
Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 1

Avoiding Repetitive Reduction Patterns
in Lambda Calculus with letrec

(Work In Progress)

Jan Rochel and Clemens Grabmayer

Dept. of Computer Science, and Dept. of Philosophy

NWO-project Realising Optimal Sharing

Utrecht University

TERMGRAPH 2011
Saarbrücken, April 2nd

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 2

In this talk

We report on:

◮ an optimising transformation for λ-calculus with letrec

◮ by which i.p. the cyclic passing on of unchanged arguments during
evaluation can often be prevented

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 3

In this talk

We report on:

◮ an optimising transformation for λ-calculus with letrec

◮ by which i.p. the cyclic passing on of unchanged arguments during
evaluation can often be prevented

Examples:

◮ Haskell functions repeat , replicate, ++, map, until

◮ a specification of the Thue–Morse sequence

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 4

In this talk

We report on:

◮ an optimising transformation for λ-calculus with letrec

◮ by which i.p. the cyclic passing on of unchanged arguments during
evaluation can often be prevented

Examples:

◮ Haskell functions repeat , replicate, ++, map, until

◮ a specification of the Thue–Morse sequence

Concepts used:

◮ visible/concealed redexes

◮ generalised β-reduction

◮ domination in digraphs

◮ static analysis of cyclically reappearing redexes

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 5

λ-Terms and λ-Trees

T ::= V (variable)
| T T (application)
| λV .T (abstraction)

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 6

λ-Terms and λ-Trees

T ::= V (variable)
| T T (application)
| λV .T (abstraction)

(λx .g (f x)) 3

@

λx

@

g @

f x

3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 7

β-Reduction

(λx .M) N →β M[x := N]

(λx .g (f x)) 3 →β g (f 3)

@

λx

@

g @

f x

3
→β

@

g @

f 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 8

letrec-Terms and λ-Graphs

T ::= V (variable)
| T T (application)
| λV .T (abstraction)
| f (T , . . . ,T) (primitive functions)
| let Defs in T (letrec)

Defs ::= v1 = T . . . vn = T (equations)
(v1, . . . ,vn distinct variables)

let repeat = λx.x : repeat x
in repeat

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 9

letrec-Terms and λ-Graphs

T ::= V (variable)
| T T (application)
| λV .T (abstraction)
| f (T , . . . ,T) (primitive functions)
| let Defs in T (letrec)

Defs ::= v1 = T . . . vn = T (equations)
(v1, . . . ,vn distinct variables)

let repeat = λx.x : repeat x
in repeat

λx

:

x @

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 10

repeat

let repeat = λx.x : repeat x
in repeat

λx

:

x @

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 11

repeat

let repeat = λx.x : repeat x
in repeat

λx

:

x @

x

→▽

λx

:

x @

x

λx

:

x @

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 12

repeat

let repeat = λx.x : repeat x
in repeat

λx

:

x @

x

։▽

λx

:

x @

x

λx

:

x @

x

λx

:

x @

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 13

repeat

let repeat = λx.x : repeat x
in repeat

λx

:

x @

x

։։▽

λx

:

x @

λx

:

x @

... x

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 14

Visible and concealed redexes

@

λx

@

g @

@

λy

y

x

3

Common practice in existing compilers:

◮ Exhaustive reduction of visible redexes

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 15

Visible and concealed redexes

@

λx

@

g @

@

λy

y

x

3

→β

@

λx

@

g @

x

3

Common practice in existing compilers:

◮ Exhaustive reduction of visible redexes

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 16

Visible and concealed redexes

@

λx

@

g @

@

λy

y

x

3

→β

@

g

x

3

Common practice in existing compilers:

◮ Exhaustive reduction of visible redexes

◮ This is in general not possible for concealed redexes

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 17

repeat 3

λx

:

x @

x

@

3

let repeat = λx.x : repeat x
in repeat 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 18

→▽

:

x @

x

λx

:

x @

x

@

λx 3

let repeat = λx.x : repeat x
in (λx.x : repeat x) 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 19

:

x @

x

λx

:

x @

x

@

λx 3

let repeat = λx.x : repeat x
in (λx.x : repeat x) 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 20

→β

:

3 @

3

λx

:

x @

x

let repeat = λx.x : repeat x
in 3 : repeat 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 21

→▽

:

3 @

3

:

x @

x

λx

:

x @

x

λx

let repeat = λx.x : repeat x
in 3 : (λx.x : repeat x) 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 22

:

3 @

3

:

x @

x

λx

:

x @

x

λx

let repeat = λx.x : repeat x
in 3 : (λx.x : repeat x) 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 23

→β

λx

:

x @

x

:

3 :

3 @

3 let repeat = λx.x : repeat x
in 3 : 3 : repeat 3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 24

։։▽,β

:

3 :

3 :

3
...

3 : 3 : ...

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 25

ևև▽

:

3

let rec = 3 : rec in rec

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 26

→▽

:

3

:

3

let rec = 3 : rec in 3 : rec

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 27

→▽

:

3 :

3

:

3

let rec = 3 : rec in 3 : 3 : rec

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 28

repeat 3

λx

:

x @

x

@

3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 29

repeat 3

λx

:

x @

x

@

3

։։▽

@

λx

:

x @

λx

:

x @

... x

x

3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 30

repeat 3

λx

:

x @

x

@

3

։։▽

@

λx

:

x @

λx

:

x @

... x

x

3

։։β

:

3 :

3 :

3
...

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 31

repeat 3

λx

:

x @

x

@

3

։։▽

@

λx

:

x @

λx

:

x @

... x

x

3

։։β

:

3 :

3 :

3
...

ևև▽
:

3

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 32

repeat

λx

:

x @

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 33

repeat

λx

:

x @

x

։։▽

λx

:

x @

λx

:

x @

... x

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 34

repeat

λx

:

x @

x

։։▽

λx

:

x @

λx

:

x @

... x

x
։։β

λx

:

x :

x
...

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 35

repeat

λx

:

x @

x

։։▽

λx

:

x @

λx

:

x @

... x

x
։։β

λx

:

x :

x
...

ևև▽

λx

:

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 36

Optimising repeat

let repeat = λx.x : repeat x
in repeat

λx

:

x @

x

=∞
▽,β

λx

:

x

let repeat = λx.let xs = x : xs in xs
in repeat

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 37

Operational equivalence I

Used here:
=∞
▽,β = (ևև▽ ∪ևևβ ∪։։β ∪։։▽)

∗

as notion of operational equivalence.

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 38

replicate

replicate 0 x = []
replicate n x = x : replicate (n−1) x

replicate n x = let rec 0 = []
rec n = x : rec (n−1)

in rec n

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 39

replicate – generalised β-reduction

λn

λx

:

x @

@

−

n 1

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 40

replicate – generalised β-reduction

λn

λx

:

x @

@

−

n 1

x

։։▽

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 41

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 42

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 43

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

→β

@

@

λy

λz

@

z y

s

r

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 44

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

→β

@

@

λy

λz

@

z y

s

r

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 45

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

→β

@

@

λy

λz

@

z y

s

r

→β

@

λz

@

z s

r

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 46

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

→β

@

@

λy

λz

@

z y

s

r

→β

@

λz

@

z s

r →β @

r s

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 47

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

։β @

r s

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 48

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

։β @

r s

←β

@

λy

@

r y

s

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 49

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

։β @

r s

←β

@

λy

@

r y

s ←β

@

λx

@

λy

@

r y

x

s

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 50

Generalised β-Reduction

@

@

λx

@

λy

λz

@

z y

x

s

r

→gβ

@

λx

@

λy

@

r y

x

s

→gβ ⊆ ։β .→β .ևβ ⊆ ↔∗β

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 51

replicate – duplication of the function body

λn

λx

:

x @

@

−

n 1

x

։։▽

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 52

replicate – duplication of the function body

λn

λx

:

x @

@

−

n 1

x

։։▽

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

։։gβ

λn

λx

:

x @

λn

:

x @

λn

:

x @

... −

n 1

−

n 1

−

n 1

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 53

replicate – duplication of the function body

λn

λx

:

x @

@

−

n 1

x

։։▽

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

։։gβ

λn

λx

:

x @

λn

:

x @

λn

:

x @

... −

n 1

−

n 1

−

n 1
ևև▽

λn

λx

:

x @

λn

:

x @

−

n 1

−

n 1

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 54

replicate – header trick

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 55

replicate – header trick

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

ևη
ևβ

λn

λx

@

@

λn

λx

:

x @

@

λn

λx

...

−

n 1

x

n

x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 56

replicate – header trick

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

ևη
ևβ

λn

λx

@

@

λn

λx

:

x @

@

λn

λx

...

−

n 1

x

n

x

։։gβ

λn

λx

@

λn

:

x @

λn

:

x @

λn

...

−

n 1

−

n 1

n

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 57

replicate – header trick

λn

λx

:

x @

@

λn

λx

:

x @

@

... −

n 1

x

−

n 1

x

ևη
ևβ

λn

λx

@

@

λn

λx

:

x @

@

λn

λx

...

−

n 1

x

n

x

։։gβ

λn

λx

@

λn

:

x @

λn

:

x @

λn

...

−

n 1

−

n 1

n

ևև▽

λn

λx

@

λn

:

x @

−

n 1

n

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 58

Operational equivalence II

◮ gβ-Convertibility:

=∞
▽,gβ := (ևև▽ ∪ևևgβ ∪։։gβ ∪։։▽)

∗

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 59

Rewrite Rule Formulation

f = λx1. ...λxn.λy.C [f t1 ... tn y]

→

f = λx1. ...λxn.λy.
let f ′ = λx1. ...λxn.C [f ′ t1 ... tn]
in f ′ x1 ... xn

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 60

Rewriting repeat

let repeat = λx.x : repeat x
in repeat

→

let repeat = λx.let xs = x : xs in xs
in repeat

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 61

Rewriting replicate

replicate 0 x = []
replicate n x = x : replicate (n−1) x

→

replicate n x = let rec 0 = []
rec n = x : rec (n−1)

in rec n

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 62

Rewriting append

(++) [] ys = ys
(++) (x : xs) ys = x : xs++ ys

→

(++) xs ys = let rec [] = ys
rec (x : xs) = x : rec xs

in rec xs

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 63

Rewriting map

map [] = []
map f (x : xs) = f x : map f xs

→

map f = let rec [] = []
rec (x : xs) = f x : rec xs

in rec

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 64

Rewriting until

until p f x = if p x then x else until p f (f x)

→

until p f x = let rec x = if p x then x else rec (f x)
in rec x

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 65

Rewriting the Thue-Morse Sequence

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

→

let x a b = let x′ = b : zip x′ (y a b) in x′

y s t = let y′ = s : zip y′ (x s t) in y′

zip (x : xs) (y : ys) = x : y : zip xs ys
in x 0 1

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 66

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 67

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 68

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 69

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 70

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 71

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 72

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 73

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 74

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 75

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 76

Binding-Graph Method

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

Binding relation: b ⊆ S×S

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 77

Strong domination

Strong domination:
sdomG(d ,w) :=

∀p0 ֌ . . .֌ pn = v n ≥ 0

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 78

Strong domination

Strong domination:
sdomG(d ,w) :=

∀p0 ֌ . . .֌ pn = v : d ∈ {p0, . . . ,pn} n ≥ 0

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 79

Strong domination

Strong domination:
sdomG(d ,w) :=

∀p0 ֌ . . .֌ pn = v : d ∈ {p0, . . . ,pn}∨d֌+p0∧p0 6֌
+d n ≥ 0

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 80

Optimising the Thue-Morse Sequence

let x a b = b : zip (x a b) (y a b)
y s t = s : zip (y s t) (x s t)
zip (x : xs) (y : ys) = x : y : zip xs ys

in x 0 1

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 81

Optimising the Thue-Morse Sequence

let x = 1 : zip x y
y = 0 : zip y x
zip (x : xs) (y : ys) = x : y : zip xs ys

in x

0 a b 1

s t

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 82

Current Plans

◮ practical aspects
◮ implementation
◮ repetitive reduction patters in the wild: population census
◮ benchmarks
◮ analysis of effects for different run-time systems

◮ theoretical aspects
◮ HRS formulation
◮ domination after unfolding
◮ efficiency measure for comparing different results of optimisation
◮ interactions between optimisation of different parameter cycles
◮ correctness proof

◮ full paper

Rochel, Grabmayer Avoiding Repetitive Reduction Patterns in λletrec 83

Thanks

for your attention!

and for inspiration, and many discussions, to:

◮ Doaitse Swierstra

◮ Vincent van Oostrom

