Avoiding Repetitive Reduction Patterns in Lambda Calculus with letrec

(Work In Progress)

Jan Rochel and Clemens Grabmayer

Dept. of Computer Science, and Dept. of Philosophy NWO-project *Realising Optimal Sharing* Utrecht University

TERMGRAPH 2011 Saarbrücken, April 2nd

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

In this talk

We report on:

- an optimising transformation for λ -calculus with letrec
- by which i.p. the cyclic passing on of unchanged arguments during evaluation can often be prevented

In this talk

We report on:

- an optimising transformation for λ -calculus with letrec
- by which i.p. the cyclic passing on of unchanged arguments during evaluation can often be prevented

Examples:

- ▶ Haskell functions repeat, replicate, ++, map, until
- a specification of the Thue–Morse sequence

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

In this talk

We report on:

- an optimising transformation for λ -calculus with letrec
- by which i.p. the cyclic passing on of unchanged arguments during evaluation can often be prevented

Examples:

- ▶ Haskell functions repeat, replicate, ++, map, until
- a specification of the Thue–Morse sequence

Concepts used:

- visible/concealed redexes
- generalised β-reduction
- domination in digraphs
- static analysis of cyclically reappearing redexes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

λ -Terms and λ -Trees

・ロト・日本・ キャー モー うくぐ

λ -Terms and λ -Trees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

β -Reduction

$$(\lambda x.M) N \rightarrow_{\beta} M[x := N]$$

・ロト・日本・日本・日本・日本・日本

letrec-Terms and $\lambda\text{-}Graphs$

$$T ::= V (variable)
| T T (application)
| $\lambda V.T (abstraction)
| f(T,...,T) (primitive functions)
| let Defs in T (letrec)
Defs ::= v_1 = T ... v_n = T (equations)
 (v_1,...,v_n distinct variables)$$$

let
$$repeat = \lambda x.x$$
: $repeat x$
in $repeat$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

letrec-Terms and λ -Graphs

$$T ::= V$$
(variable)

$$| T T$$
(application)

$$| \lambda V.T$$
(abstraction)

$$| f(T,...,T)$$
(primitive functions)

$$| let Defs in T$$
(letrec)

$$Defs ::= v_1 = T ... v_n = T$$
(equations)

$$(v_1,...,v_n \text{ distinct variables})$$

let *repeat* =
$$\lambda x.x$$
 : *repeat* x
in *repeat*

ヘロト 人間 ト 人造 ト 人造 トー

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

repeat

let $repeat = \lambda x.x$: repeat x**in** repeat

x

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

ヘロト 人間 とくほとくほとう

æ

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

Visible and concealed redexes

Common practice in existing compilers:

Exhaustive reduction of visible redexes

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

Visible and concealed redexes

Common practice in existing compilers:

Exhaustive reduction of visible redexes

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

Visible and concealed redexes

Common practice in existing compilers:

- Exhaustive reduction of visible redexes
- This is in general not possible for concealed redexes

let $repeat = \lambda x.x$: repeat x**in** repeat 3

 \rightarrow_{∇}

let $repeat = \lambda x.x$: repeat x**in** $(\lambda x.x: repeat x)$ 3

let $repeat = \lambda x.x$: repeat x**in** $(\lambda x.x: repeat x)$ 3

let $repeat = \lambda x.x$: repeat x**in** 3 : repeat 3

let $repeat = \lambda x.x$: repeat x**in** 3: $(\lambda x.x: repeat x)$ 3

let $repeat = \lambda x.x$: repeat xin 3: $(\lambda x.x$: repeat x) 3

let $repeat = \lambda x.x$: repeat x**in** 3 : 3 : repeat 3

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

let rec = 3: rec in rec

let rec = 3: rec in 3: rec

・ロト・日本・ キャー モー うくぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

・ロト・日本・ キャー モー うくぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

repeat 3

◆□ > ◆檀 > ◆臣 > ◆臣 >

æ

・ロト・日本・ キャー モー うくぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

repeat

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Optimising repeat

let *repeat* = $\lambda x.x$: *repeat* x **in** *repeat*

let $repeat = \lambda x$.let xs = x: xs in xs in repeat

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Operational equivalence I

Used here:

$$=_{\nabla,\beta}^{\infty} = (\underset{\nabla}{\overset{\dots}{\rightarrow}} \cup \underset{\beta}{\overset{\dots}{\rightarrow}} \cup \underset{\nabla}{\overset{\dots}{\rightarrow}})^*$$

as notion of operational equivalence.

replicate

replicate
$$0 x = []$$

replicate $n x = x$: replicate $(n-1) x$

replicate
$$n x =$$
let $rec 0 = []$
 $rec n = x : rec (n-1)$
in $rec n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

replicate – generalised β -reduction

・ロト ・聞ト ・ヨト ・ヨト

æ

replicate – generalised β -reduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

ヘロト 人間 とくほ とくほ とう

æ

・ロト ・聞ト ・ヨト ・ヨト

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

・ロト ・聞 ト ・ ヨト ・ ヨト

500

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

replicate – duplication of the function body

replicate - duplication of the function body

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

replicate – duplication of the function body

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

replicate - header trick

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

55

replicate - header trick

replicate – header trick

replicate – header trick

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

Operational equivalence II

gβ-Convertibility:

$$=_{\nabla,g\beta}^{\infty} := (\underbrace{ \langle \langle -_{\nabla} \cup \langle \langle -_{g\beta} \cup \neg \rangle \rangle }_{g\beta} \cup \neg \rangle)^*$$

Rewrite Rule Formulation

$$f = \lambda x_1 \dots \lambda x_n . \lambda y . C [f t_1 \dots t_n y]$$

$$\rightarrow$$

$$f = \lambda x_1 \dots \lambda x_n . \lambda y.$$

$$\mathbf{let} f' = \lambda x_1 \dots \lambda x_n . C [f' t_1 \dots t_n]$$

$$\mathbf{in} f' x_1 \dots x_n$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rewriting repeat

 \rightarrow

let $repeat = \lambda x.x$: repeat x**in** repeat

let $repeat = \lambda x$.let xs = x: xs in xs in repeat

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Rewriting replicate

 \rightarrow

replicate
$$0 x = []$$

replicate $n x = x$: replicate $(n-1) x$

replicate
$$n x =$$
let $rec 0 = []$
 $rec n = x : rec (n-1)$
in $rec n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rewriting append

$$(++) [] ys = ys$$

$$(++) (x:xs) ys = x:xs ++ ys$$

$$(++) xs ys = let rec [] = ys$$

$$rec (x:xs) = x:rec xs$$
in rec xs

Rewriting *map*

$$map _ [] = []$$

$$map f (x:xs) = f x:map f xs$$

$$\rightarrow$$

$$map f = let rec [] = []$$

$$rec (x:xs) = f x:rec xs$$
in rec

Rewriting until

until p f x = if p x then x else *until* p f (f x)

\rightarrow

until p f x = **let** *rec x* = **if** *p x* **then** *x* **else** *rec* (*f x*) **in** *rec x*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Rewriting the Thue-Morse Sequence

 \rightarrow

let
$$x a b = b$$
: $zip (x a b) (y a b)$
 $y s t = s$: $zip (y s t) (x s t)$
 $zip (x:xs) (y:ys) = x: y: zip xs ys$
in $x 0 1$

let
$$x \ a \ b =$$
 let $x' = b : zip \ x' \ (y \ a \ b)$ in x'
 $y \ s \ t =$ let $y' = s : zip \ y' \ (x \ s \ t)$ in y'
 $zip \ (x : xs) \ (y : ys) = x : y : zip \ xs \ ys$
in $x \ 0 \ 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

let
$$x \ a \ b = b : zip \ (x \ a \ b) \ (y \ a \ b)$$

 $y \ s \ t = s : zip \ (y \ s \ t) \ (x \ s \ t)$
 $zip \ (x : xs) \ (y : ys) = x : y : zip \ xs \ ys$
in $x \ 0 \ 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

let
$$x \ a \ b = b : zip (x \ a \ b) (y \ a \ b)$$

 $y \ s \ t = s : zip (y \ s \ t) (x \ s \ t)$
 $zip (x : xs) (y : ys) = x : y : zip xs ys$
in $x \ 0 \ 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

let
$$x a b = b : zip (x a b) (y a b)$$

 $y s t = s : zip (y s t) (x s t)$
 $zip (x : xs) (y : ys) = x : y : zip xs ys$
in $x 0 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

let
$$x a b = b : zip (x a b) (y a b)$$

 $y s t = s : zip (y s t) (x s t)$
 $zip (x : xs) (y : ys) = x : y : zip xs ys$
in $x 0 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

let
$$x \ a \ b = b : zip \ (x \ a \ b) \ (y \ a \ b)$$

 $y \ s \ t = s : zip \ (y \ s \ t) \ (x \ s \ t)$
 $zip \ (x : xs) \ (y : ys) = x : y : zip \ xs \ ys$
in $x \ 0 \ 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Binding-Graph Method

Strong domination

Strong domination:

 $sdom_G(d, w) :=$

$$\forall p_0 \rightarrow \ldots \rightarrow p_n = v$$

 $n \ge 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Strong domination

Strong domination:

$$sdom_G(d, w) :=$$

$$\forall p_0 \rightarrowtail \ldots \rightarrowtail p_n = v : d \in \{p_0, \ldots, p_n\} \qquad n \ge 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Strong domination

Strong domination:

 $sdom_G(d, w) :=$ $\forall p_0 \rightarrowtail \ldots \rightarrowtail p_n = v : d \in \{p_0, \ldots, p_n\} \lor d \rightarrowtail^+ p_0 \land p_0 \not\rightarrowtail^+ d \quad n \ge 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Optimising the Thue-Morse Sequence

let
$$x a b = b: zip (x a b) (y a b)$$

 $y s t = s: zip (y s t) (x s t)$
 $zip (x:xs) (y:ys) = x: y: zip xs ys$
in $x 0 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Optimising the Thue-Morse Sequence

let
$$x = 1$$
: $zip x y$
 $y = 0$: $zip y x$
 $zip (x:xs) (y:ys) = x: y: zip xs ys$
in x

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Current Plans

practical aspects

- implementation
- repetitive reduction patters in the wild: population census
- benchmarks
- analysis of effects for different run-time systems
- theoretical aspects
 - HRS formulation
 - domination after unfolding
 - efficiency measure for comparing different results of optimisation
 - interactions between optimisation of different parameter cycles
 - correctness proof
- full paper

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Thanks

for your attention!

and for inspiration, and many discussions, to:

- Doaitse Swierstra
- Vincent van Oostrom

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥