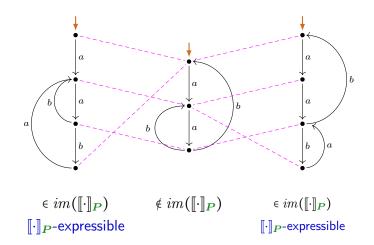
Antimirov (1996): NFA-definition of $\llbracket \cdot \rrbracket_P$ via partial derivatives.

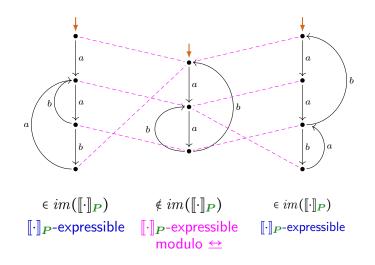

Expressible process graphs (under bisimulation \Leftrightarrow)

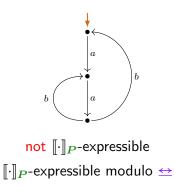


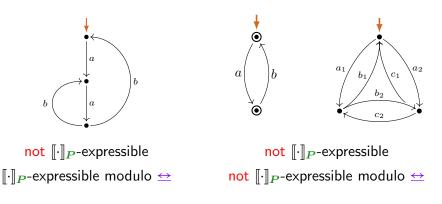
Expressible process graphs (under bisimulation \Leftrightarrow)



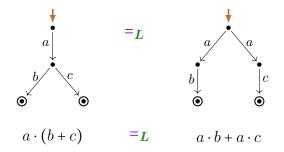

 $\notin im(\llbracket \cdot \rrbracket_{\boldsymbol{P}})$



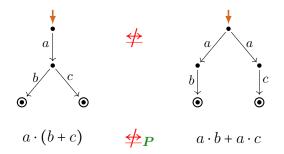

 $\llbracket \cdot \rrbracket_{P}$ -expressible



▶ Not every finite-state process is [[·]]_P-expressible.



- ▶ Not every finite-state process is **[**.]_P-expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .



- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

- Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

- Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

Salomaa's axiomatization of $=_L$ (products commuted)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Sound and unsound axioms with respect to \leq_P

Axioms :

(B1)	e + (f + g) = (e + f) + g	$(B7) e \cdot 1 = e$
(B2)	$(e \cdot f) \cdot g = e \cdot (f \cdot g)$	$(B8) e \cdot 0 = 0$
(B3)	e + f = f + e	(B9) $e + 0 = e$
(B4)	$(e+f) \cdot g = e \cdot g + f \cdot g$	(B10) $e^* = 1 + e \cdot e^*$
(B5)	$e \cdot (f + g) = e \cdot f + e \cdot g$	(B11) $e^* = (1+e)^*$
(B6)	e + e = e	

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word

property

Sound and unsound axioms with respect to \leq_P

Axioms :

(B1)	e + (f + g) = (e + f) + g	$(B7) e \cdot 1 = e$
(B2)	$(e \cdot f) \cdot g = e \cdot (f \cdot g)$	$(B8) e \cdot 0 = 0$
(B3)	e + f = f + e	(B9) $e + 0 = e$
(B4)	$(e+f) \cdot g = e \cdot g + f \cdot g$	(B10) $e^* = 1 + e \cdot e^*$
(B5)	$e \cdot (f + g) = e \cdot f + e \cdot g$	(B11) $e^* = (1+e)^*$
(B6)	e + e = e	$(B8)' 0 \cdot e = 0$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Milner's adaptation for \leq_P (Mil = Mil⁻ + RSP*)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\operatorname{if} \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Milner's adaptation for \leq_P (Mil = Mil⁻ + RSP*)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\operatorname{if} \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Milner's adaptation for \leq_P (Mil = Mil⁻ + RSP*)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\operatorname{if} \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Milner's questions

Q2. Is Mil complete for \leq_P ?

Milner's questions

Q1. Which structural property of finite process graphs characterizes $\|\cdot\|_{P}$ -expressibility modulo \Leftrightarrow ?

Q2. Is Mil complete for \leq_P ?

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?

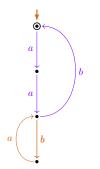
Q2. Is Mil complete for \leq_P ?

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)

Q2. Is Mil complete for \leq_P ?

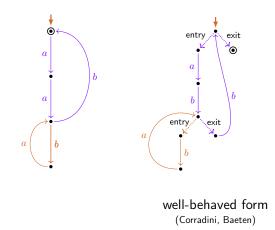
- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?


▶ \leq_P has no finite (purely) equational axiomatization (Sewell, 1994)

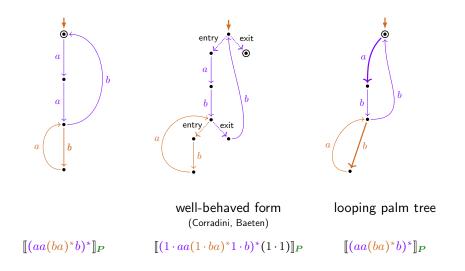
- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?
 - ▶ \implies_P has no finite (purely) equational axiomatization (Sewell, 1994)
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - \blacktriangleright every iteration e^* occurs as part of a 'no-exit' subexpression $e^*\cdot 0$

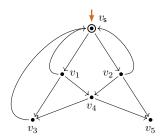
- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?
 - ▶ \leq_P has no finite (purely) equational axiomatization (Sewell, 1994)
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - \blacktriangleright every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*}\cdot 0$
 - Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)


- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?
 - ▶ \leq_P has no finite (purely) equational axiomatization (Sewell, 1994)
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - every iteration e^* occurs as part of a 'no-exit' subexpression $e^*\cdot 0$
 - Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)
 - ▶ Mil⁻ + one of two stronger rules (than RSP^{*}) is complete (*G*, 2006)
 - with a coinductive rule (based on Antimirov's partial derivatives)
 - with a unique solvability principle USP

Well-behaved form, looping palm trees

$\llbracket (aa(ba)^*b)^* \rrbracket_P$

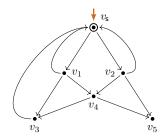

Well-behaved form, looping palm trees


 $\llbracket (aa(ba)^*b)^* \rrbracket_P$

 $[(1 \cdot aa(1 \cdot ba)^* 1 \cdot b)^* (1 \cdot 1)]_P$

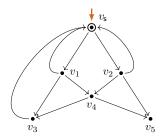
Well-behaved form, looping palm trees

Definition		
A process graph is a loop chart if:		
L-1.		
L-2.		
L-3.		

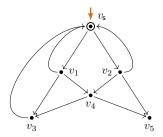

Definition

A process graph is a loop chart if:

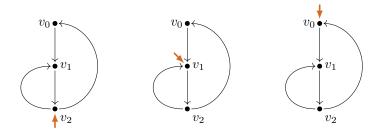
L-1. There is an infinite path from the start vertex.


L-2.

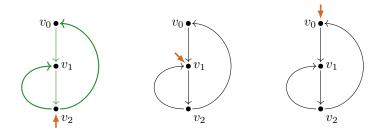
L-3.


Definition

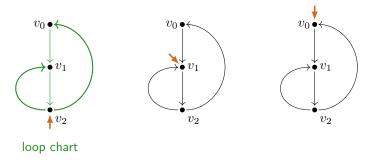
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3.


Definition

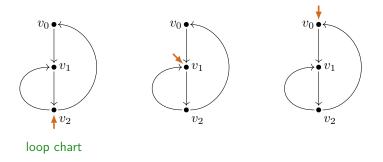
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.


Definition

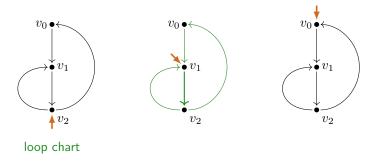
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.


Definition

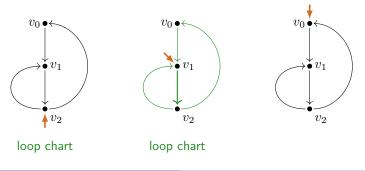
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.


Definition

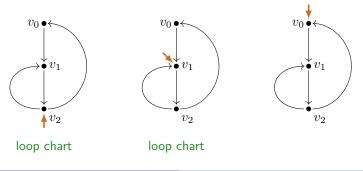
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.


Definition

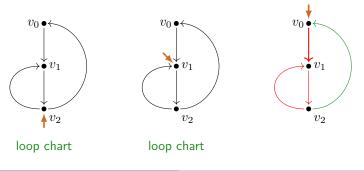
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.


Definition

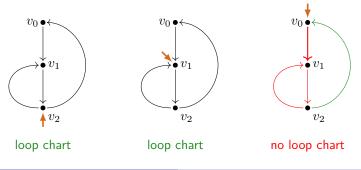
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.


Definition

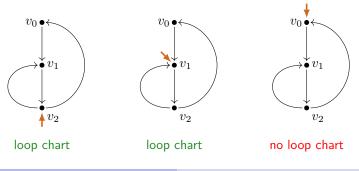
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

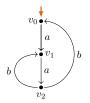

Definition

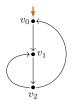
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

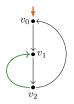

Definition

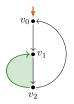
- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

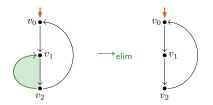

Definition

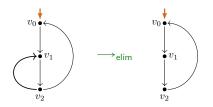

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

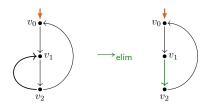


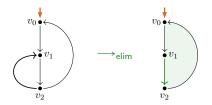

Definition

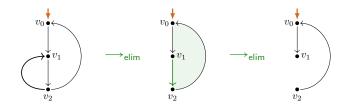

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

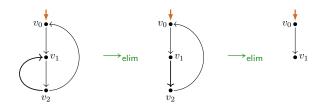


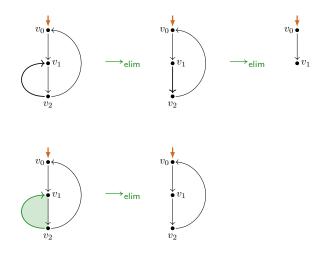


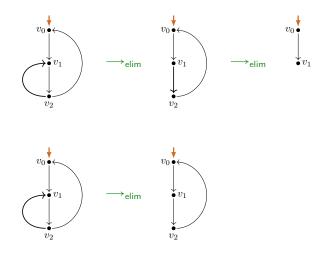


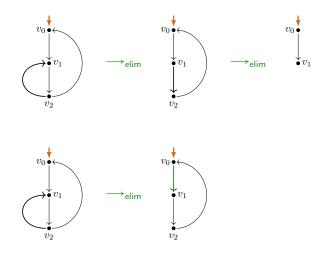


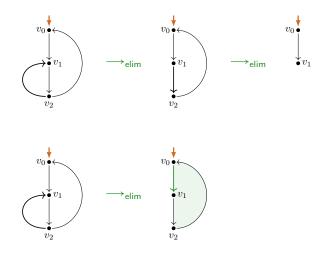


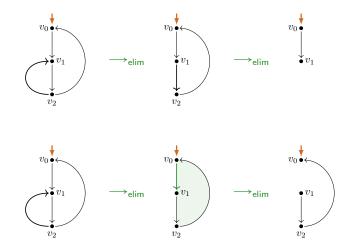


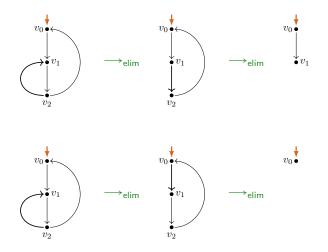


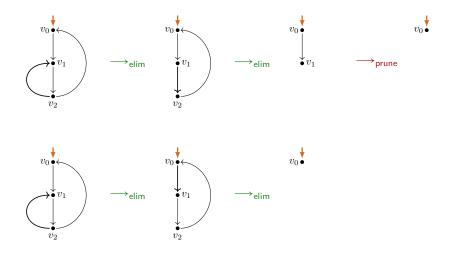


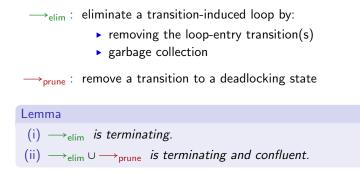










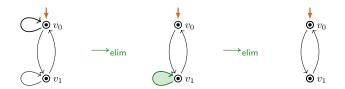

Loop elimination, and properties

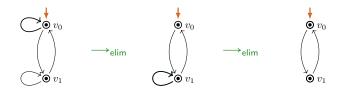
$\rightarrow_{\mathsf{elim}}$: eliminate a transition-induced loop by:

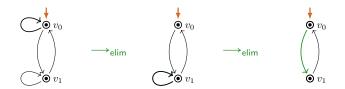
- removing the loop-entry transition(s)
- garbage collection

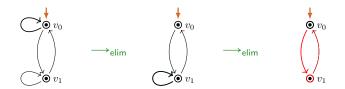
→_{prune} : remove a transition to a deadlocking state

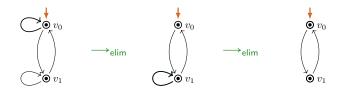
Loop elimination, and properties

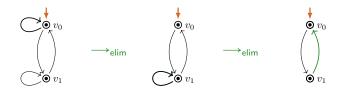


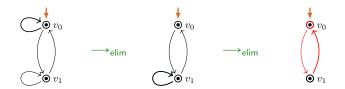


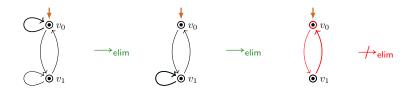


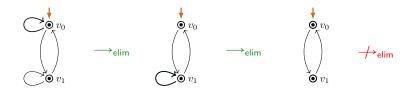


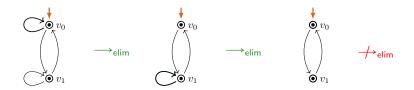


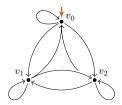


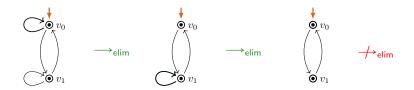


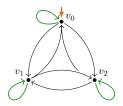


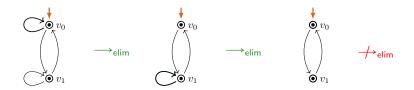


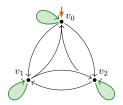


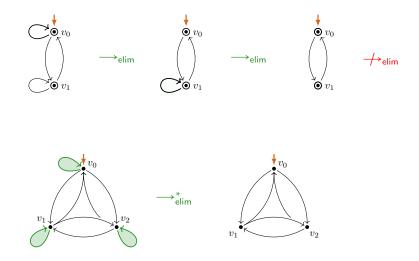


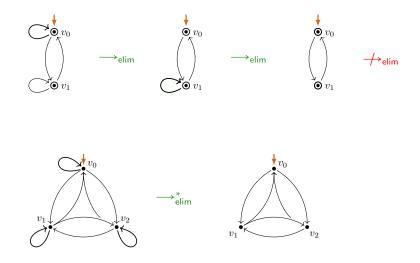


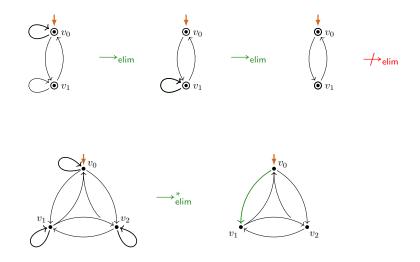


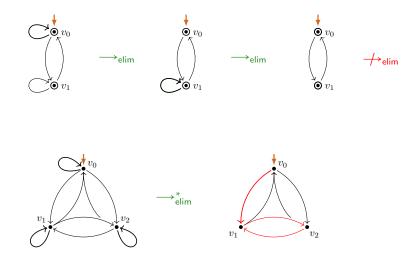


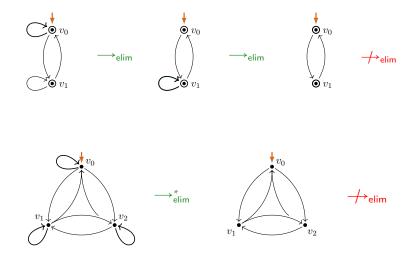












Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\longrightarrow_{\mathsf{elim}} \right.$$

 $\wedge G_0$ has no infinite trace).

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\longrightarrow_{\mathsf{elim}} \right)$$

 $\wedge G_0$ has no infinite trace).

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\rightarrow_{\text{elim}}$ normal form without an infinite trace.

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\longrightarrow_{\mathsf{elim}} \right)$$

 $\wedge G_0$ has no infinite trace).

Lemma (by using confluence properties)

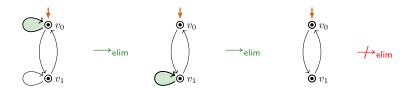
For every process graph G the following are equivalent:

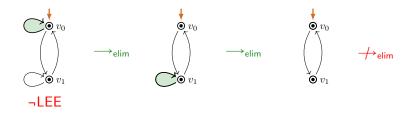
(i) $\mathsf{LEE}(G)$.

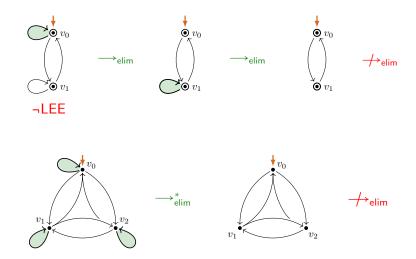
- (ii) There is an \rightarrow_{elim} normal form without an infinite trace.
- (iii) There is an $\rightarrow_{\text{elim},\text{prune}}$ normal form without an infinite trace.

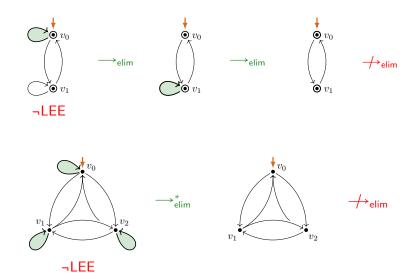
Definition

A process graph G satisfies LEE (loop existence and elimination) if:

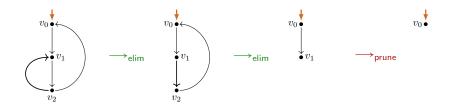

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\to_{\mathsf{elim}} \right)$$

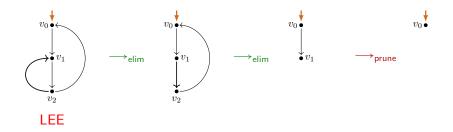

 $\wedge G_0$ has no infinite trace).

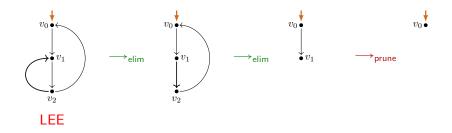

Lemma (by using confluence properties)

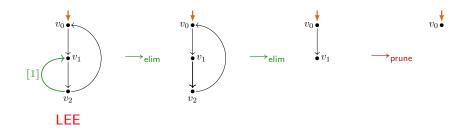

For every process graph G the following are equivalent:

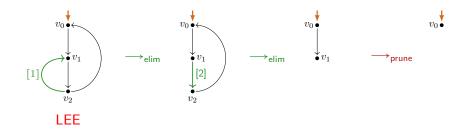
- (i) $\mathsf{LEE}(G)$.
- (ii) There is an \rightarrow_{elim} normal form without an infinite trace.
- (iii) There is an $\rightarrow_{\text{elim},\text{prune}}$ normal form without an infinite trace.
- (iv) Every $\rightarrow_{\text{elim}}$ normal form is without an infinite trace.
- (v) Every $\rightarrow_{\text{elim,prune}}$ normal form is without an infinite trace.

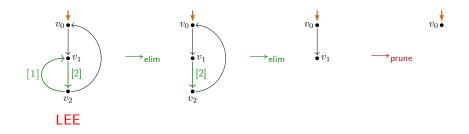


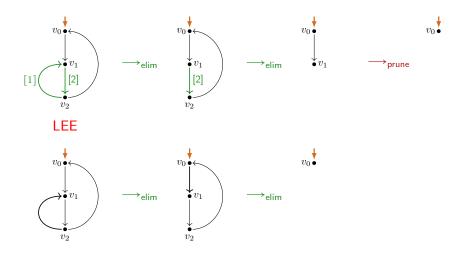


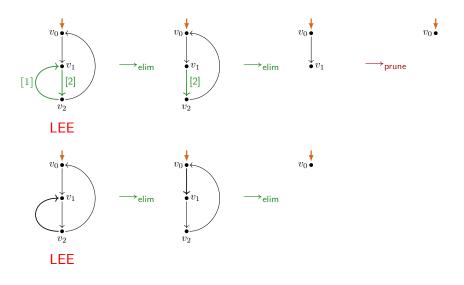


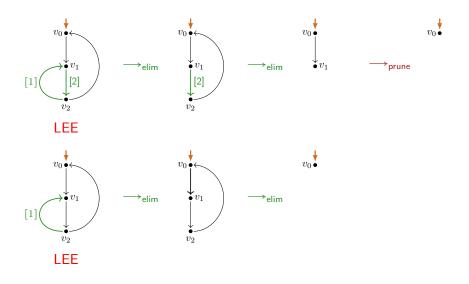

LEE holds

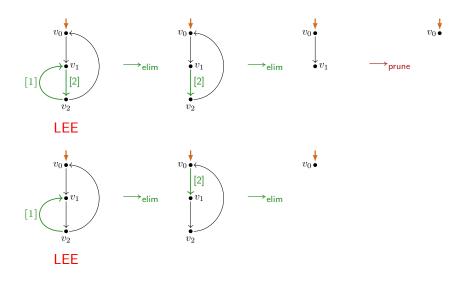


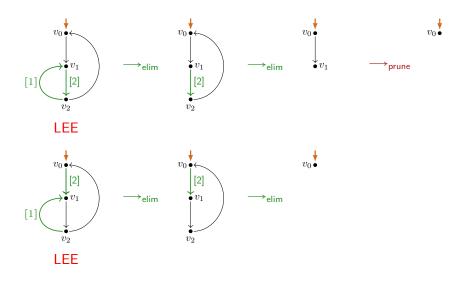

LEE holds

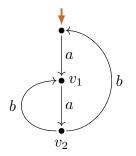


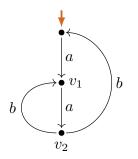


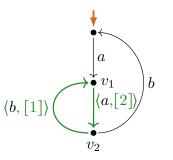




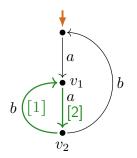






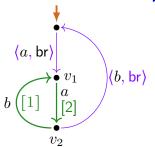


loop-branch labeling: marking transitions \xrightarrow{a} as:

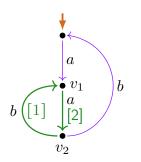


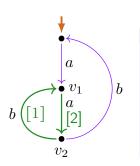
loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$,

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:


• entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,

loop-branch labeling: marking transitions \xrightarrow{a} as:

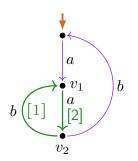

• entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,


• branch steps
$$\xrightarrow{(a,br)}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

loop-branch labeling: marking transitions \xrightarrow{a} as:


- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

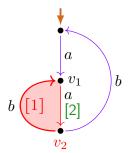
Definition

A loop-branch labeling is a LEE-witness, if:

L1. L2.

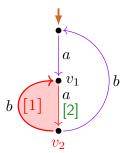
L3.

loop-branch labeling: marking transitions \xrightarrow{a} as:

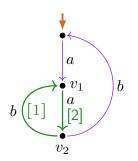

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:


L1. L2. L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \mathsf{ is reached again} \end{split}$$

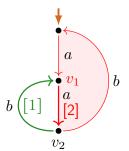

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$

loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, \lfloor n \rfloor \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$, • branch steps $\frac{\langle a, br \rangle}{\longrightarrow}$, written \xrightarrow{a}_{br} or $\xrightarrow{a}_{\rightarrow}$. Definition A loop-branch labeling is a LEE-witness, if: L1. L2. L3. $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq$ subchart induced by entry steps $\rightarrow_{[n]}$ from v followed by branch steps \rightarrow_{br} or entry steps $\rightarrow_{[m]}$ with m > n, until v is reached again

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ is loop subchart

loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, \lfloor n \rfloor \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$, • branch steps $\frac{\langle a, br \rangle}{\longrightarrow}$, written \xrightarrow{a}_{br} or $\xrightarrow{a}_{\rightarrow}$. Definition A loop-branch labeling is a LEE-witness, if: L1. L2. L3. $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq$ subchart induced by entry steps $\rightarrow_{[n]}$ from v followed by branch steps \rightarrow_{br} or entry steps $\rightarrow_{[m]}$ with m > n, until v is reached again

loop-branch labeling: marking transitions \xrightarrow{a} as:


- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1. L2. L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \mathsf{ is reached again} \end{split}$$

$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$$

loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, \lfloor n \rfloor \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$, • branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} . Definition A loop-branch labeling is a LEE-witness, if: L1. L2. L3. $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq$ subchart induced by entry steps $\rightarrow_{[n]}$ from v followed by branch steps \rightarrow_{br} or entry steps $\rightarrow_{[m]}$ with m > n, until v is reached again

 $b \underbrace{ \begin{bmatrix} 1 \end{bmatrix} \\ v_1 \\ a \\ v_2 \end{bmatrix} } b$

 $\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$ is loop subchart

loop-branch labeling: marking transitions \xrightarrow{a} as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{ is a loop subchart} \end{pmatrix}$$
.
L2.
L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to \mathsf{br}, [>n]) \\ \text{ is a loop subchart} \end{pmatrix}$$
.
L2.
L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart\ induced} \\ \mathsf{by\ entry\ steps\ } \rightarrow_{[n]} \mathsf{from\ } v \\ \mathsf{followed\ by\ branch\ steps\ } \rightarrow_{\mathsf{br}} \\ \mathsf{or\ entry\ steps\ } \rightarrow_{[m]} \mathsf{with\ } m > n, \\ \mathsf{until\ } v \mathsf{ is\ reached\ again} \end{split}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$. L2. No infinite \to_{br} path from start vertex. L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart\ induced} \\ \mathsf{by\ entry\ steps\ } \rightarrow_{[n]} \mathsf{from\ } v \\ \mathsf{followed\ by\ branch\ steps\ } \rightarrow_{\mathsf{br}} \\ \mathsf{or\ entry\ steps\ } \rightarrow_{[m]} \mathsf{with\ } m > n, \\ \mathsf{until\ } v \mathsf{ is\ reached\ again} \end{split}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from start vertex.

L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by} \text{ entry steps } \rightarrow_{[n]} \text{ from } v \\ \mathsf{followed} \text{ by branch steps } \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps } \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $b \underbrace{[1]}_{v_2} \overset{\bullet}{[2]} b$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from start vertex.

L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $b \underbrace{[1]}_{v_2}^{\bullet v_1} b$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

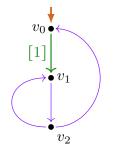
L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\mathrm{br}, [>n_i]})$ for $i \in \{1, 2\}$ loop charts $\land w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 \neq n_2.$

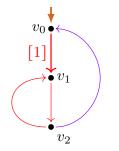
$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \mathsf{ is reached again} \end{split}$$

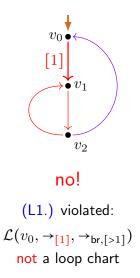
LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

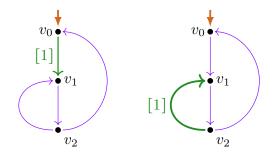
- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

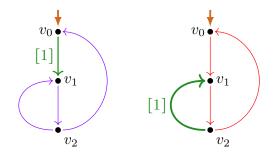

Definition

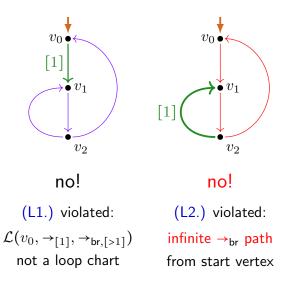

A loop-branch labeling is a LEE-witness, if:

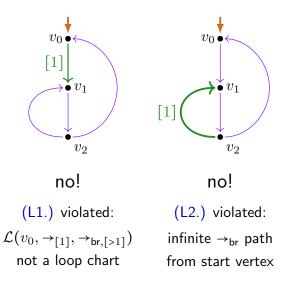

L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$. L2. No infinite \to_{br} path from start vertex.

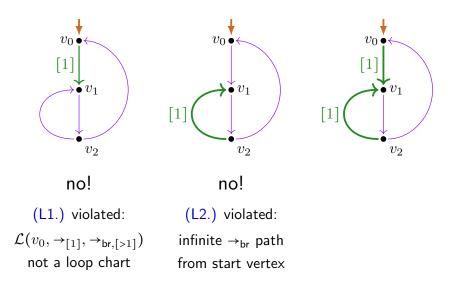

L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{br,[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, ..., ...) \implies n_1 \neq n_2.$

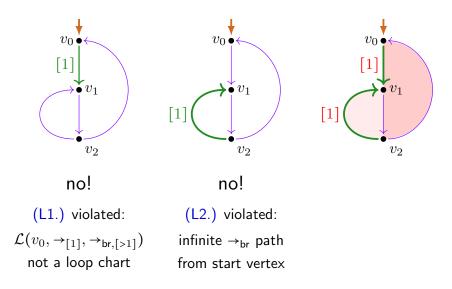

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

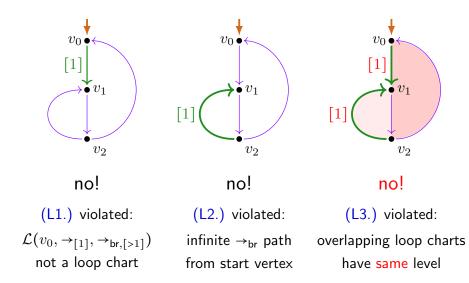


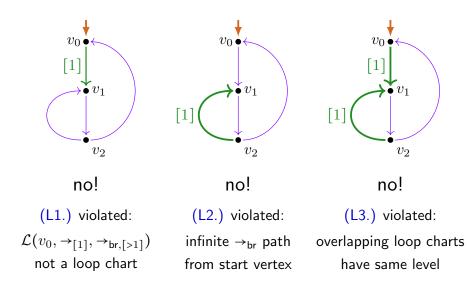

no!

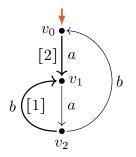

(L1.) violated: $\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ not a loop chart

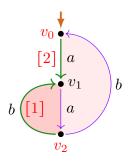



no!


(L1.) violated: $\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ not a loop chart





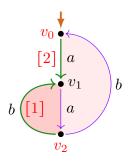


 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .


Definition

A loop-branch labeling is a LEE-witness, if:

- L1. $\forall n \in \mathbb{N} \forall v \in V \Big(\begin{array}{c} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart, or trivial} \\ \end{array} \Big).$
- L2. No infinite \rightarrow_{br} path from start vertex.

L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\text{br},[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, ..., ...) \implies n_1 \neq n_2.$

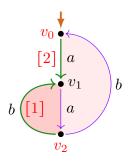
$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \end{split}$$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]}) \ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$

loop-branch labeling: marking transitions \xrightarrow{a} as:

• entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,

• branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .


Definition

A loop-branch labeling is a layered LEE-witness, if: I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \rightarrow [n] \Rightarrow \mathcal{L}(v, \rightarrow [n], \rightarrow_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.

I-L2. No infinite \rightarrow_{br} path from start vertex.

I-L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\mathsf{br},[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \dots, \dots) \Longrightarrow n_1 < n_2.$

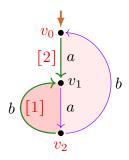
 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \end{aligned}$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]}) \ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition


A loop-branch labeling is a layered LEE-witness, if: I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \rightarrow_{[n]} \Rightarrow \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{br}) \\ \text{is a loop subchart} \end{pmatrix}$.

I-L2. No infinite \rightarrow_{br} path from start vertex.

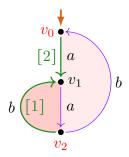
I-L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{br})$ for $i \in \{1, 2\}$ loop charts

 $\wedge w_1 \neq w_2 \wedge w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 < n_2.$

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \end{aligned}$

 $\begin{aligned} \mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}}) \\ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}}) \end{aligned}$

loop-branch labeling: marking transitions \xrightarrow{a} as:


- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if: I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \rightarrow [n] \Rightarrow \mathcal{L}(v, \rightarrow [n], \rightarrow_{br}) \\ \text{is a loop subchart} \end{pmatrix}$. I-L2. No infinite \rightarrow_{br} path from start vertex.

I-L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{br})$ for $i \in \{1, 2\}$ loop charts $\land w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \dots, \dots) \implies n_1 < n_2.$

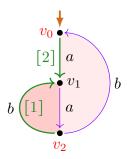
 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \end{aligned}$

$$\begin{split} \mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}}) \\ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}}) \end{split}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition


A loop-branch labeling is a layered LEE-witness, if:

-L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

I-L2. No infinite \rightarrow_{br} path from start vertex.

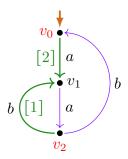
I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \end{aligned}$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}})$ $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$ $\mathsf{layered}$ $\mathsf{LEE-witness}$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .


Definition

A loop-branch labeling is a layered LEE-witness, if:

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from start vertex.

I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq & \mathsf{subchart induced} \\ & \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ & \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \end{split}$$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}})$ $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$ $\mathsf{layered}$ $\mathsf{LEE-witness}$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if:

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from start vertex.

I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq & \mathsf{subchart induced} \\ & \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ & \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \end{split}$$

LEE versus LEE-witness

Theorem

For every process graph G:

 $\mathsf{LEE}(G) \iff G$ has a LEE -witness.

LEE versus LEE-witness

Theorem

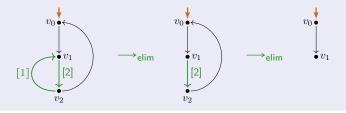
For every process graph G:

 $\mathsf{LEE}(G) \iff G$ has a LEE -witness.

Proof.

 \Rightarrow : record loop elimination

LEE versus LEE-witness


Theorem

```
For every process graph G:
```

```
\mathsf{LEE}(G) \iff G has a \mathsf{LEE}-witness.
```

Proof.

- \Rightarrow : record loop elimination
- carry out loop-elimination as indicated in the LEE-witness, in *inside-out* direction, e.g.:

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

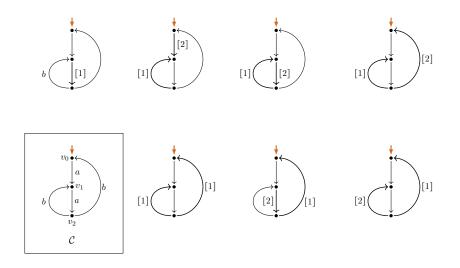
Lemma

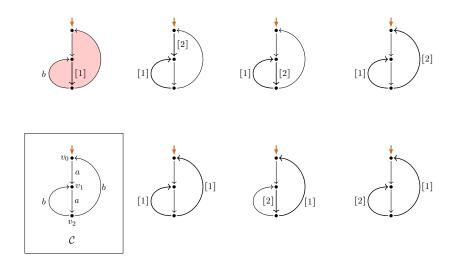
Every LEE-witness \widehat{G} of a process graph Gcan be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}' of G.

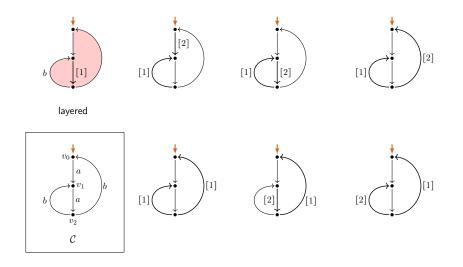
LEE and (layered) LEE-witness

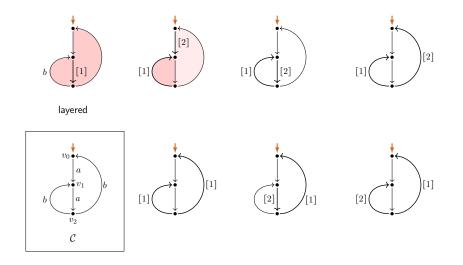
Lemma

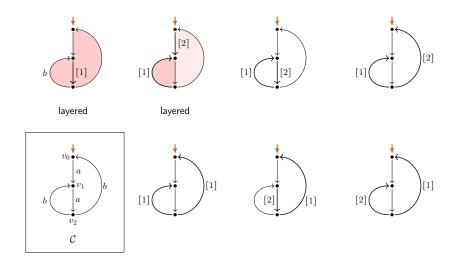
Every layered LEE-witness is a LEE-witness.

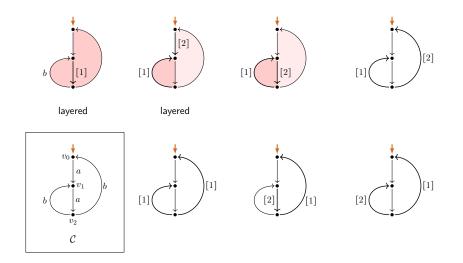

Lemma

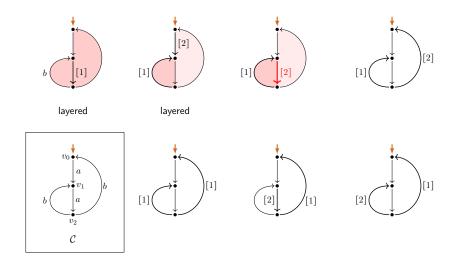

Every LEE-witness \widehat{G} of a process graph Gcan be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}' of G.

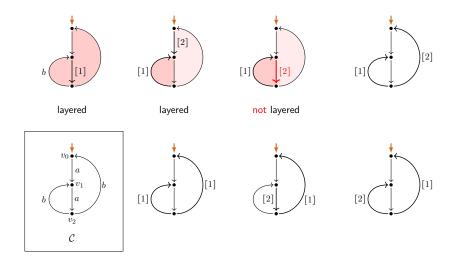

Lemma

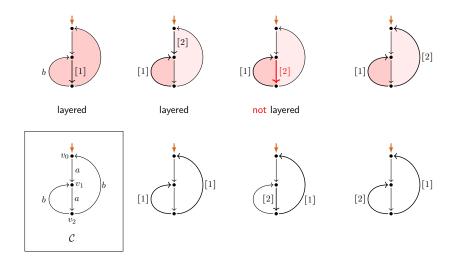

For every process graph G the following are equivalent:

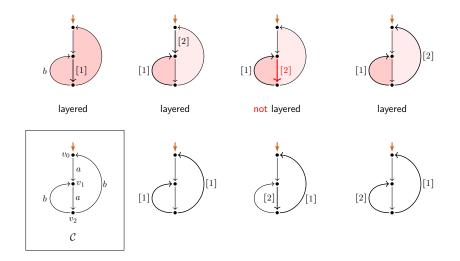

- (i) LEE(G).
- (ii) G has a LEE-witness.
- (iii) G has a layered LEE-witness.

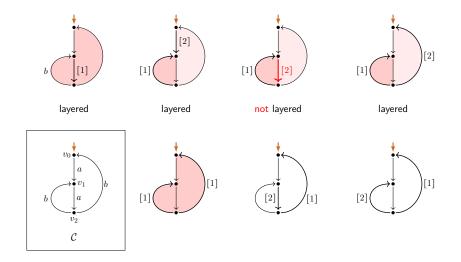


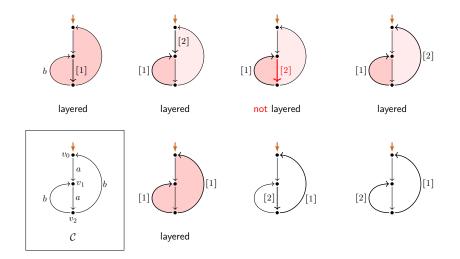


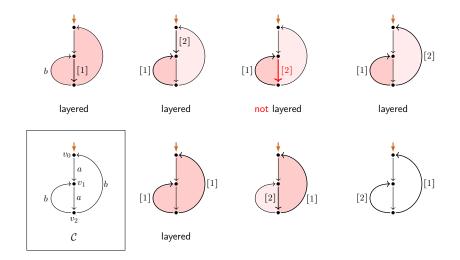


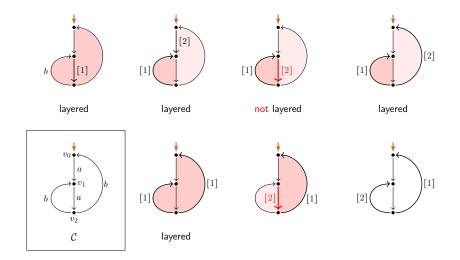


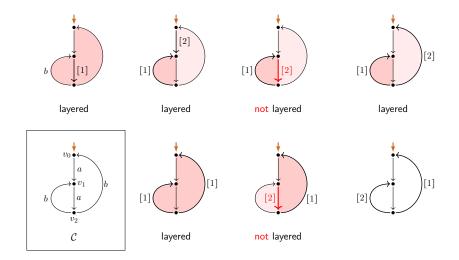


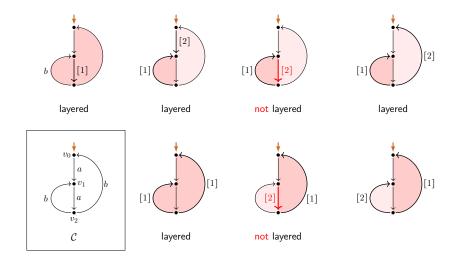


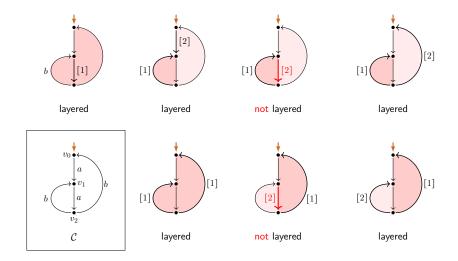


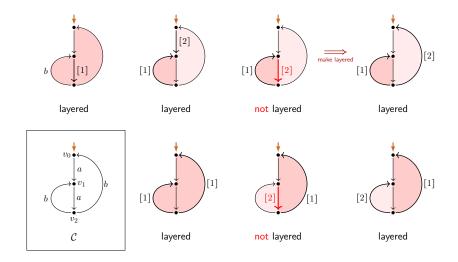


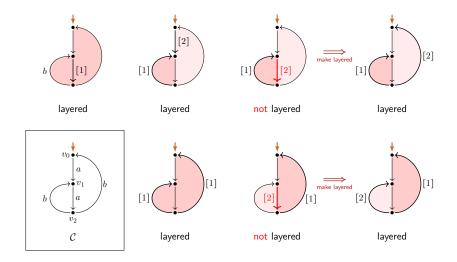


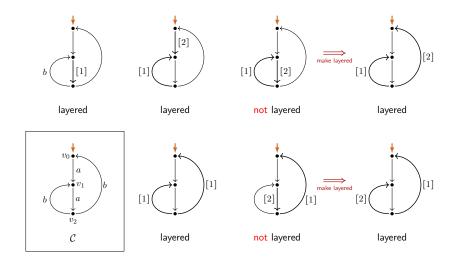


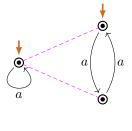








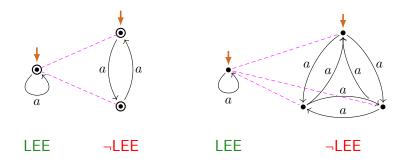




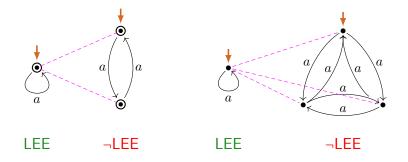
Observation

• LEE is not invariant under bisimulation.

Observation


• LEE is not invariant under bisimulation.

LEE ¬LEE


Observation

• LEE is not invariant under bisimulation.

Observation

- LEE is **not** invariant under bisimulation.
- LEE is not preserved by converse functional bisimulation.

LEE under functional bisimulation

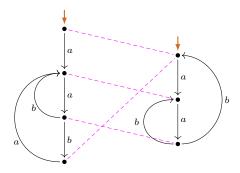
Lemma

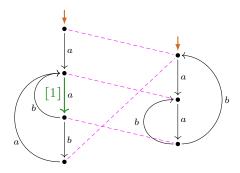
(i) LEE is preserved by functional bisimulations:

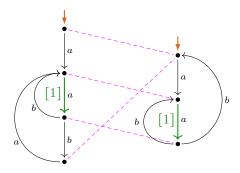
 $\mathsf{LEE}(G_1) \land G_1 \not\supseteq G_2 \implies \mathsf{LEE}(G_2)$.

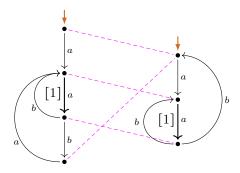
O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

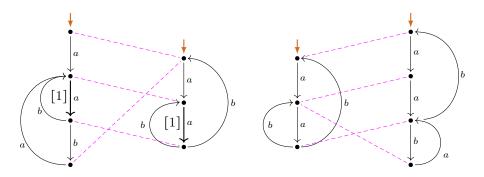
LEE under functional bisimulation

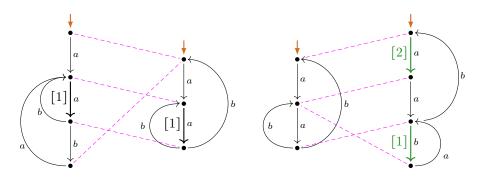

Lemma

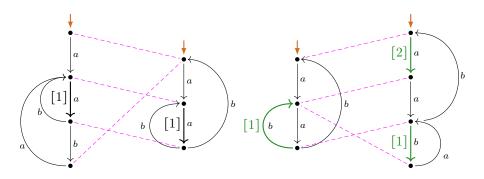

(i) LEE is preserved by functional bisimulations:


 $\mathsf{LEE}(G_1) \land G_1 \not\supseteq G_2 \implies \mathsf{LEE}(G_2)$.

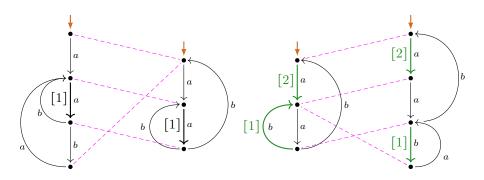

Proof (Idea).


Use loop elimination in G_1 to carry out loop elimination in G_2 .

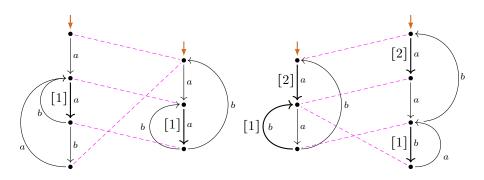



 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $[(aa(ba)^*b)^*0]_P$


 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $\llbracket (aa(ba)^*b)^*0 \rrbracket_{\boldsymbol{P}}$


 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $[(aa(ba)^*b)^*0]_P$

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $[(aa(ba)^*b)^*0]_{P}$

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $\llbracket (aa(ba)^*b)^*0 \rrbracket_{\boldsymbol{P}}$

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

 $\mathsf{LEE}(G_1) \land G_1 \not\supseteq G_2 \implies \mathsf{LEE}(G_2)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

LEE under functional bisimulation / bisimulation collapse

Lemma

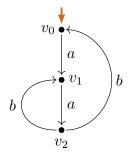
(i) LEE is preserved by functional bisimulations:

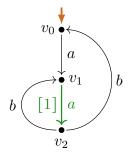
 $\mathsf{LEE}(G_1) \wedge G_1 \simeq G_2 \implies \mathsf{LEE}(G_2)$.

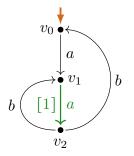
(ii) LEE is preserved from a process graph to its bisimulation collapse:

 $\mathsf{LEE}(G) \land C$ is bisimulation collapse of $G \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)


Use loop elimination in G_1 to carry out loop elimination in G_2 .


Readback


Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

$$s(v_{0}) = 0^{*} \cdot a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot (a \cdot (b + b \cdot a))^{*} \cdot 0$$

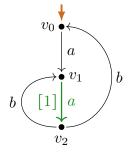
$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{Mil^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

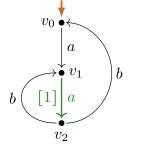
$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{Mil^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{Mil^{-}} b + b \cdot a$$

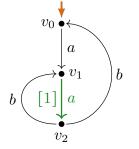

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$


$$= 0^{*} \cdot a \cdot 1$$

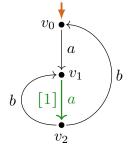
$$=_{Mil^{-}} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$



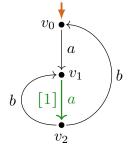
$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$


$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

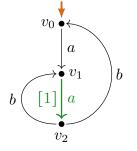

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

 $s(v_1, v_1) = 1$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$



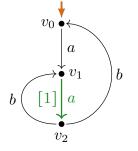
$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_1, v_1) = 1 s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = \left(a \cdot s(v_2, v_1)\right)^* \cdot 0$$


$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_1, v_1) = 1$$

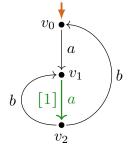
$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$


$$s(v_1, v_1) = 1$$

$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^-} a$$

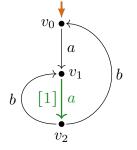
$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

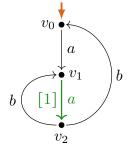
=_{Mil}- 0* \cdot (b \cdot 1 + b \cdot a)

$$s(v_1, v_1) = 1$$


$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^-} a$$


$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

 $s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{\mathsf{M}\mathsf{H}^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{\mathsf{M}\mathsf{H}^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{\mathsf{M}\mathsf{H}^{-}} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

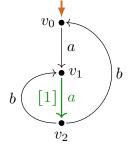
$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{\mathsf{Mil}^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{\mathsf{Mil}^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{\mathsf{Mil}^{-}} b + b \cdot a$$


$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^{-}} a$$

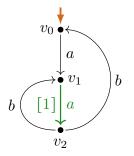
$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$
$$=_{\mathsf{Mil}^-} a \cdot s(v_1)$$

$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$


$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} a$$

$$s(v_{0}) = 0^{*} \cdot a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{Mil^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{Mil^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{Mil^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{Mil^{-}} a$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_{P} \right).$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}^{\frac{1}{r} \times -expressible}$:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lr} \land \star}(A) \left(G \rightleftharpoons \llbracket e \rrbracket_P \right).$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lf} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{\pm r \setminus *}(A)$) if:

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lf} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and

×

p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

•
$$(a \cdot (0^* + b))^*$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lf} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and

× ×

p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

•
$$(a \cdot (0^* + b))^*$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lf} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (0^* + b))^*$$
 ×

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- for <u>no</u> iteration subexpression f^* of e does $[\![f]\!]_P$ proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

•
$$(a \cdot (0^* + b))^*$$
 ×

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$
 ×

•
$$(a \cdot (0^* + b))^*$$
 ×

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

•
$$(a^*(b^* + c \cdot 0)^*)^*$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\text{1+}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

$$(a \cdot (1+b))^*$$
 × $(a^*(b^*+c \cdot 0)^*)^*$ ×
 $(a \cdot (0^*+b))^*$ ×

$$\bullet \ a \cdot \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \quad \checkmark$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^* \times (a^*(b^*+c \cdot 0)^*)^* \times (a^*(b^*+c \cdot 0))^* \times (a^*(b^*+c \cdot 0))^*$$

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

×

l emma

Process graphs with LEE are $\left\|\cdot\right\|_{\mathcal{D}}^{\frac{1}{2}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \operatorname{Reg}^{1+/*}(A)$) if:

- for no iteration subexpression f^* of e does $[\![f]\!]_P$ proceed to a process p such that:
 - p has the option to immediately terminate, and

×

p has the option to do a proper step, and terminate later.

$$(a \cdot (1+b))^* \times (a^*(b^*+c \cdot 0)^*)^* \times (a^*(b^*+c \cdot 0))^* \times (a^*(b^*+c$$

•
$$(a^*(b^* + c \cdot 0))^*$$
 ×

$$\bullet \ a \cdot \left(a \cdot (b + b \cdot a) \right)^* \cdot 0 \quad \checkmark$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

 $(a \cdot (1+b))^* \times (a^*(b^*+c \cdot 0)^*)^* \times (a^*(b^*+c \cdot 0))^* \times (a^*(b^*+c$

$$(a^*(b^* + c \cdot 0))^* \times$$

$$(a^*(b + c \cdot 0))^*$$

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- ► $(a \cdot (1+b))^*$ × ► $(a^*(b^*+c \cdot 0)^*)^*$ ×
- ► $(a \cdot (0^* + b))^*$ × ► $(a^*(b^* + c \cdot 0))^*$ ×

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

```
(i) G is \llbracket \cdot \rrbracket_P^{\ddagger \ast}-expressible modulo \leq.
```

```
(ii) LEE(C).
```

- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger + \star}$ -expressible modulo $\leq \cdot$.
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question:

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\frac{1}{P}}$ -expressible modulo \leq .
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question restricted:

Q1'. Which structural property of finite process graphs characterizes $\left[\!\left.\cdot\right]\!\right]_{P}^{\frac{1}{2}+\lambda}$ -expressibility modulo \Leftrightarrow ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger \cdot \bigstar}$ -expressible modulo $\leq \cdot$.
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question restricted, and adapted:

Q1". Which structural property of collapsed finite process graphs characterizes $[\![\cdot]]_P^{\texttt{tr}\setminus \star}$ -expressibility modulo \Leftrightarrow ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger \cdot \bigstar}$ -expressible modulo $\leq \cdot$.
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:

- Q1". Which structural property of collapsed finite process graphs characterizes $[\![\cdot]]_P^{\texttt{tr}\setminus \star}$ -expressibility modulo \Leftrightarrow ?
 - ► The loop-existence and elimination property LEE.

Characterization of expressibility r^{\star} modulo \leq

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger \ast}$ -expressible modulo \leq .
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:

- Q1". Which structural property of collapsed finite process graphs characterizes $[\![\cdot]]_P^{\frac{1}{2}+\lambda}$ -expressibility modulo \Leftrightarrow ?
 - ► The loop-existence and elimination property LEE.

Also yields: efficient decision method of $\left[\cdot\right]_{P}^{\frac{1}{2}}$ -expressibility modulo \leq .

Structure constrained finite process graphs

graphs with LEE / a (layered) LEE-witness

- ▶ is closed under ≥
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

graphs with LEE / a (layered) LEE-witness

- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\llbracket \cdot \rrbracket_P^{\frac{1}{2}}$ -expressible modulo \leq

- ▶ is closed under \ge
- ▶ forth-/back-correspondence with 1-return-less regular expressions

O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Structure constrained finite process graphs

- $\llbracket \cdot \rrbracket_P^{\frac{1}{r} \times -expressible graphs}$
- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\llbracket \cdot \rrbracket_P^{\frac{1}{2}}$ -expressible modulo \leq

- ▶ is closed under ≥
- ▶ forth-/back-correspondence with 1-return-less regular expressions

O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Structure constrained finite process graphs

- $\llbracket \cdot \rrbracket_P^{\frac{1}{r} \times -expressible graphs}$
- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\llbracket \cdot \rrbracket_P^{\frac{1}{2}}$ -expressible modulo \leq
- \subseteq graphs that are $\llbracket \cdot \rrbracket_P$ -expressible modulo \leq

- ▶ is closed under \ge
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

- $\llbracket \cdot \rrbracket_P^{\frac{1}{r} \times -expressible graphs}$
- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\llbracket \cdot \rrbracket_P^{\frac{1}{2}}$ -expressible modulo \leq
- \subseteq graphs that are $\llbracket \cdot \rrbracket_P$ -expressible modulo \leq
- ⊊ finite process graphs

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Structure constrained finite process graphs

loop-exit palm trees $\subseteq [\cdot]_P^{1+/*}$ -expressible graphs

- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\llbracket \cdot \rrbracket_P^{\frac{1}{2}}$ -expressible modulo \leq
- \subseteq graphs that are $\llbracket \cdot
 rbracket_P$ -expressible modulo \leq
- finite process graphs

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

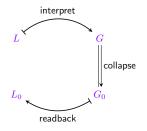
Structure constrained finite process graphs

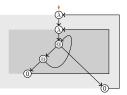
loop-exit palm trees $\subseteq [\cdot]_P^{1+/*}$ -expressible graphs

- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\llbracket \cdot \rrbracket_P^{\frac{1}{2}}$ -expressible modulo \leq
- \subseteq graphs that are $\llbracket \cdot
 rbracket_P$ -expressible modulo \leq
- ⊊ finite process graphs

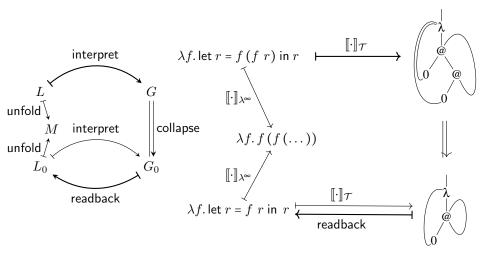
Benefits of the class of process graphs with LEE:

- ▶ is closed under \ge
- ▶ forth-/back-correspondence with 1-return-less regular expressions


Application to Milner's questions yields partial results:


Q1: characterization/efficient decision of $\llbracket \cdot \rrbracket_P^{\text{tr},\star}$ -expressibility modulo \Leftrightarrow

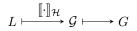
Q2: alternative compl. proof of Mil on 1-return-less expressions (C/DN/L)

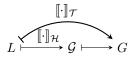

Maximal sharing of functional programs

(joint work with Jan Rochel)

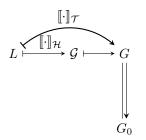
maximal sharing: example (fix)

O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

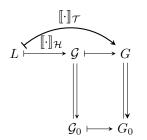

maximal sharing: the method

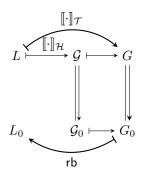


a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$

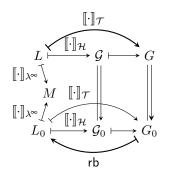


- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$




- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$

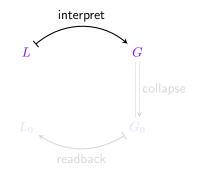
- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0


- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.

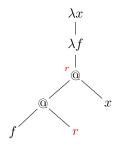


- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb

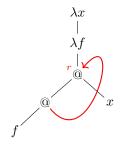
of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.

interpretation

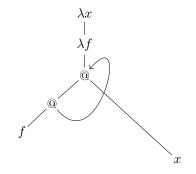


running example

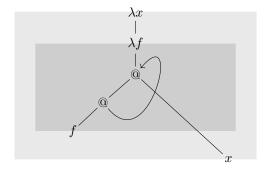
 $\begin{array}{ll} \text{instead of:} \\ \lambda f. \, \text{let } r = f\left(f\,r\right) \, \text{in } r & \longmapsto_{\text{max-sharing}} & \lambda f. \, \text{let } r = f\,r \, \text{in } r \\ \text{we use:} \\ \lambda x. \, \lambda f. \, \text{let } r = f\left(f\,r\,x\right) x \, \text{in } r & \longmapsto_{\text{max-sharing}} & \lambda x. \, \lambda f. \, \text{let } r = f\,r\,x \, \text{in } r \\ \\ L & \longmapsto_{\text{max-sharing}} & L_0 \end{array}$


 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

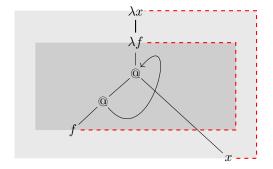
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


syntax tree

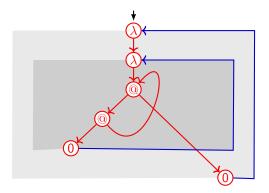
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


syntax tree (+ recursive backlink)

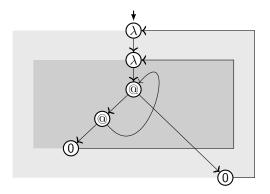
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


syntax tree (+ recursive backlink)

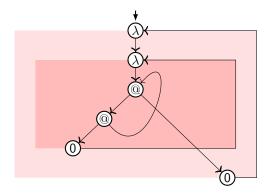
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


syntax tree (+ recursive backlink, + scopes)

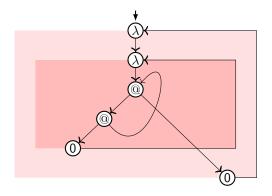
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


syntax tree (+ recursive backlink, + scopes, + binding links)

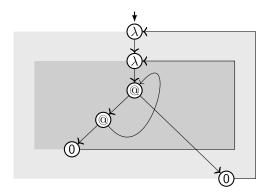
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


first-order term graph with binding backlinks (+ scope sets)

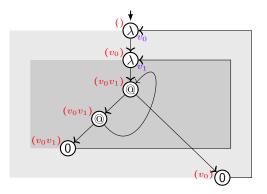
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


first-order term graph with binding backlinks (+ scope sets)

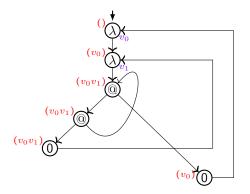
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


first-order term graph (+ scope sets)

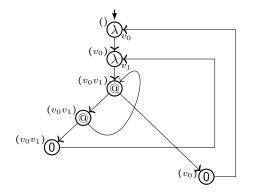
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


higher-order term graph (with scope sets, Blom [2003])

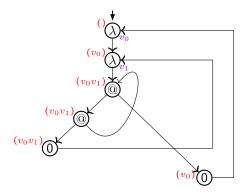
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


higher-order term graph (with scope sets, Blom [2003])

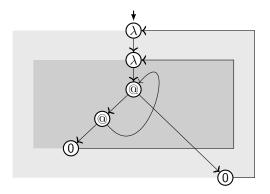
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


higher-order term graph (with scope sets, + abstraction-prefix function)

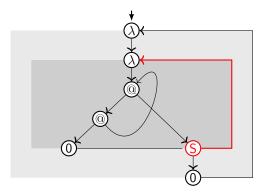
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


higher-order term graph (with abstraction-prefix function)

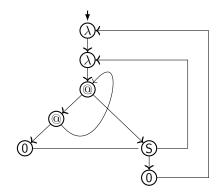
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


 λ -higher-order-term-graph $\llbracket L_0 \rrbracket_{\mathcal{H}}$

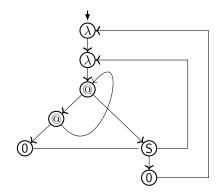
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


first-order term graph (+ abstraction-prefix function)

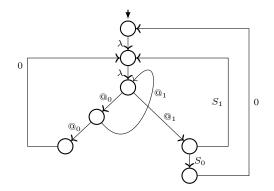
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


first-order term graph with binding backlinks (+ scope sets)

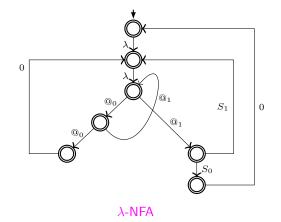
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


first-order term graph with scope vertices with backlinks (+ scope sets)

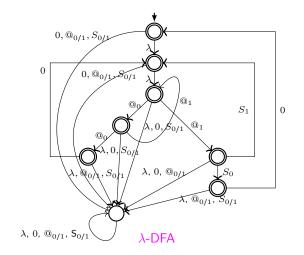
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


first-order term graph with scope vertices with backlinks

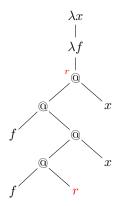
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$



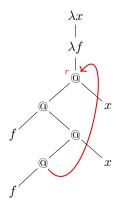
 λ -term-graph $\llbracket L_0 \rrbracket_{\mathcal{T}}$


 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

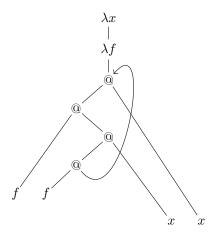
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$



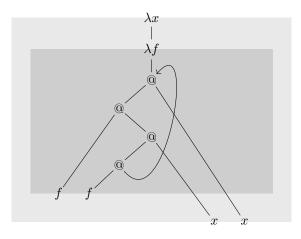
 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$


 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r


syntax tree

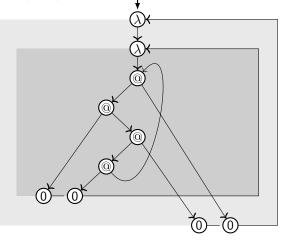
 $L = \lambda x. \lambda f.$ let r = f(frx)x in r


syntax tree (+ recursive backlink)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

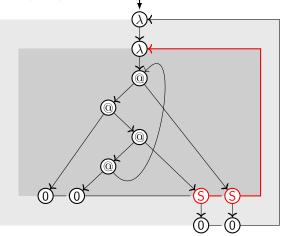
syntax tree (+ recursive backlink)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r



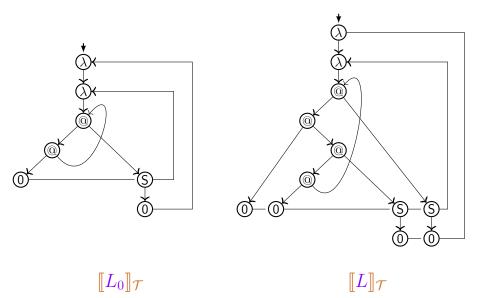
syntax tree (+ recursive backlink, + scopes)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r


first-order term graph with binding backlinks (+ scope sets)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

λ -higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$


 $L = \lambda x. \lambda f. \text{ let } r = f(frx)x \text{ in } r$

first-order term graph with scope vertices with backlinks (+ scope sets)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r 0 \bigcirc 0

λ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\lambda_{\mathsf{letrec}}$ -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

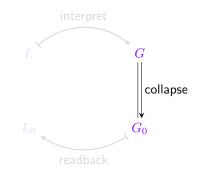
Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

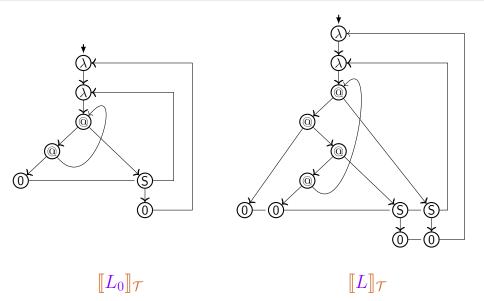
 $\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \Leftrightarrow \llbracket L_2 \rrbracket_{\mathcal{T}}$

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

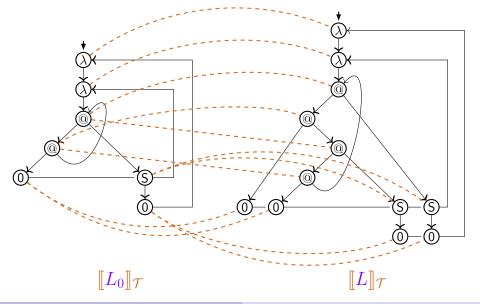
interpretation $\lambda_{\mathsf{letrec}}$ -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

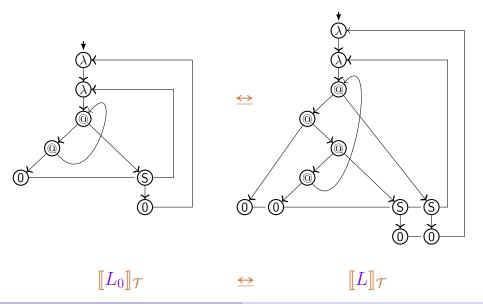

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

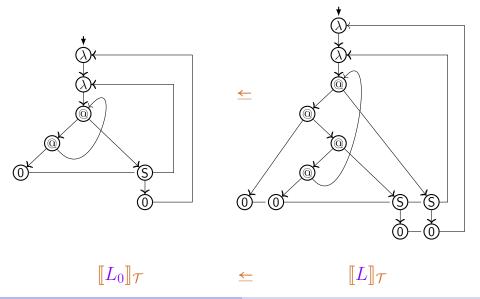
Theorem


For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

 $\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \Leftrightarrow \llbracket L_2 \rrbracket_{\mathcal{T}}$

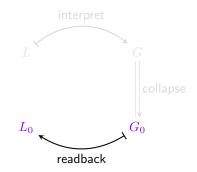

collapse


bisimulation check between λ -term-graphs


bisimulation between λ -term-graphs

bisimilarity between λ -term-graphs

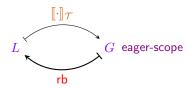
functional bisimilarity and bisimulation collapse

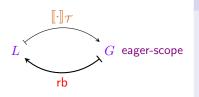

bisimulation collapse: property

Theorem

The class of eager-scope λ -term-graphs is closed under functional bisimilarity \Rightarrow .

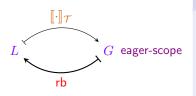
 \implies For a $\lambda_{ ext{letrec}}$ -term L


the bisimulation collapse of $\llbracket L \rrbracket_{\mathcal{T}}$ is again an eager-scope λ -term-graph.


defined with property:

defined with property:

defined with property:

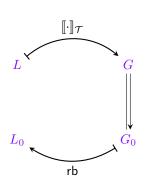

Theorem

For all eager-scope λ -term-graphs G:

 $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

defined with property:


Theorem For all eager-scope λ -term-graphs G: $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ rb)(G) \simeq G$ The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$

modulo isomorphism ≃.

idea:

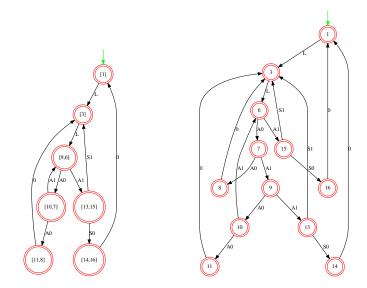
- 1. construct a spanning tree T of G
- 2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

maximal sharing: complexity

- 1. interpretation
 - of $\lambda_{\mathsf{letrec}}$ -term L with |L| = n
 - as λ -term-graph $G = \llbracket L \rrbracket_T$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0
 - in time $O(|G|\log|G|) = O(n^2\log n)$
- 3. readback rb

of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

• in time $O(|G|\log|G|) = O(n^2\log n)$


Theorem

Computing a maximally compact form $L_0 = (rb \circ |\downarrow \circ [\![\cdot]\!]_{\mathcal{T}})(L)$ of L for a λ_{letrec} -term L requires time $O(n^2 \log n)$, where |L| = n.

Demo: console output

```
ian:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
\lambda-letrec-term:
\lambda x. \lambda f. let r = f(f r x) x in r
derivation:
            ----- 0 ----- 0
            (x f[r]) f (x f[r]) r (x) x
(x) x
(x f[r]) f (f r x)
                ۵) -----
۵) ۸ -----
(x f[r]) f (f r x) x
                                                            (x f[r]) r
                                                                 ---- let
(x f) let r = f (f r x) x in r
                           .....λ
(x) \lambda f. let r = f(f r x) x in r
                                .....λ
() \lambda x. \lambda f. let r = f (f r x) x in r
writing DFA to file: running-dfa.pdf
readback of DFA:
\lambda x, \lambda y, let F = v (v F x) x in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
\lambda x. \lambda y. let F = y F x in F
jan:~/papers/maxsharing-ICFP/talks/ICFP-2014>
                          Clemens Grabmayer
                                       Modeling Terms by Graphs with Structure Constraints
```

Demo: generated λ -NFAs

Resources (maximal sharing)

- tool maxsharing on hackage.haskell.org
- papers and reports
 - Maximal Sharing in the Lambda Calculus with Letrec
 - ICFP 2014 paper
 - accompanying report arXiv:1401.1460
 - Term Graph Representations for Cyclic Lambda Terms
 - TERMGRAPH 2013 proceedings
 - extended report arXiv:1308.1034
 - Vincent van Oostrom, CG: Nested Term Graphs
 - TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
 - Unfolding Semantics of the Untyped λ -Calculus with letrec
 - Ph.D. Thesis, Utrecht University, 2016

Comparison results: structure-constrained graphs

Regular expressions under \Leftrightarrow_P

Given: graph interpretation $\llbracket \cdot \rrbracket_P$, studied under bisimulation \Leftrightarrow

▶ not closed under \rightarrow , and \leftrightarrow , incomplete under \leftrightarrow

 λ -calculus with letrec under = $_{\lambda^{\infty}}$

Not available: graph interpretation that is studied under \Leftrightarrow

Comparison results: structure-constrained graphs

Regular expressions under \Leftrightarrow_P

Given: graph interpretation $\llbracket \cdot \rrbracket_P$, studied under bisimulation \Leftrightarrow

▶ not closed under \rightarrow , and \Leftrightarrow , incomplete under \Leftrightarrow

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \Rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's
- contains the collapse of a process graph G ⇔ G is []¹⁴/_P -expressible modulo ⇔

 λ -calculus with letrec under = $_{\lambda^{\infty}}$

Not available: graph interpretation that is studied under \Leftrightarrow

Comparison results: structure-constrained graphs

Regular expressions under \leq_P

Given: graph interpretation $\llbracket \cdot \rrbracket_P$, studied under bisimulation \Leftrightarrow

▶ not closed under \rightarrow , and \Leftrightarrow , incomplete under \Leftrightarrow

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \Rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's
- contains the collapse of a process graph G ⇔ G is []¹⁴/_P -expressible modulo ⇔

 λ -calculus with letrec under = $_{\lambda^{\infty}}$

Not available: graph interpretation that is studied under \Leftrightarrow

Defined: int's $\llbracket \cdot \rrbracket_{\mathcal{H}} / \llbracket \cdot \rrbracket_{\mathcal{T}}$ as higher-order/first-order λ -term graphs

- closed under \Rightarrow (hence under collapse)
- ▶ back-/forth correspondence with λ -calculus with letrec
 - efficient translation and readback
 - translation is inverse of readback