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Abstract

In this note we discuss some issues concerning a geometric approach to process alge-
bra. We mainly raise questions and are not yet able to present significant answers.

1 Periodic Processes
Our point of departure is the axiom system AC� in Table 1 together with guarded recursion.
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Table 1: AC� (Basic Process Algebra)

We are in particular interested in non-linear recursion, where products of recursion variables
are allowed, in contrast with linear recursion exemplified by }X|X + aY) b. Y + cX) dY〉
yielding only regular (finite-state) processes. Non-linear recursion also allows infinite-state
processes, such as the counter }C|C + uDC. D + uDD) d〉 (with actions u, d for “up” and
“down”) or the process Stack that is definable by the infinite set of linear recursion equations
over AC� (cf. the left-hand side of Table 2), and more remarkably, by the finite set of non-
linear recursion equations (cf. the right-hand side of Table 2).

This simple framework is already rich in structure. In [1] this framework was linked with
context-free grammars (CFG’s), in particular with those in (restricted) Greibach normal form.
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Sλ + 0�S0 )1�S1
Sdσ + 0�S0dσ )1�S1dσ )d�Sσ
(for d + 0 or d + 1, and any string σ )

S + T�S
T + 0�T0 )1�T1
T0 + 0)T�T0
T1 + 1)T�T1

Table 2: Stack, an infinite linear and a finite non-linear AC�-specification

There the fact was established that while the language equality problem for CFG’s is unsolv-
able, the process equality problem for CFG’s is solvable. A priori this is not implausible,
because a process has much more inner ‘structure’ than a language (the set of its finite ter-
minating traces). The decidability was demonstrated by Baeten, Bergstra, and Klop in [1] as
a corollary of a result concerning the periodical geometry or topology of the corresponding
process graph. In Figure 1 the periodicities of two examples are exhibited: of Stack on the
left-hand side, and of the process }X|X + bY) dZ. Y + b) bX) dYY. Z + d) dX) dZZ〉
on the right-hand side (this graph repeats three finite graph fragments � , β and γ as is also
illustrated in Figure 2 below).
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Figure 1: Tree-like periodic processes

The geometric proof in [1] is complicated. For the corollary of the decidability more
stream-lined approaches have subsequently been found by using tableaux methods and other
arguments (cf. Caucal in [7], Hüttel and Stirling in [11], and Groote in [10]). Also, the geo-
metric aspects have been studied, for example by Caucal in [8] and by Burkart, Caucal, and
Steffen in [5]. Actually, the related notion of context-free graph was introduced by Muller and
Schupp [12] already in 1985.

We feel that there is still much to be explained about the geometric aspects of process
graphs. We present a question concerning the fact that periodic graphs in AC� come in two
kinds: ‘linear’ graphs as on the left-hand side, and ‘branching’ graphs as on the right-hand
side in Figure 2.

Question 1 Is it decidable whether a system E of equations (in Greibach normal form) yields
a linear (type I) or a branching (type II) graph?
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Figure 2: ‘Linear’ periodic graphs (type I, left), ‘branching’ periodic graphs (type II, right)

Another graph of type II is the ‘butterfly’ process graph in Figure 3 of the recursive AC�-
specification }X|X + a) bY) fXY. Y + cX) dZ. Z + gX) eXZ〉. The relevance of the
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Figure 3: A ‘butterfly’ process graph.

distinction between type I and type II graphs is made clear below, in order to show that certain
graphs are not of type I or type II.

In the study of AC�-definable graphs an important property is that of being “normed”.
A graph is normed if from every node in it there is a path to a terminating node. (In term
rewriting terminology this is called the weak normalization property WN.) The norm of a
node is then the minimum number of steps to termination. Originally, the decidability of
context-free processes (AC�-definable processes) was established in [1] only for the normed
case. Subsequently this was generalized by Christensen, Hüttel, and Stirling in [9] to all
AC�-definable processes.

Note that the norm of a node in a process graph is preserved under bisimulation: if norms
are pictorially represented by drawing the process graph with horizontal ‘level’ lines, arrang-
ing points with the same norm on the same level (see the graph left in Figure 2 and the graph

120



in Figure 3), then bisimulations relate only points on horizontal lines. Collapsing a normed
graph to its canonical form is a compression in horizontal direction.

An important question is whether AC�-definable processes are closed under minimization
(i.e. under compressing a graph such that it is minimal under bisimulation; the resulting graph
is also called the “canonical” graph). The question whether such a statement does in fact
hold was left open in [1]. Making a graph canonical can alter its geometry considerably.
For instance, consider the counter C mentioned above. The process graph g of C is a linear
sequence of nodes C.DC.DDC. � � � connected by u-steps to the right and d-steps to the left.
The merge C|C in the process algebra C� has a grid-like graph similar to that of the process
Bag on the left side in Figure 6 below. But if we collapse this graph g for C|C to its canonical
form by identifying the bisimilar nodes on diagonal lines, we obtain again the graph g for C.
So a grid may collapse to a linear graph.

Normedness plays a part when graphs are compressed to their canonical form. In [5]
Burkart, Caucal, and Steffen give the following example of a AC�-graph that after compres-
sion to canonical form no longer is a AC�-graph: For the process with recursive definition
}Z|Z + aAZ) cD. A + aAA) cD) b. D + dD〉 in AC�, the graph on the left in Figure 4 is
its associated AC�-process graph, while the graph on the right is the respective minimization,
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Figure 4: Counterexample against the preservation of AC�-graphs under minimization.

which does not have the periodical structure of a AC�-graph. Note that neither of these graphs
is normed.

Question 2 How can those BPA-graphs be characterized whose canonical graphs are again
AC�-graphs?

We note that Question 2 has already received quite some attention in Caucal’s work. Con-
trasting with the counterexample for the unnormed case given above, in [7] he has shown the
following theorem.

Theorem 1 (Caucal, 1990) The class of normed AC�-graphs is closed under minimization.

The (obvious) link between CFG’s and AC�-definable processes was first mentioned in
[1]. An example is the graph on the right in Figure 1 and in Figure 2 above: it determines as
context-free language (CFL) the language of words having equal numbers of letter b and d.
An intriguing question is the following.

Question 3 How does the classical pumping lemma for CFL’s relate to the periodicity present
in AC�-definable processes?
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Figure 5: The language L.

Another interesting observation, due to
H.P. Barendregt, is the following. It is well-
known that the language L + {anbncn|n ≥ 0{
is not a CFL. This language can be obtained
as the set of finite traces of the triangular, in-
finite, minimal graph in Figure 5. Intuitively
it is obvious that this graph is not tree-like pe-
riodic. This leads to the next question.

Question 4 Can the fact that the graph in Figure 5
is not a AC�-graph (when established rigorously)
be used to conclude that L is not a CFL, applying
the correspondence between CFL’s and definability
in AC� as well as the ensuing tree-like periodicity?

2 Non-definability of Bag in AB�
The expressiveness of the operations defined by the axioms of AC� is limited; basically only
sequential processes can be defined. The axiom system C� is an extension of AC� with
axioms for the merge | (interleaving) and the auxiliary operator | (left merge). In C� we
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Figure 6: The minimal process graphs of the process Bag (on the left-hand side), and of a
terminating variant Bagt of Bag (on the right-hand side).

have a succinct recursive definition for the process Bag (over data {0.1{) as follows:

B+ 0�0|B()1�1|B(�

It has been proved by Bergstra and Klop in [3] that the process Bag cannot be defined by
means of a finite recursive specification over AC�. Considering the minimal process graph
for it in Figure 6, this does not come as a surprise: it is not tree-like, but “grid-like”. Below
we give an alternative proof of this fact.
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Theorem 2 (Bergstra, Klop, 1984) Bag is not AC�-definable.

Proof (Sketch). Suppose that the process Bag is AC�-definable. Then there exists a recursive
specification E in AC� such that Bag is bisimilar with a tree-like periodic graph g�E( as
defined by Baeten, Bergstra, and Klop in [1]. Then g�E( is a “BPA-graph” according to the
terminology used in [5].1

In [5] Burkart, Caucal, and Steffen have shown that, for every AC�-graph G, the canonical
graph of G is a “pattern graph”, which means that it can be generated from a finite (hy-
per)graph by a reduction sequence of length ω according to a deterministic (hypergraph)
grammar.2 Since Bag is itself a canonical graph and since therefore Bag is the canonical
graph of the AC�-graph g�E(, it follows that Bag is a pattern graph.

A theorem due to Caucal in [8] states that all (rooted) pattern graphs of finite degree are
“context-free” according to the definition of Muller and Schupp in [12].3 It follows that Bag is
context-free. However, it is not difficult to verify that Bag is actually not a context-free graph
according to the definition in [12].

In this way we have arrived at a contradiction with our assumption that Bag is definable in
AC�. �

By using Caucal’s theorem, Theorem 1, it is also possible to establish quickly the non-
definability in AC� of many normed graphs. For example, for the terminating version Bagt of
Bag (where Bagt is normed) with the process graph on the right in Figure 6, it can be reasoned
as follows. This graph is canonical, so if it were AC�-definable, then it would be a graph of
type I or type II. However, for a type I graph it holds that the number of nodes in a sphere
B�s.ρ(, where s is the center and ρ is the radius, depends linearly on ρ; for a type II graph this
dependance is of exponential form. But for the graph under consideration the number of nodes
in a ball B�s.ρ( only depends quadratically on ρ . Hence this graph is not AC�-definable.

Where do we need the preservation of AC�-definability under minimization? The process
graph of Bagt is clearly not one obtainable by a AC�-definition, as it is not of type I or type II.
But equality of processes is considered here modulo bisimulation—so it is not inconceivable
that there is a BPA-definition E of Bagt such that g�E( after compression to canonical form
can�g�E(( were just the process graph graph�Bagt( for Bagt on the right in Figure 6. So
can�g�E(( + graph�Bagt( holds. But with the preservation property, Theorem 1, we have
can�g�E(( + g�E ′( for some AC�-specification E ′, hence g�E ′(, and therefore graph�Bagt(,
are of type I or type II, quod non.

1In earlier papers of Caucal (e.g. in [6] and [8]) BPA-graphs were known under the name “alphabetic graphs”.
2“Pattern graphs” according to this definition used by Caucal and Montfort in [6] are called “regular graphs”

in the later paper [5] by Burkart, Caucal, and Steffen. Because the use of the attribute “regular” for process
graphs could lead to wrong associations, we avoid this terminology from (hyper)graph rewriting here.

3Note that the class of “context-free” graphs in Muller and Schupp’s definition does not coincide with the
graphs associated with “context-free” processes (the class of AB�-graphs), but that it forms a strictly richer class
of graphs corresponding to the class of transition graphs of push-down automata.
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3 The strange geometry of Queue
After the paradigm processes Stack and Bag, we now turn to the third paradigm process
Queue (the first-in-first-out version with unbounded capacity). Table 3 gives the infinite AC�-
specification.

Q+ Qλ + ∑d∈D r1�d( �Qd
Qσd + s2�d( �Qσ )∑e∈D r1�e( �Qeσd
(for d ∈ D, and σ ∈ D·)

Table 3: Queue, infinite AC�-specification

As before, the endeavour is to specify Queue in a finite way. It was proved by Bergstra
and Tiuryn [4] that the system AC� is not sufficient for that; in fact, they showed that Queue
cannot even be defined in �BC with handshaking communication (see [2] for a complete
treatment of the axiom system �BC). But Queue has a finite recursive specification in �BC
with renaming operators (see Table 4, the specification is originally due to Hoare using the
‘chaining’-operation).

Q+ ∑d∈D r1�d(�ρc3→s2 ◦∂H(�ρs2→s3�Q(| s2�d( �Z(
Z+ ∑d∈D r3�d( �Z

Table 4: Queue, finite �BC-specification with renaming

An ambitious question is the following.

Question 5 Is there a geometric (topological) property of processes definable by handshaking
communication?

Finally, we turn to geometric properties of the process Queue. Surprisingly, it is unex-
pectedly problematic to draw the process graph of Queue in a ‘neat’ way (cf. also Figure 7),
similar to Stack and Bag. We would like to uncover the ‘deep’ reason for this difficulty.

Question 6 Is it possible to fit g�Queue( in the binary tree space?
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Abstract

We sketch the language mCRL2, the successor of µCRL, which is a process algebra with data,
devised in 1990 to model and study the behaviour of interacting programs and systems. The
language is improved in several respects guided by the experience obtained from numerous appli-
cations where realistic systems have been modelled and analysed. Just as with µCRL, the leading
principle is to provide a minimal set of primitives that allow effective specifications, that conform
to standard mathematics and that allow standard mathematical manipulations and proof method-
ologies. In the first place the equational abstract datatypes have been enhanced with higher-order
constructs and standard data types, ranging from booleans, numbers and lists to sets, bags and
higher-order function types. In the second place multi-actions have been introduced to allow a
seamless integration with Petri nets. In the last place communication is made local to enable
compositionality.

1 The history of �CRL

In an attempt to construct a language to which all existing specification languages could be translated,
a common representation language (CRL) was constructed in an EC funded project called SPECS.
This language became a monstrum for which is was impossible to device a coherent semantics, let
alone to be used as a basis for further theory or tool building.

Upon these findings, in 1990 a minimal language called µCRL (micro Common Representation
Language) came into being as the simplest conceivable language to model realistic systems. The
language is a process algebra with data. The data is specified using first-order equational logic which
was the norm at the time. Earlier developed languages such as LOTOS [2] and PSF [8] also contained
equational datatypes. However, µCRL was much simpler than these languages.

In the first research phase proof methodologies were developed to give mathematical proofs of dis-
tributed algorithms and protocols. A number of proof techniques have been uncovered such as cones
and foci, µ -confluence and coordinate transformations (see [6] for an overview). Many systems have
been verified using these techniques, but particularly noteworthy is the most complex sliding window
protocol in [9] (see [3]). Verification of this protocol led to the detection of an unknown deadlock in
the protocol, it showed that the external behaviour of the original protocol was prohibitively complex
and catalysed the development of many proof methodologies.

In the second research phase a toolset for µCRL was developed [1]. The primary motivation for
this was that industrial specifications quickly became far too large to be handled manually. Large
specifications, like ordinary programs, turned out to contain flaws such as deadlocks and tools were

1
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required to ensure the absence of anomalies. For plain verifications, the tool can handle systems with
more than 0+2 states. By using confluence, abstract interpretation and symbolic reasoning much larger
systems, containing hundreds of components have been verified. For half a decade the tool plays an
essential role in teaching the design of dependable systems at various universities.

2 Why must �CRL be changed?

It turns out to be impossible to design a complete specification language that is immediately right.
In [4] time was added to the language. Furthermore, constructors were added to the specification of
functions in the datatypes of µCRL to make the available induction principles explicit. And finally,
the possibility to specify an initial state of a process had to be added. As time passed it became more
and more obvious that the language would benefit from some more changes.

First of all changes were required in the abstract data types, although their expressive power
was more than sufficient. A relatively minor problem was that in µCRL all basic datatypes, such
as the naturals and the booleans had to be explicitly encoded. Much more serious was the negative
effect on interhuman communication of specifications. Different persons could give widely different
specifications of for instance the naturals. This meant that before getting to the gist of a specification,
first the specification of the naturals had to be understood. Furthermore, because all functions in
µCRL are prefix functions, standard notation, such as an infix + for addition on natural numbers could
not be used. This is not a problem for small specifications but seriously decreases the readability of
large ones.

In practice first-order abstract datatypes also discourage the use of higher-order objects, such as
functions, sets, relations and quantifiers. For instance sets are often modelled as finite lists. This tends
to make specifications more complex than necessary.

A strong argument against the use of bare abstract data types came from manually proving the
correctness of specifications. Given a specification, many elementary facts about the data are not self
evident and proving them draws away energy from the main task, namely finding the core correctness
argument for the protocol or distributed system under study. For an abstractly specified sort Nat, it
is not self evident that it indeed represents natural numbers in a true way. Hence, the truth of simple
identities had to be established using axioms and induction principles. For instance commutativity of
addition must be established separately for each specification of natural numbers. For tools, properties
like v < x ∧ x < y → v < y turned out a hurdle that was hard to overcome. By having standard data
types, dedicated integer linear programming techniques can be employed with which we can prove or
disprove the validity of inequality based formulas that are many orders of magnitude larger than the
one above. Actually, the µCRL toolset already made a number of silent assumptions about certain
data types (esp. the booleans) and certain functions (esp. it assumed that a function eq represented
equality). This enabled the development of a very effective equality BDD prover [5] but actually
violates the philosophy of abstract data types.

Despite these disadvantages, equational abstract data types were more than sufficiently expressive
for any data type that needed to be specified. As the structure of data is very simple, we could device
optimal algorithms to handle data with little effort. Repeated comparative experiments show that the
µCRL tool set contains the most efficient state exploration tools in terms of the number of states that
it can store in main memory. Comparing to for instance SPIN [7], the µCRL toolset is approximately
a factor 4 slower in dealing with abstractly specified bits and bytes, which are built-in data types in
SPIN.

Another issue that we ran into with µCRL is the relationship between different process specifi-

2
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Figure 1: A simple coloured Petri net

cation formalisms. We see three main streams. There are assertional specification formalisms, Petri
nets and process algebras. We would all benefit if these formalisms would be integrated. In the past
we did not find any difficulties relating assertional methods and µCRL. However with Petri nets we
ran into a problem. Consider the coloured Petri net in figure 1. There are two places H� and H1 and a
transition labeled with m1 in the middle. The tokens in this coloured Petri net contain natural numbers
and the transition squares the number in each token that it processes. The standard semantics of this
system is that a token atomically leaves H�, its value is squared and it is put in H1.

The natural structure preserving translation of this Petri net into process algebra is the parallel
process H� | S | H1. Using a standard synchronous communication a token can be read from H� into
S , and in a subsequent step be forwarded from S to H1. But now we have translated what was a single
atomic step into two atomic steps. This is bad for at least the two following reasons. In the first place
this innocent looking doubling of states increases the number of states worsening the severity of the
state explosion problem, which is one of the core problems we try to avoid. In the second place nice
properties about Petri nets, such as state invariants do not easily carry over when introducing such
intermediate states.

In order to avoid the introduction of such an intermediate state and still allow for direct structural
translations, we felt forced to introduce multi-actions. In a multi-action zero or more actions can occur
simultaneously. The typical notation is V}a}b for a multi-action in which actions V, a and b happen at
the same time. Now we can describe the transition in figure 1 by a process that reads a token with
value m and in the same multi-action delivers the token with a value m1. There is no straightforward
way to do this in µCRL.

Another problem occurs when describing complex systems with non-uniform communication. In
µCRL there is a global communication operator that is not compositional. To make the new language
compositional, we need to define it locally.

3 The mCRL2 language

The mCRL2 language is a movement back from the bare minimum concept of µCRL towards a
slightly richer language. Therefore, we propose to call it a milli Common Representation Language,
ormCRL. Experience has taught that though we have designed the language with utmost care, we may
still have made mistakes in its design and fundamentally new extensions such as stochastic or hybrid
behaviour may be added in the future. Hence, we added a version number to the name paving the
way for mCRL3, mCRL4, etc. to come. By the way, the name µCRL is not really suited for internet
because of the initial Greek letter.

3
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3.1 Data language

The mCRL2 data language uses higher-order abstract data types as a core theory. To this theory,
standard data types are added. We list these data types without further ado as they are commonly
known. All the common operators on these are made available in normal mathematical notation. In
order to get a quick idea, an expression using this datatype is provided.

• The sort � with constants true, false and all standard operators. It is also possible to use the
quantifiers ∀ and ∃ ranging over any datatype. E.g. a ∧ eSkrd ⇒ ∀m9B.m , 2.

• Unbounded positive, natural and integer numbers. Typical examples of expressions using num-
bers are 0� 353637362587657865 cdu duo(2. m(, rtbb(f( • m� 0 or v ;; v · v� 0.

• Function types. For two given sorts A and B the sort A→A contains all functions from domain
A to A. Function application and lambda abstraction are part of the language. E.g. let d ;
λv9B. a9�.he (a. v. 1 · v(. Then d(2. eSkrd( is equal to 5.

• Following functional languages, it is possible to declare structured types. These are especially
useful for enumerated data types and complex data structures such as for instance trees. A sort
MS of machine states can be declared by

rmosLN ; rsot�s n� } rsSmcax } rsSpshmf } ptmmhmf } apnidm:

The sort of binary trees with numbers as their leaves looks like

rmos S ; rsot�s kdSe (B( } mncd(S. S (:

It is possible to specify projection and recognition functions simultaneously, e.g.:

rmos S ; rsot�s kdSe (fdsmtladp 9B(=hrLdSe } mncd(kdes 9S. phfgs 9S (=hrMncd:

• Because lists are very commonly used datatypes, there is a built-in type of lists with standard
operations. The list of natural numbers is Lhrs(B(. The following list expressions are all equiv-
alent: ?2. 3. 4[, 2 ε ?3. 4[, ?2. 3[ & 4 and ?[++ ?2. 3[++ ?4[.

• Sets are very commonly used in mathematical specification, and as bags are a basic concept in
Petri nets, both have been included in the language. Sets are denoted in the normal mathematical
way. Typically, {0. 1. 3{, {0. 1{ ∪ {0. 3{ are sets. The set of primes is

{m9B } ∀f9B.(0 , f ∧f , m ⇒ m imc f < +( {.

• Bags are sets where the multiplicity of elements is recalled. For enumerations this count is
appended to each element, e.g. {+9+. 090. 193{. For comprehensions the boolean condition is
replaced by a natural number, e.g. {f9B } f1{ is the bag in which each number f occurs f1

times.

Currently, there are discussions about the inclusion of real numbers. As functions are available, it
is possible to represent real numbers. Moreover, this opens the way towards stochastic and hybrid
systems where functions from reals to reals play an important role. Another interesting concept is the
selector functions ε. The expression εv9P.b(v( equals a unique value v that satisfies condition b(v(.
It satisfies the axiom ∃v9P.b(v(⇒ b(εv9P.b(v((. These extensions may show up in mCRL3.
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3.2 Multi-actions and local communication

In order to facilitate the connection with Petri nets, multi-actions are introduced. A multi-action is
a collection of ordinary actions that happen at the same time. A few examples of multi-actions are
V. V}a. a}V. V}a}b. V}a}V and V(n(}a(t(}V(u(.

In mCRL2 parallel composition does not communicate. Instead, it introduces multi-actions, e.g.
the composition V | a of actions V. a is equal to V · a ) a · V ) V}a. As a result the number of multi-
actions can increase exponentially in the size of the number of parallel compositions. Hence, we also
need operators to restrict this behaviour. First of all we have the blocking operator >D (which was
called encapsulation in µCRL) that blocks all multi-actions of which a part occurs in the action set
B , e.g. >{V{(V ) a · (V }b(( ; a · �. On the other hand, we have the visibility operator ∇H called
allow that specifies precisely which multi-actions are allowed, namely the ones in T . For instance
∇{ V�a {(V | a( ; V · a) a · V, ∇{ V}a {(V | a( ; V}a. and ∇{ V�a}b {(V | a | b( ; V · (a}b( ) (a}b( · V.

Communication of actions is defined using the concept of multi-actions. The local communica-
tion operator �, realises communication of multi-actions with equal data arguments. Unlike µCRL,
communication does not block. For instance, if n ; t and n ⇒; u, then �{ V}a�b {(V(n(}a(t(( ; b(n(,
�{ V}a�b {(V(n(}a(u(( ; V(n(}a(u( and �{ V}a}b�c {(V}a}b}c( ; c}c, but also

�
c9C �{ V}V�V {(V(c(}V(n(( ;�

c9C c ; n → V(n(. V(c(}V(n(, i.e. if c ; n then V(n( and if c ⇒; n then V(c(}V(n( for a certain c.

4 Epilogue

The language mCRL2 is an attempt to make µCRL more applicable in practise and to facilitate hier-
archical Petri nets. The language is extended with higher-order datatypes, standard datatypes, multi-
actions and local communication. Because the new language has essentially the same structure as its
predecessor, all current µCRL specifications can be easily expressed in the new language and all proof
methodologies, theorems and tools carry over with only minor modifications.
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