Avoiding Repetitive Reduction Patterns in Lambda Calculus with letrec

(Work In Progress)

Jan Rochel and Clemens Grabmayer

Dept. of Computer Science, and Dept. of Philosophy
NWO-project Realising Optimal Sharing
Utrecht University
TERMGRAPH 2011
Saarbrücken, April 2 ${ }^{\text {nd }}$

Abstract

C le

號

In this talk

We report on:

- an optimising transformation for λ-calculus with letrec
- by which i.p. the cyclic passing on of unchanged arguments during evaluation can often be prevented

Examples:

- Haskell functions repeat, replicate, ++ , map, until
- a specification of the Thue-Morse sequence

In this talk

We report on:

- an optimising transformation for λ-calculus with letrec
- by which i.p. the cyclic passing on of unchanged arguments during evaluation can often be prevented

Examples:

- Haskell functions repeat, replicate, ++ , map, until
- a specification of the Thue-Morse sequence

Concepts used:

- visible/concealed redexes
- generalised β-reduction
- domination in digraphs
- static analysis of cyclically reappearing redexes
正

\square

 －
\qquad
\qquad
－宜

$+$
\square

\qquad

λ-Terms and λ-Trees

$T:$	$:=$	V
\mid	$T T$	
		$\lambda V . T$

(variable)
(application)
(abstraction)
$(\lambda x . g(f x)) 3$

β－Reduction
$(\lambda x . M) N \rightarrow_{\beta} \quad M[x:=N]$

$$
\begin{array}{ccc}
(\lambda x . M) N & \rightarrow_{\beta} & M[x:=N] \\
& \overbrace{x}^{@} _{3}
\end{array}
$$

$$
(\lambda x . g(f x)) 3 \rightarrow_{\beta} \quad g(f 3)
$$

＋
－

letrec-Terms and λ-Graphs

T : $:=$	v	(variable)
	T T	(application)
	$\lambda V . T$	(abstraction)
	$f(T, \ldots, T)$	(primitive functions)
	let Defs in T	(letrec)
Defs : : $=$	$v_{1}=T \ldots v_{n}=T$	(equations)

let repeat $=\lambda x . x$: repeat x in repeat

letrec-Terms and λ-Graphs

(variable)
(application)
(abstraction)
(primitive functions)
(letrec)
(equations)
let repeat $=\lambda x . x$: repeat x in repeat

Abstract

\square

 let repeat $=\lambda x \cdot x:$ repeat x
Abstract

\square
\square

－

$-$

\square
ت
L

L

\qquad
11 repeat

\qquad

\qquad \＆\quad 〉

repeat

in $\lambda_{\text {letrec }}$

λx
in $\lambda_{\text {etrec }}$

λx

 \square都
Iet repeat $=\lambda x \cdot x: r e p e a t x$
.
\qquad

repeat
$\begin{array}{ll} & \\ \\ & \\ \\ & \lambda x\end{array}$
$\begin{array}{ll} & \\ \\ & \\ \\ & \lambda x\end{array}$

Abstract

$=$
-

 \section*{repeat}
 \section*{repeat}

-
\square
—
-

-
_
$\lambda_{\text {letrec }}$

$2 x$

x

$$
0
$$

let repeat $=\lambda x \cdot x:$ repeat $x \quad$ in repeat
\mid

?

$x_{x}:$ repeat x

教

 \square
\equiv -

Abstract

 $=$

司 4 $=$
$=\quad \mapsto a \propto$
$-$

正

mpilers：
f三

\qquad
（2）
\qquad
\qquad

Visible and concealed redexes
 路

Common practice in existing compilers:

- Exhaustive reduction of visible redexes

正

Exhaustive reducion of vibe redex

Visible and concealed redexes

Common practice in existing compilers:

- Exhaustive reduction of visible redexes
- This is in general not possible for concealed redexes
\qquad

repeat 3

－

$$
\begin{aligned}
& \text { let repeat }=\lambda x \cdot x: \text { repeat } x \\
& \text { in repeat } 3
\end{aligned}
$$

\qquad
\square

L
\qquad
\qquad -2

Abstract

\square
－
> -

 a －

 \square T

\qquad （
 $=$
\cdots
\qquad
－

-2

$$
\begin{aligned}
& \text { let repeat }=\lambda x . x: \text { repeat } x \\
& \text { in }(\lambda x . x: \text { repeat } x) 3
\end{aligned}
$$

－
\qquad
\qquad

 －
\qquad － ，
\square
\qquad
\qquad

\qquad

 $(-1+2+0$

\square L

 2

es
\qquad

\qquad
\qquad － \qquad

[^0]－

[^1]号 ，

－

，

－

\square

 O －
— I
\qquad r
\qquad

let repeat $=\lambda x . x$: repeat x
 in $3:(\lambda x . x$: repeat $x) 3$

\qquad
．

\author{

in $3: 3$ ：repeat 3

 （
 者
 \author{
}
 路

}
\square元正 0 ，

 － \square －
I

都
let repeat $=\lambda x . x:$ repeat x

\square

\square
\square
E
I
\square

（2）
\square
＿
－

\qquad
\qquad

Rochel，Grabmayer Avoiding Repetitive Reduction Patterns in 1 etrec
Rochel，Grabmayer Avoiding Repetitive Reduction Patterns in 1 etrec
Rochel，Grabmayer Avoiding Repetitive Reduction Patterns in λ letrec
Rochel，Grabmayer Avoiding Repetitive Reduction Patterns in λ letrec
Rochel，Grabmayer Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$
Rochel，Grabmayer Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$

Rochel，Grabmayer Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$
路

Abstract

都

\square
\square

Abstract

 $+$$\rightarrow 4$

\qquad
(2)rec: T

4 主
浯 ． －

\author{

repeat 3

 \square

 \section*{}
 －

 （a）
 電
 ＂
 |
 \square C

 \[L

\]
 \[

Z

\]
 \[

L

\]
 \[

Z

\]
 \[

L
\]

 \title{

}
}

5

2

Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$

\square

0
$4 \equiv$ －

Avoiding Repettive Reduction Patterns in $\lambda_{\text {letrec }}$
repeat 3
rerealus
Avoiding Repeetitive Reduction Pateerns in $\lambda_{\text {letrec }}$

$$
\text { repeat } 3
$$

Rochel，Grabmayer \quad Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$
repeat 3

\section*{\section*{}}

Rochel，Grabmayer
Rochel，Grabmayer
Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$

repeat 3

a

$$
: \quad x
$$

Avoiding Repetitive Reduction Patterns in iletrec

4 口 1
回
4 三 4 ．
．
（
rex
$\bar{\equiv}$

Abstract

$$
1
$$

Abstract

－

$$
0
$$

Abstract

I

.

Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$
Avoiding Repetitive Reduction Patterns in Aletrec
Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$
$+$
\qquad
\qquad
，

repeat
 repeat

．

: $-x$

rex
＂
＿

－ \equiv
F
\qquad
 （ （ \square ，正

路

\qquad
\qquad
\qquad
\qquad

Abstract

\begin{abstract}

Abstract

\end{abstract}

Optimising repeat

let repeat $=\lambda x$. let $x s=x: x s$ in $x s$
in repeat
let repeat $=\lambda x$. let $x s=x: x s$ in $x s$
in repeat
repear
$\underset{\substack{\text { Iet repeat } \\ \text { in repeat }}}{\text { lox．let } x s=x: x s \text { in } x s}$

$$
0
$$

\square正

。

2

\section*{let repeat $=\lambda x . x:$ repeat x

in repeat

in repeat

 \square}
O

\square

[^2]\square
1
\square

Operational equivalence I

 as notion of operational equivalence．路

（1） as notion of operational equivalence．

5 E $\bar{\equiv}$ 2
$=$
O Operational equivalence

$$
3
$$

\qquad

\qquad
\square

L

\square
－

－

正
$-$
（
\square
On

$$
1 \equiv 1 \equiv
$$

\square

\square

\qquad
nrecn

nee
rec
\qquad
\qquad
\qquad
\qquad
\square

\qquad
\qquad
\qquad
\qquad

-2

\qquad

$\begin{aligned} & \text { replicate } 0 \\ & \text { replicate } n x=[]\end{aligned}$
repreplicaticate $n x=1) x$
ret rec $0=[]$
rec $n=x:$ rec $(n-1)$
in rec n

Avoiding Repetitive Reduction Patterns in $\lambda_{l e t r e c}$
replicate
$\begin{aligned} & \text { replicate } 0 x= \\ & \text { replicate } n x= x: r e p l i c a t e(n-1) x \\ & \text { replicate } n x= \text { let } \operatorname{rec} 0=[] \\ & \quad \text { in ec } n=x: \operatorname{rec}(n-1) \\ & \\ &\end{aligned}$

Avoiding Repetitive Reduction Patterns in $\lambda_{l e t r e c}$
replicate
\qquad
\qquad
\qquad
\square
\qquad
\square
\qquad

replicate - generalised β-reduction

Rol, Grabmay
-

正

\qquad
\qquad

= \quad ac
replicate－generalised β－reduction
\square－
ρ
K
$\because 4=$
三
 ac

都
$-\frac{1}{-1}$
 8

三 \quad 引a
\qquad

\qquad
再
-2
4 三
$=$
三

Abstract

都

\qquad
\qquad
\qquad

Generalised β－Reduction

$=$
\square三事 4 틀 2
－
－

\qquad
\qquad
\qquad

$$
2
$$ $=$

$\equiv \quad \rho a \propto$ $\overline{=}$

4 ロ（甸（

\qquad

$$
1
$$

\qquad
\qquad
\qquad
都
\qquad
\qquad
．
－
 \square

Abstract

\qquad \square路 －

 $+$

-
\equiv Эac
\qquad

$$
x+=\square
$$

-

都
 \qquad

[^3]

Generalised β－Reduction

Generalised β－Reduc
la

$$
2-2
$$
 －

Generalised β－Reduction

$$
\frac{1}{z} \quad y
$$

$=$

Abstract

－

Generalised β－Reduc

正
Generalised R－Reduc
Generalised β－Reduc
Generalised β－Reduc

\qquad

4 $\square>4$ 包 $>$ 三
路
$-$

 \square \square

\qquad
\qquad
\qquad

－

I

？
$-$ （2）

都
（
\qquad

\square
\qquad
\square
 ．

$$
3
$$

Generalised β－Reduction
Generalised β－Reduction
Generalised β－Reduction
Lb

Generalised β－Reduction
Generalised β－Reduction
Generalised 3 －Reduction
Generalised 3 －Reduction

，
.

\square

Abstract

[^4]\qquad
\qquad
－
\qquad
Generalis

路
＋르 $>$ $=r$ 0这

$$
\begin{equation*}
x^{2} \tag{0}
\end{equation*}
$$

(
F
replicate - duplication of the function body

路

$4 \equiv$
2
$-$
Avoiding Repetitive Reduction Patterns in $\lambda_{\text {letrec }}$.

$=$

$\mathrm{T}+\mathrm{m}$

-

號

(

 -

 .
_

replicate - duplication of the function body

replicate - duplication of the function body

\equiv ac

 2
\qquad
\qquad

\qquad

\qquad

replicate - header trick

replicate - header trick

replicate - header trick

 $\stackrel{\curvearrowright}{ }$

Abstract

Rewrite Rule Formulation
 Rewrite Rule Formulation
 \qquad

$$
\begin{align*}
& f=\lambda x_{1} \ldots \lambda x_{n} \cdot \lambda y \cdot C\left[f t_{1} \ldots t_{n} y\right] \\
& \quad \rightarrow \\
& f=\lambda x_{1} \ldots \lambda x_{n} \cdot \lambda y . \\
& \quad \begin{array}{l}
\text { let } f^{\prime}=\lambda x_{1} \ldots \lambda x_{n} \cdot C\left[f^{\prime} t_{1} \ldots t_{n}\right] \\
\\
\text { in } f^{\prime} x_{1} \ldots x_{n}
\end{array}
\end{align*}
$$

\square

$$
\square
$$

\square

\qquad
\qquad
\qquad
+

保
■
\square \qquad \square

$$
+
$$

[^5] $\rightarrow-\infty$

.

F
路
路
$$
1
$$

\qquad

\qquad
$(\mathrm{Cl}$
\qquad
\qquad
\qquad
\square
 2 －
\square

Rewriting repeat號

let repeat $=\lambda x . x$ ：repeat x
let repeat $=\lambda x$ ．let $x s=x: x s$ in $x s$ let repeat
in repeat

```
in repeat
```

$+$
\square

$$
\underline{0}
$$

$t=\lambda x \cdot x:$ repeat x

$$
\square
$$

 \rightarrow \qquad

號 \rightarrow

\square
\square

f
\qquad

■

$=$ ـ ${ }^{2}$
五
"

$$
\begin{aligned}
& \begin{aligned}
\text { replicate } 0 x= & {[] } \\
\text { replicate } n x= & x: \text { replicate }(n-1) x
\end{aligned} \\
& \text { replicate } n x= \text { let } \operatorname{rec} 0=[] \\
& \operatorname{rec} n=x: \operatorname{rec}(n-1)
\end{aligned}
$$

 In

\qquad \square
\square

.

E

$$
-
$$

Abstract

\square正

\qquad
\qquad
\qquad
－

Rewriting map
p or

[
f
偮
保

T

-

$$
\begin{aligned}
& \begin{aligned}
\operatorname{map}_{-}[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \text { map } x s
\end{aligned} \\
& \begin{aligned}
\operatorname{map}_{-}[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{aligned} \\
& \begin{aligned}
\operatorname{map} f=\operatorname{let} \operatorname{rec}[] & =[] \\
\operatorname{rec}(x: x s) & =f x: \operatorname{rec} x s
\end{aligned} \\
& \begin{aligned}
\text { map } f=\text { let } \operatorname{rec}[] & =[] \\
\operatorname{rec}(x: x s) & =f x: \operatorname{rec} x s
\end{aligned} \\
& \text { in } \mathrm{rec} \\
& \rightarrow \\
& \text { } \\
& \rightarrow \\
& (x: x s)=f x: r e c x s
\end{aligned}
$$

$$
\begin{aligned}
& \text { = } 1
\end{aligned}
$$

－

Rewriting until

until $p f x=$ if $p x$ then x else until $p f(f x)$
until pf $x=$ let $r e c x=$ if $p x$ then x else rec ($f x$) in $\operatorname{rec} x$

Rewriting the Thue-Morse Sequence

let $x a b=b: z i p(x a b)(y a b)$ $y s t=s: z i p(y s t)(x s t)$ $z i p(x: x s)(y: y s)=x: y: z i p x s y s$ in $x 01$
let $x a b=$ let $x^{\prime}=b: z i p x^{\prime}(y a b)$ in x^{\prime}
$y s t=$ let $y^{\prime}=s:$ zip $y^{\prime}(x s t)$ in y^{\prime}
$z i p(x: x s)(y: y s)=x: y: z i p x s y s$
in $x 01$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $\circ \subseteq \subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $\circ \subseteq \subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)(y a b) \\
& y s t=s: z i p(y s t)(x s t) \\
& z i p(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)\left(\begin{array}{ll}
y & a b
\end{array}\right) \\
& \quad y s t=s: z i p(y s t)(x s t) \\
& \quad \text { zip }(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 01
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Binding-Graph Method

$$
\begin{aligned}
& \text { let } x a b=b: z i p(x a b)\left(\begin{array}{ll}
y a b
\end{array}\right) \\
& \quad y s t=s: z i p(y s t)(x s t) \\
& \quad \text { zip }(x: x s)(y: y s)=x: y: z i p x s y s \\
& \text { in } x 0
\end{aligned}
$$

Binding relation: $a _\subseteq S \times S$

Strong domination

Strong domination:

$$
\operatorname{sdom}_{G}(d, w):=
$$

$$
\forall p_{0} \longmapsto \ldots \longmapsto p_{n}=v \quad n \geq 0
$$

Strong domination

Strong domination:

$$
\operatorname{sdom}_{G}(d, w):=
$$

$$
\forall p_{0} \longmapsto \ldots \longmapsto p_{n}=v: d \in\left\{p_{0}, \ldots, p_{n}\right\}
$$

$$
n \geq 0
$$

Strong domination

$$
\begin{gathered}
\operatorname{sdom}_{G}(d, w):= \\
\forall p_{0} \mapsto \ldots \mapsto p_{n}=v: d \in\left\{p_{0}, \ldots, p_{n}\right\} \vee d \mapsto^{+} p_{0} \wedge p_{0} \not \mapsto^{+} d \quad n \geq 0
\end{gathered}
$$

$$
\varliminf_{i}^{9} \quad \prod_{i}^{9}
$$

1

$$
0
$$

$$
-
$$

-

-

$$
4 \text { - }
$$

a
=

Optimising the Thue-Morse Sequence

```
let \(x a b=b: z i p(x a b)(y a b)\)
    yst \(=s: z i p(y s t)(x s t)\)
    \(z i p(x: x s)(y: y s)=x: y: z i p x s y s\)
in \(x 01\)
```


Optimising the Thue-Morse Sequence

```
let \(x=1\) :zip \(x y\)
\[
y=0: z i p y x
\]
\[
z i p(x: x s)(y: y s)=x: y: z i p x s y s
\]
```

in x

－practical aspects
－implementation
－repetitive reduction patters in the wild：population census
－benchmarks
.
－analysis of effects for different run－time systems
－theoretical aspects
－HRS formulation
－domination after unfolding
－efficiency measure for comparing different results of optimisation
－interactions between optimisation of different parameter cycles
－correctness proof
－full paper


```
lation cenSuS
```

\qquad m er \qquad
 －

\qquad
－ r
路
\qquad
\qquad
\qquad er

Thanks

for your attention！
 艮

 4 른都
－

－
，
—

－ \square I ，
\qquad
\qquad

\square正

－
ـ
－

\square $+$ －
ny discussions，to： －

for your attentio

 （
$\qquad$$+$

Abstract

 0 D O $+$
and for inspiration，and many discussions，to：
－Doaitse Swierstra
－Vincent van Oostrom
－Vincent van Oostrom
－Vineent van ostom
－Vincent van Oostrom

[^6]－Doaitse Swierstra
\qquad
\qquad

－

1

元
\qquad
\square
\qquad
－
－
$+$
\square
a
$+$
\qquad
\qquad
\qquad
\qquad
卦

震 \qquad
，

\qquad
\qquad
\qquad
\qquad
\qquad

```
－
```\(\rightarrow+\)

\footnotetext{

}
```

，

```

```

```
\(\qquad\)```

[^0]: －

[^1]: let repeat $=\lambda x \cdot x:$ repeat x
 let repeat $=\lambda x \cdot x:$ repeat x
 in $3:$ repeat 3

 $$
 \text { repeat } 3
 $$

[^2]: \square

[^3]: eles,

 Rochel, Grabmayer

[^4]: \square

[^5]: 4

[^6]: m
 oaitse Swierstra
 \square
 $\square-$

 Doaitse Swierstra

