
THE REVIEW OF SYMBOLIC LOGIC

Volume 4, Number 3, September 2011

ON THE TERMINATION OF RUSSELL’S DESCRIPTION
ELIMINATION ALGORITHM

CLEMENS GRABMAYER, JOOP LEO, VINCENT VAN OOSTROM
and ALBERT VISSER

Department of Philosophy, Utrecht University

Abstract. In this paper we study the termination behavior of Russell’s description elimination
rewrite system. We discuss certain claims made by Kripke (2005) in his paper concerning the
possible nontermination of elimination of descriptions.

§1. Introduction. On Denoting (Russell, 1905) is a central paper in the development
of Analytical Philosophy. It articulated a solution to a number of problems like the infor-
mativeness of identity statements and the problem of negative existentials. Simultaneously,
it provided a very influential paradigm of philosophical analysis. Closer study of the paper
leads to many questions. What is its precise place in Russell’s philosophical development?
Does Russell’s theory of descriptions really yield a descriptively adequate analysis of
descriptions? And what demand of adequacy are we to impose? Are the problems the
theory aims to solve really solved? Etcetera.

Well, even if the philosophical situation is riddled with questions and doubts, at least
from a logical–technical point of view Russell’s achievement is pretty clear, or is it? We
think that indeed it is pretty clear, at least if we consider the disambiguated version of
Russell’s theory treated in the modern way: a description, in this view, is simply a binary
quantifier. However, if we choose to view Russell’s theory as a theory of ambiguous1

descriptions where we may choose both the order of elimination and the scopes of the
descriptions eliminated in the process of elimination, there is still some excitement to be
found. Our paper is mainly about this more problematic case.

The fact that not all is well with elimination of definitions in Principia was discussed by
Gödel (1944).

It is to be regretted that this first comprehensive and thoroughgoing pre-
sentation of a mathematical logic and the derivation of Mathematics from
it is so greatly lacking in formal precision in the foundations (contained
in *1-*21 of Principia), that it presents in this respect a considerable step
backwards as compared with Frege. What is missing, above all, is a pre-
cise statement of the syntax of the formalism. Syntactical considerations

Received: November 11, 2009
1 In this article, the use of the word ‘ambiguous’ in expressions like ‘ambiguous description’ does

not refer to an ambiguity of denoted object as in: “A phrase may denote ambiguously; e.g., ‘a
man’ denotes not many men, but an ambiguous man.” (Russell, 1905, p. 479), but it refers to an
ambiguity of scope in which descriptions within a sentence have to be understood. This latter
ambiguity appears in On Denoting as that between ‘primary’ and ‘secondary’ occurrences of
descriptions (Russell, 1905, p. 489).

c© Association for Symbolic Logic, 2011

367 doi:10.1017/S1755020310000286

368 GRABMAYER, LEO, VAN OOSTROM, VISSER

are omitted even in cases where they are necessary for the cogency of the
proofs, in particular in connection with the “incomplete symbols.” These
are introduced not by explicit definitions, but by rules describing how
sentences containing them are to be translated into sentences not con-
taining them. In order to be sure, however, that (or for what expressions)
this translation is possible and uniquely determined and that (or to what
extent) the rules of inference apply also to the new kind of expressions,
it is necessary to have a survey of all possible expressions, and this can
be furnished only by syntactical considerations. The matter is especially
doubtful for the rule of substitution and of replacing defined symbols
by their definiens. If this latter rule is applied to expressions containing
other defined symbols it requires that the order of elimination of these
be indifferent. This is by no means always the case (ϕ!û = û[ϕ!u] e.g.
is a counter-example). In Principia such eliminations are always carried
out by substitutions in the theorems corresponding to the definitions, so
that it is chiefly the rule of substitution which would have to be proved
(Gödel, 1944, p. 124).

Let us briefly remind the reader what the theory of descriptions is. More detail will be pro-
vided later. Suppose we want to analyze in predicate logic the sentence: the Q has property
P . For simplicity, we assume that P and Q are unary predicate symbols. A first step is to
introduce a symbolic notation for our sentence. We write P(ιx Qx).2 Here P(·) is the
context in which the description ιx Qx occurs. We can eliminate the description by using
a paraphrase. For example, we might paraphrase our sentence by Russell’s paraphrase:

∃x (∀y (Qy ↔ x = y) ∧ Px) .

Alternatively, we may choose the logically equivalent paraphrase:

∃x Qx ∧ ∀x, y ((Qx ∧ Qy) → x = y) ∧ ∀x (Qx → Px) .

The first paraphrase has the advantage of brevity. The second one has the advantage of
separating the three ingredients existence, uniqueness, and predication.3 In this paper we
only consider paraphrases that are logically equivalent to Russell’s paraphrase.

One could think that differences in perspicuity and brevity between paraphrases have
little bearing on the description elimination process as a whole. However, we will see that
this is not true. There are ‘good’ choices of paraphrase that guarantee that description
elimination does always terminate, independent of the order in which descriptions are
eliminated and what scopes are chosen in the elimination steps. And there are ‘bad’ choices
of paraphrase for which, on some formulas, description elimination can go on forever with
an unlucky pick of elimination steps.

Let us for the moment employ our first paraphrase. The problem of scope arises when
we replace Px by a complex formula, for example, ¬ Px . The formula ¬ P(ιx Qx) can be
interpreted in two ways, to wit as ∃x (∀y (Qy ↔ x = y)∧¬ Px) and as ¬∃x (∀y (Qy ↔
x = y) ∧ Px). In the first case, we took ¬ P(·) as our context and in the second case
we took P(·), as given by the subformula P(ιx Qx) as context. This choice of context is

2 The symbol ιis atoi. The suggestion is that it is inverse to Peano’s singleton operator ι.
3 This separation is useful in the context of the Russell–Strawson discussion, where one could say,

very roughly, that Strawson claims that the first two conjuncts are not asserted but rather function
as a presupposition.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 369

a choice of the scope of the description. This ambiguity was discussed by Russell in On
Denoting. In the face of the ambiguity, one can do two things. One can opt for a language in
which the ambiguity is resolved. This was already done by Russell & Whitehead (1970) in
Principia, who chose a rather awkward way of disambiguation as will be discussed in §3.
Alternatively, one can make the disambiguating choices part of the process of elimination
of descriptions.4 We will mainly study this last option.

Our paper was inspired by a paper of Saul Kripke. In his paper (Kripke, 2005), Kripke
discusses Russell’s (1905) remarks on scope in On Denoting. Kripke’s discussion makes
the reader aware that even one hundred years after publication of Russell’s great paper, the
technicalities of eliminating descriptions and choosing scopes have never been satisfacto-
rily investigated and described. In Kripke (2005), Kripke makes a fascinating claim. He
says, discussing a predicate logical language with the Sheffer stroke as only propositional
connective:

At any rate, what looks like only one occurrence of φ and ψ in the
conventional Russellian analysis of φ(ιx ψ(x)) is obviously becoming
many, many occurrences of φ and ψ in the analysis. Now, suppose φ
or ψ itself, or worse both, contain a description, or one or both con-
tain many (occurrences of) descriptions. With an unfavourable choice of
scopes there will be more (occurrences of) descriptions than there were
originally in the analysand! The dangers involved in this situation I call
the dangers of a hydra; that is where you are trying to unpack things you
always have more occurrences of descriptions than you had before. [. . .]
One theorem that I recall I proved is that with a bad choice of scopes,
using a Sheffer stroke or its dual will allow for a hydra. Some paths of
the tree will go on infinitely and never come to an end (Kripke, 2005,
pp. 1032–1033).

Kripke’s claim is certainly not immediately clear. It is surely true that one can get more
and more occurrences of descriptions for certain choices of the paraphrase. However, in
many seemingly analogous cases we do have termination nevertheless, for example, for
the rewrite system for the Hydra battle (Moser, 2009; Fleischer, 2007), since the terms
one obtains are simpler in some specifiable sense. It turns out that in the present situation
the crux is, as becomes clear from Kripke’s further remarks, that he considers the case
where one chooses at each elimination step both the description to be eliminated and a
corresponding scope.5

In one respect Kripke’s discussion is, perhaps, a bit misleading. The reader may get the
impression that the phenomenon of nontermination can only happen for certain choices
of the repertoire of propositional connectives, like the Sheffer stroke. This is not so. We
show that, for every expressively complete choice of connectives, one can find paraphrases
that allow nonterminating reduction sequences and we can find paraphrases that give us
terminating reduction systems.

The main aim of this paper is to provide a reasonably complete picture of the syntactic
side of description elimination systems for predicate logic, in particular with respect to ter-
mination aspects of the elimination process. More specifically, we show the following five

4 We have the further possibility to fix an elimination strategy like the narrow-scope convention.
5 A concrete example of nontermination of description elimination will be given on Page 380.

370 GRABMAYER, LEO, VAN OOSTROM, VISSER

facts,6 the first four of which concern a language with scope ambiguous description terms
for which a schematic paraphrase A[P, Q] for P(ιx Qx) that is equivalent to Russell’s
paraphrase has been fixed:

F1. Suppose that the schematic paraphrase A[P, Q] contains more than one occurrence
of P . Then the description elimination system is not terminating: one can find infinite
description elimination sequences. (Theorem 5.7)

F2. Suppose that the schematic paraphrase A[P, Q] contains only one occurrence of P .
Then the description elimination system is terminating. (Theorem 5.11)

F3. In every language with an expressively complete repertoire of propositional connec-
tives, we can find a schematic paraphrase A′[P, Q] that is equivalent to Russell’s
paraphrase, and in which P only occurs once. (Theorem 6.11)

F4. Independently of the form of the schematic paraphrase, the description elimination
system is normalizing, and there exist computable, normalizing, and deterministic
strategies for it (such as the narrow-scope7 strategy). (Theorem 5.13)

F5. For a language with scope disambiguated descriptions (i.e., descriptions considered
as binary quantifiers), we have the termination and unique normal form properties
for description elimination, independent of the precise choice of the (schematic)
paraphrase. (Theorem 5.17)

To illustrate the situation for certain complete sets of connectives (both for ‘right’ and
‘wrong’ choices) we consider Kripke’s example of the Sheffer stroke. Kripke’s paraphrase
is a translation of the paraphrase ∃x (∀y (Qy ↔ x = y) ∧ Px) into the Sheffer-only
language using the following definitions.

• ¬ A := A | A.
• A ∨ B := ¬ A | ¬B.
• A ∧ B := ¬ (A | B).
• A → B := A | ¬B.
• A ↔ B := (A → B) ∧ (B → A).

By doing this, one obtains a paraphrase8 A[P, Q] with two occurrences of P , with respect
to which our result F1 confirms Kripke’s claim. However, this is praeter necessitatem:
if we define ¬ A as A | ∀x x = x , we are doing much better. A reasonably efficient
example of a schematic paraphrase of P(ιx Q), using just the Sheffer stroke and universal
quantification, is as follows:

(†) ∀x (∀y ((Qy | x = y) | ((Qy |
) | (x = y |
))) | Px) |
 ,

where we define9
 := ∀x x = x . By a polarity argument one can prove that the number
of occurrences of Q in (†) is optimal. The representation (†) is, by F2, good enough to

6 The terminology of the list below will be explained in detail in the paper. The reader is asked to
consider these formulations just as suggestive at this stage.

7 Besides the terminology ‘wide-scope’/‘narrow-scope’ strategy, in the literature also the
expressions ‘large-scope’/‘small-scope’ strategy are used.

8 Russell & Whitehead (1970) in the introduction to the second edition of Principia Mathematica
use precisely this translation; and so does Quine (1935) in his paper. However, Russell
and Whitehead provide in ∗14 of Principia Mathematica a disambiguation device. Quine’s
specification of the elimination of descriptions explicitly demands the narrow-scope strategy, so
that one cannot generate infinite reduction paths in Quine’s setup.

9 Clearly, any fixed sentential theorem would do in the role of
. Thus, in a theory without identity
like the one presented in Quine (1937), we can still find a ‘good’ definition of negation.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 371

guarantee termination for the ambiguous description elimination algorithm. The point of
F3 is that, for other choices of the connectives, under quite general circumstances, we can
always find such good paraphrases.

Quine (1937) suggests an alternative repertoire of logical constants for set theory, to wit
abstraction and the subset relation. This shows that one can imagine setups that do not
fit our framework, that is, setups that do not have the usual division of labor between
the propositional connectives and the quantifiers. We did not explore such alternative
ideas.

This paper has a second aim. We want to make philosophers acquainted with term
rewriting and to illustrate the importance of that field. Term Rewriting is a general theory
of syntactical transformations, with intuitive concepts and of wide applicability. It has its
origin in the work of Church and Curry, and, more generally, in proof theory. Term Rewrit-
ing offers a better, richer view of syntax than one usually gains in reading an introduction to
Logic. The philosophically salient notion of occurrence has its proper home in a theory of
syntactical transformations, where, for example, one develops a methodology to trace the
fate of occurrences under syntactical transformations. But the importance of term rewriting
is not restricted to this; it extends to proof theory and cut-elimination and provides insight
into the fundamental notion of computation.

Overview. The layout of the paper is as follows. We start with an introduction to the
problem of eliminating ambiguous definite descriptions (§2), and provide some historical
remarks on attempts to disambiguate such descriptions (§3). An introduction to higher-
order term rewriting is given (§4), which is subsequently employed to analyze both the
ambiguous and disambiguated description elimination from a rewriting perspective (§5).
We dedicate the one but last section (§6) to establish F3, by means of a theorem of
propositional logic which is interesting on its own.

A caveat. Even if, in this paper, we touch on historical issues, our primary interest is sys-
tematical. We aim for a thoroughly modern, systematical understanding of the elimination
of ambiguous descriptions. There are clearly historical issues concerning questions like:
How did Russell & Whitehead understand their elimination procedure? Did the language
of Principia allow vacuous quantification? Did it allow 0-ary predicates? Etcetera. We do
not intend to take a standpoint on these matters. (However, we do think that the fallacy of
too many digits is a serious danger here.)

Similarly, we are not engaged in any philosophical debate with Russell, attacking the
theory of descriptions on some technical issues. However, we do think that a proper under-
standing of the technical issues is important as a background for a serious philosophical
discussion involving the theory of descriptions.

§2. Descriptions. In this section, we take a first step in making more precise what the
theory of descriptions is, in a classical context. In Section §5, we will adapt these ideas to
fit the term rewriting perspective.

An inclusive signature � for predicate logic is given by a set of predicate symbols, a set
of function symbols, a set of atomic propositional function symbols, a set of propositional
connectives, a set of quantifiers, and a set of term forming operators. All these sets are
supposed to be mutually disjoint. We have an arity function on all sets of symbols. We
allow arity 0. Let an infinite set of variables be given.

372 GRABMAYER, LEO, VAN OOSTROM, VISSER

The language for the given inclusive signature is specified as follows.

• t ::= v | f (t, ..., t) | α(F, . . . , F).
Here v ranges over the variables, f ranges over the function symbols, where the
sequence of terms they take as inputs is assumed to be of the right arity. The
metavariable α ranges over the term forming operators.

• F ::= G | (λv A).
Here G ranges over the atomic propositional function symbols.

• A ::= P(t, . . . , t) | Ft | γ (A, . . . , A) | θ(F, . . . , F).
Here P ranges over the predicate symbols, γ ranges over the propositional connec-
tives, and θ ranges over the quantifiers.

A basic signature �0 consists of a set of predicate symbols, an expressively complete
repertoire of propositional connectives and at least one of the unary quantifiers ∀ and ∃.
The signature �0(

ι) is �0 extended by the unary term forming operator ι. The signature
�0(

ιιι) is �0 extended by the binary quantifier ιιι.10 The signature of contexts over �0 is
�0(�, �), where� and � are fresh propositional function symbols. A context is a formula
C in the language of contexts.

The language based on �0(

ι) is a language for ambiguous descriptions. A Russell-style
elimination step for this language has the form:

G[y := ιF] �→ C[F, λy.G] ,

given that ιF is substitutable for y in G, and that C[�, �] is a context in which F and
λy.G are substitutible for � and �, respectively. A sample elimination step could look
like this:

G[y := ιF] �→ ∃x (∀y (Fy ↔ x = y) ∧ Gx) .

REMARK 2.1. In a language which includes λ-calculus the elimination step could be
split into two steps:

G[y := t] �→ (λy.G)t ,

G ιF �→ C[F, G] .

Note that the ambiguity then is located in the fact that we allow β-expansion (in the
first half of the step). This corresponds to the higher-order term rewriting perspective on
description elimination to be presented in Sections §4 and §5.

The language based on �0(

ιιι) is a language of disambiguated descriptions. A Russell-
style elimination step for �0(

ιιι) has the form:

ιιι(F, G) �→ C[F, G] ,

given that C[�, �] is a context and F and G are substitutable in C for � and �, respec-
tively. Suppose that �0 is based on the usual repertoire of quantifiers and propositional
connectives, including ↔. The elimination step corresponding to the sample step above is:

ιιι(F, G) �→ ∃x (∀y (Fy ↔ x = y) ∧ Gx) .

10 We call the symbol ιιιthat we use for the disambiguated description operator iotatoi.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 373

§3. Disambiguating ambiguous descriptions: The history. Apart from various
philosophical issues, Russell’s theory of descriptions enables us to employ descriptions
as a convenient notational device. In a mathematical context, however, we want to use
descriptions nonambiguously. Thus, we have either to change or enrich the basic notational
device. From these considerations, one sees that it is not surprising that disambiguated
versions were provided at a very early stage.

Russell & Whitehead (1970) provide in Principia a disambiguation device that works as
follows. They place the description between square brackets directly before the formula in
which the description has scope. Thus, they write [ιx Qx]P(ιx Qx) to signal that ιx Qx
has scope in P(ιx Qx). Regrettably Russell and Whitehead failed to do the necessary
homework, so that we can only guess at the further rules for coherent use of their conven-
tion.

A first point is that the elimination conventions are simply not clear. Consider the
following examples.

(1) [ιx Qx] P , where P is a 0-ary predicate symbol. Does this reduce to P , or to ∃x (∀y
(Qy ↔ x = y) ∧ P)?

(2) [ιx Qx][ιx Qx] P(ιx Qx). Do both occurrences of [ιx Qx] link to the third occur-
rence of ιx Qx?

(3) [ιx Qx] P(ιx Qx, ιx Qx). Does [ιx Qx] link both to the second and third occur-
rence of ιx Qx?

It is clear that definite answers can be given to these questions, but something needs to be
said. However, worse is to come. Consider [ιx Qxy] ∃y P(ιx Qxy). If we follow Russell
and Whitehead’s instructions this reduces to

∃x (∀z (Qzy ↔ x = z) ∧ ∃y Px).

But this is clearly wrong, since the fact that the last occurrence of y in our original formula
is bound by an intervening existential quantifier is ignored. Of course, we can formulate an
appropriate restriction on the elimination step, but this still leaves us with the embarrassing
fact that there is simply no context, under Russell and Whitehead’s convention, for the
formula ∃y P(ιx Qxy) which would lead to elimination of ιx Qxy. We also note that we
get similar problems (and more) with [ιx Q(x, ιy Ry)][ιy Ry] P(ιx Q(x, ιy Ry)).

Finally, the notation does not preserve meaning if we intersubstitute logically equivalent
formulas. For example, the formula [ιx Px] Q(ιx Px) is not equivalent to the formula
[ιx Px]Q(ιx (Px ∧ Px)). Even worse, meaning is not preserved by α-conversion. For ex-
ample, the formula [ιx Px] Q(ιx Px) is not equivalent to the formula [ιx Px] Q(ιy Py).
Further explication of what is intended, would eliminate the problem. We must add a rule to
the effect that the linked occurrences of the description term should be treated as the same
occurrence when we substitute equivalents or when we α-convert. So, if we want to substi-
tute (Px ∧ Px) for some occurrences of Px in [ιx Px] Q(ιx Px, ιx Px), the only way in
which this can be done is the one resulting in [ιx (Px ∧ Px)] Q(ιx (Px ∧ Px), ιx (Px∧
Px)). This rule would complicate our elimination algorithm in that it could force us to
eliminate, say, one hundred linked descriptions at the same time.

We are sure that with sufficient work all these problems could be solved. But why
go through the trouble if we already have well understood conventions for the device
of treating ιas a binary quantifier? Of course, there are subtleties here too, but these
are simply subsumed under the well-studied general rules for handling free and bound
variables. Neale (1990), in his book, opts for binary quantifier notation. Curiously, Neale

374 GRABMAYER, LEO, VAN OOSTROM, VISSER

does not comment at all on the many deficiencies of the explanation that Russell and
Whitehead give of their notation.

Other ways of disambiguation are possible. For example, Quine (1937) in his paper,
follows a different strategy of disambiguation. He demands that we always eliminate
descriptions using the narrow-scope convention.11

A term rewriting perspective on the issues raised here is given in the following two
sections. The interest in this is in a precise analysis of the issues and in their resolution by
means of tools offered by rewriting theory.

§4. Term rewriting, an ultra-short introduction. In this paper we will employ term
rewriting to analyze Russell’s description operator, in particular the question whether its
elimination process terminates. We model predicate logic by means of a term signature,
in the manner of Church’s simple theory of types, describe the elimination of the various
description operators by means of term rewrite rules, and employ (higher-order) rewriting
theory (Terese, 2003) to establish properties of the elimination process. To that end, we now
first give an ultra-short introduction to the field of term rewriting, meant for philosophers
and logicians, who we assume to be already familiar with Church’s simple theory of
types (Church, 1940; Wolfram, 1993). For a more extensive overview of (higher-order)
term rewriting and pointers to the literature, we refer the reader to Terese (2003).

Term rewriting has its origins both in proof theory and in algebra. In proof theory,
Church’s λ-calculus is a term rewriting system having the β-computation rule as rewrite
rule. In algebra, Knuth–Bendix completion aims at deciding equational theories by orient-
ing equations into rewrite rules. More generally, rewrite rules have been used to model and
study stepwise processes as diverse as cut-elimination in proof theory, deduction in logic,
recursion in computation, and evolution in dynamical systems. In this paper, rewrite rules
will be employed to model and study the elimination process of the description operator.
Term rewriting systems can be viewed as (usually finite) specifications of their (usually
infinite) associated rewrite relations, and term rewriting theory aims at establishing prop-
erties of the latter by means of the former. For instance, Church and Rosser’s classical
result that the λ-calculus is consistent in the sense that there are λ-terms which are not
convertible by the β-rewrite relation is, from a term rewriting point of view, a direct
consequence of the fact that the β-rewrite rule is left-linear and nonoverlapping.12 For
another example, term rewriting theory yields that an equational theory is decidable if
orienting its equations gives rise to a rewriting system such that the critical pairs between
its rewrite rules are confluent and its rules are contained in some recursive path order.
In this article, we will call upon term rewriting theory to establish that the elimination
process of the ambiguous description operator ιlacks good properties as a consequence of
the corresponding term rewrite rule not being a pattern rule, but that, on the other hand,
the elimination process of the disambiguated description operator ιιιis well-behaved as a
consequence of the corresponding rule being a noncreating orthogonal pattern term rewrite
rule.

11 In other publications, like Quine (1996), Quine defines descriptions via set abstraction. We will
not discuss this variant in this paper.

12 The emphases in this paragraph are meant to draw attention to several useful notions provided
by term rewriting theory. Although some of them will be defined below, most will not, and only
serve to illustrate the methodology of proving properties of rewrite relations via properties of term
rewriting systems.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 375

Concretely, a term rewriting system consists of a signature and a collection of rewrite
rules over that signature. An example of a (first-order) term rewriting system, expressing
addition of natural numbers, is given by the (first-order) signature13 {0/0, S/1, A/2} and
the rewrite rules

A(x, 0) →0 x

A(x, S(y)) →S S(A(x, y))

NOTATION 4.1. Both rewrite rules and logical implications play an important role
in this paper. Unfortunately, the standard notation for both is the arrow →. In order
to disambiguate these notations, we will affix a subscript, usually some symbol being
eliminated, to the arrow in case of rewrite rules and derived notions.

The rewrite relation associated to a term rewriting system is obtained by substituting
arbitrary terms for the variables in a term rewrite rule, and allowing for its application
at arbitrary positions in terms. For rewrite steps, that is, pairs of terms belonging to the
rewrite relation, we employ the same notation as for rewrite rules. For instance, the rewrite
step

S(A(S(0), 0)) →0 S(S(0))

is obtained by applying the first rule above at position 1, and substituting S(0) for x . The
result S(S(0)) is a normal form; no rules apply to it. Rewriting theory yields that the
equational theory corresponding to this term rewriting system is decidable, that is, it is
decidable whether one term can be converted by means of a series of rewrite steps into
another term. This follows from the fact that the rewriting system has no critical pairs
and its rules are contained in some recursive path order, a fact routinely established by
the nowadays available termination tools, for example, by the Tyrolean Termination Tool
TTT2 (Korp et al., 2009).

Note that this term rewriting system has two rewrite rules, not two rule schemata. Thus
the system is finite, a fact which is essential for automation. Stated differently, the vari-
ables x , y in the rules are object-variables, not metavariables. These object-variables are
instantiated by a process of substitution which resides at object-level, that is, is part of the
term rewriting formalism, not at metalevel. Whereas in the case of the above first-order
term rewriting system this substitution process is simple, it is more complex in the case
of higher-order term rewriting systems used for describing transformations on terms with
binders, and the latter systems are the ones needed in this paper to describe the description
operator. We will now first explain this complex process on a simple example.

In higher-order term rewriting the signature consists of symbols to which a simple
type has been assigned indicating their ‘functionality’, and higher-order terms are terms
over this signature constrained by these types. More precisely, higher-order terms are βη-
equivalence classes of simply typed λ-terms over the simply typed signature. An example
of a higher-order signature14 is {0 : nat, S : nat → nat, A : nat → nat → nat, � : (nat →
nat)→nat→nat}, and some examples of higher-order terms over this signature are 0, S 0,
and � S ((λx . S x) 0). Note that S 0 0 is not a higher-order term over this signature since it
is not well-typed; S can take one argument (of type nat) not two. In fact it is customary to

13 We employ the notation A/2, borrowed from Prolog, to express that A has arity 2.
14 The first-order function symbols of the previous example can be seen as being embedded into this

higher-order signature by assigning types of shape nat → . . . → nat → nat to them.

376 GRABMAYER, LEO, VAN OOSTROM, VISSER

take long βη-normal forms as representatives of higher-order terms, that is, to take normal
forms with respect to the following β-reduction and restricted η-expansion rule schemata15

as representatives:

(λx . M) N →β M[x :=N]

M →η̄ λx . M x if no β-redex is created

For instance, the representative of � S ((λx . S x) 0) is found by reducing it with respect to
these two schemata:

� S ((λx . S x) 0) →β � S (S 0) →η̄ � (λx . S x) (S 0)

with the final term the representative since it is in long βη-normal form: no further β-step
is possible and any η-expansion step would create a β-redex, that is, would enable a β-
step. Note that just from the long βη-normal form one can reconstruct that � takes two
arguments, λx . S x and S 0, the first of which is of function type, something which could
not be read off before. More generally, a long βη-normal form is a good and informative
representative: within its βη-equivalence class it is unique and each symbol in it is applied
to the number of arguments as given by its type. This last fact justifies employing functional
instead of applicative notation for these symbols, as we will do below, for example, writing
�(λx . S(x), S(0)) to denote � (λx . S x) (S 0).

An example of a higher-order term rewriting system over this signature, expressing
summation of functions on natural numbers, is given by the rules

�(λx . F(x), 0) →0 F(0)

�(λx . F(x), S(y)) →S A(F(S(y)),�(λx . F(x), y))

where the variables are typed as x, y : nat and F : nat → nat, with x a bound variable
and F , y free variables. The associated rewrite relation is obtained from the rewrite rules
as before but now allowing the substitution of higher-order terms. For instance, the rewrite
step

�(λx . S(0), S(0)) →S A(S(0),�(λx . S(0), 0))

is obtained by substituting λz. S(0) and 0 for the free variables F and y in the S-rule above.
That the higher-order substitution process is more involved, is witnessed in the example by
the substitution of λz. S(0) for the first occurrence of F in the right-hand side. It leads,
implicitly, to the erasure of its argument S(y) (with 0 substituted for y).

In fact, rule application can be seen as a three-phase process, consisting of matching
(finding the appropriate substitution to instantiate the left-hand side with), replacement
(literally replacing the left-hand side by the right-hand side), and substitution (applying
the substitution to the right-hand side), where only the second phase employs an actual
rewrite rule whereas the first and third-phase only choose a different representative of a
higher-order term within iths βη-equivalence class. For instance, the above step can be
decomposed as follows:

(matching) First, β-expansion makes the left-hand side appear literally:

�(λx . S(0), S(0))�β (λF y.�(λx . F(x), S(y))) (λz. S(0)) 0

15 These are schemata since the variables M ,N now are meta-variables, not object-variables.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 377

(replacement) Next, the left-hand side is literally replaced by its right-hand side:

(λF y.�(λx . F(x), S(y))) (λz. S(0)) 0 →S

(λF y. A(F(S(y)),�(λx . F(x), y))) (λz. S(0)) 0

(substitution) Then, β-reduction substitutes the arguments in the right-hand side:

(λF y. A(F(S(y)),�(λx . F(x), y))) (λz. S(0)) 0�β A(S(0),�(λx . S(0), 0))

The structure (λF y. . . .) (λz. S(0)) 0 in the above would conventionally be expressed by
means of a higher-order substitution . . . [F :=λz. S(0), y:=0]. In higher-order rewriting,
this complex higher-order substitution process is entirely taken care of by the β-reduction
of the simply typed λ-calculus, whence the slogan: higher-order rewriting is rewriting
modulo simply typed λ-calculus. We will put the above decomposition to good use in
our analysis of the various elimination strategies for description operators below.

§5. Eliminating descriptions by term rewriting. We present both the language of
ambiguous descriptions based on �0(

ι) and that of disambiguated descriptions based on
�0(

ιιι), introduced in §3, as higher-order term rewriting systems whose rules model their
respective elimination steps. We show that the lack of good properties of the former already
observed above, is reflected in the lack of good properties of its higher-order term rewriting
system presentation. Vice versa, addressing these deficiencies naturally leads to the disam-
biguated description operator, the well-behavedness of which follows directly from the
application of standard higher-order term rewriting theory. To express both languages we
proceed in the style of Church (1940) as indicated in §4, keeping the same basic signature
�0 and assigning appropriate types to its elements, that is, to its connectives, function
symbols, etc., and the respective description operators ιand ιιι.

NOTATION 5.1. Both terms and formulas of predicate logic alike will be expressed as
higher-order terms over that typed signature. In order to avoid confusing terms of predicate
logic with the (more encompassing) higher-order terms, we will refer to the latter in this
section as expressions, and use e to range over them.

We employ two basic types trm and prp for representing terms and formulas respec-
tively. Denoting the type of functions from type τ to type σ by τ → σ , and letting →
associate to the right, we abbreviate τ →. . .→τ →σ , with n occurrences of τ as indicated,
to τ n → σ . As usual, e : τ expresses that the type τ is assigned to the expression e. We
assign types to the symbols in the signature of the language of descriptions as follows:

• v : trm, for v a term variable;
• f :

−→
trmn → trm, for f an n-ary function symbol;

• G :
−→
trmn → prp, for G an atomic propositional function symbol of arity n;

• γ : −→prpn → prp, for γ an n-ary propositional connective;
• θ :(

−→
trmn1 →prp)→ . . .→(

−→
trmnk →prp)→prp, for θ a quantifier taking a number

k of propositional functions of arities n1,. . .,nk ; and either
• ι: (trm → prp) → trm, in case of �0(

ι); or
• ιιι: (trm → prp) → (trm → prp) → prp, in case of �0(

ιιι).

For instance, ∧ : prp → prp → prp, and ∀ : (trm → prp) → prp. Clearly, these type
assignments suffice to faithfully express all terms and formulas of the languages over the
basic signatures �0(

ι) and �0(

ιιι), i.e. to render them as expressions.

378 GRABMAYER, LEO, VAN OOSTROM, VISSER

EXAMPLE 5.2. The paraphrase ∃x (∀y (Qy ↔ x = y)∧ Px) is rendered as the, admit-
tedly rather hard to read, expression ∃(λx .∧(∀(λy.↔(Q(y), =(x, y))), P(x))). Adopting,
on top of the functional notation, usual conventions such as allowing for infix notation of
binary operations and abbreviating θ(λx .e) to θ x .e for a quantifier θ , the expression
obtains a more familiar form ∃ x . (∀ y. Q(y) ↔ x = y) ∧ P(x).

The main remaining notational difference between the original paraphrase and its higher-
order rendering resides in the parenthesizing. This is caused by the difference between
the binding scope conventions of predicate logic and the λ-calculus. In predicate logic
the convention is that the binding scopes of quantifiers extend minimally to the right,
∀x φ ∧ ψ ≡ (∀x φ) ∧ ψ , whereas in the λ-calculus the binding scope of abstraction
extends maximally to the right, ∀x .φ ∧ ψ ≡ ∀x . (φ ∧ ψ).

We start with discussing the deficiencies, from a term rewriting perspective, of Russell’s
description elimination.

5.1. Ambiguous descriptions as term rewriting system. The elimination step G[y :=

ιF] �→ C[F, λy.G] for the language of ambiguous descriptions �0(

ι) as given in
Section §2, gives rise to the higher-order term rewriting rule

G(ιx . F(x)) → ι e (1)

with e the expression corresponding to the paraphrase C[F, λy.G]. The assumption that
C[F, λy.G] is a paraphrase, entails that the description operator does not occur in the
right-hand side e of the rule.

EXAMPLE 5.3. For the (schematic version of the) paraphrase of Example 5.2 the rewrite
rule becomes

G(ιx . F(x)) → ι ∃ x . (∀ y. F(y) ↔ x = y) ∧ G(x)

Note that the meta-variables G, F of the original schematic elimination step are turned
into object-variables, with the same names, of the corresponding rule.

In higher-order term rewriting, to check whether a rule is applicable at some position in
an expression, it suffices to try to match the left-hand side of the rule with the subexpression
at that position, that is, to find a substitution to instantiate the left-hand side such that
it becomes equal to that subexpression, cf., §4. We show that the shape of the left-hand
side of the above rule causes that matching suffers from several deficiencies, offering a
term rewriting explanation for the lack of good properties of the corresponding description
elimination process.
Vacuous containment When matching the left-hand side G(ιx . F(x)) with an expression,
the substitutions allowed for G are a priori not restricted in any way. As a consequence,
and this is a first deficiency, the idea that for matching to succeed the expression should
contain ιx . F(x) is not captured. To see this, reconsider Example (1) of §3, that is, the
formula P , where P is a 0-ary predicate symbol. Although it may not look like so, the
left-hand side of the rule does match with this formula. To wit, substituting λy. P for G
suffices, independently of what is being substituted for F .

REMARK 5.4. Consider a β-expansion making the left-hand side of the higher-order
rewrite rule appear literally in matching P:

P ←β (λy. P) ιx .⊥ ←β (λy. P) ιx . (λx .⊥) x ←2
β (λF G.G(ιx . F(x))) (λx .⊥) λy. P

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 379

Fig. 1. Nontermination (infinite rewrite sequence).

Observe that the first of the β-expansion steps is not linear; y does not occur in P. One
could view nonlinearity as the culprit of the above anomaly, and contemplate switching
to linear higher-order term rewriting, taking terms modulo linear βη-reduction instead of
full βη-reduction. However, apart from disallowing the above erasing matches for G as
intended, this would also have the effect of disallowing such matches for F, for example,
it would disallow the elimination of the description operator from P(ιx .⊥) as that would
require a nonlinear match for F. Here we will not go into the discussion whether this is
desirable or not, but do note that the formalization via term rewriting brings to light that
there is something to discuss.

By the same considerations, the rule is in fact seen to be applicable to any formula,
which may lead to anomalous situations. For example, every formula φ induces an infinite
rewrite sequence, independently of the right-hand side e, that is, the paraphrase, of Rule (1)
and description elimination is not terminating.

DEFINITION 5.5. A rewrite relation →R is terminating16 if it does not allow infinite
rewrite sequences, see Figure 1.

To wit, defining φ0 = φ and φi+1 = e[F :=λx .ψi , G:=λy.φi] with y not in φi and
with ψi chosen arbitrarily, yields the infinite rewrite sequence φ0 → ιφ1 → ιφ2 → ι. . .
But not only does description elimination never terminate irrespective of the paraphrase, a
statement stronger than F1 in the introduction. Even worse, along the way a true formula
could be rewritten into a false one! For instance, instantiating the formula φ to 0 = 0 and
the rule to the one of Example 5.3 gives rise to the sequence

0 = 0 → ι∃ x . (∀ y.⊥ ↔ x = y) ∧ 0 = 0︸ ︷︷ ︸
≡⊥

→ ι. . .

by substituting λx .⊥ for F and λy.0 = 0 for G in the first step. One easily calculates that
in this sequence only the first formula is true and the others are all false. Now note that
in these examples neither P nor 0 = 0 respectively, contains the description operator,
at least intuitively so, but still it can be eliminated from them by the rule. There is a
mismatch between the intuition of containment and its formalization (via β-reduction)
allowing to substitute arbitrary propositional functions for G, even erasing ones such as
λy. P . To avoid the anomaly we should disallow such erasing matches, that is, only allow
substituting propositional functions of the shape λy.φ for G, where y occurs at least once
in φ.

Multiple containment Consider the formula P(ιx . Q(x), ιx . Q(x)). Apart from elim-
inating each of the ι-operators in it individually, higher-order rewriting also allows to
eliminate both of them simultaneously by substituting λx . Q(x) for F and λy. P(y, y)
for G in the left-hand side G(ιx . F(x)) of Rule (1) above, giving rise to the step

P(ιx . Q(x), ιx . Q(x)) → ι ∃ x . (∀ y. Q(y) ↔ x = y) ∧ P(x, x)

16 Termination is also known as Strong Normalization.

380 GRABMAYER, LEO, VAN OOSTROM, VISSER

Even if eliminating several occurrences at the same time can be desirable from an efficiency
perspective, such simultaneous elimination steps should be conceptually redundant, that
is, they should always be sequentializable into a number of individual elimination steps,
leading to an, in some appropriate sense, equivalent result. Thus it should suffice to only
allow substituting affine expressions for G, that is, propositional functions of the shape
λy.φ where y occurs at most once in φ. That this constraint is not captured can be seen as a
second deficiency of the rule. Combining the constraint with that of the previous paragraph
amounts to requiring that y should occur exactly once in φ or, stated differently, that G is a
so-called context variable (Levy & Villaret, 2000) (note there is a bijective correspondence
between occurrences of subterms and one-hole contexts).
Non-head-definedness A third deficiency of the description elimination Rule (1) is that
it is not head-defined, that is, the head-symbol G of its left-hand side G(ιx . F(x)) is not
a connective or quantifier, but a variable. As a consequence, scope-widening holds: if the
left-hand side of the rule matches some subexpression of an expression, it matches the
expression itself, as one easily checks.

REMARK 5.6. Non-head-definedness can be seen as the source of the ambiguity of
the formula ¬ P(ιx Q(x)) discussed in the introduction. Because the description can be
eliminated from the subformula P(ιx Q(x)) it can be eliminated from the formula it-
self too, yielding the two interpretations ¬∃ x . (∀ y. Q(y) ↔ x = y) ∧ P(x) and
∃ x . (∀ y. Q(y) ↔ x = y) ∧ ¬ P(x), respectively.

Scopes can only be widened up to occurrences of quantifiers or ι’s that bind free vari-
ables in the description. For instance, in ∀ x . P(ιyQ(y, x)) the scope of the description
cannot be widened to the whole formula, and similarly for the inner description
in P(ιx . (ιyx + 1 = y) = 2). Indeed, matching the left-hand side of the rule fails in both
cases as it would require to ‘unbind’ the variable x . Accordingly, scope widening is con-
strained by the requirement that the variables free in the expression substituted for F be
bound outside the expression matching the left-hand side.

We define the wide-scope strategy as the rewrite strategy that rewrites descriptions within
their widest possible scope. Exploiting this strategy we now give an example for statement
F1 in the introduction. That is, we show that an infinite sequence of description elimination
steps is always possible for the ambiguous description operator, in case the right-hand
side e of the rule contains (at least) two occurrences of G. Explicitly displaying these
occurrences of G in the right-hand side and their arguments, the rule takes the form (cf.,
Remark 5.8)

G(ιx . F(x)) → ι C[G(φ), G(ψ)]

To see the problem with such a rule having multiple occurrences of G in its right-hand
side, consider its application to the formula ιx . Q(x) = ιx . Q(x). Substituting λx . Q(x)
for F and λy. y = ιx . Q(x) for G yields the step

ιx . Q(x) = ιx . Q(x) → ι C[φ = ιx . Q(x), ψ = ιx . Q(x)]

Observe that the step eliminates the leftmost but duplicates the rightmost occurrence of

ιx . Q(x) in ιx . Q(x) = ιx . Q(x). More generally, applying the wide-scope strategy to
the leftmost occurrence of ιx . Q(x) in a formula having shape D[ιx . Q(x), ιx . Q(x)]
gives rise to the step

D[ιx . Q(x), ιx . Q(x)] → ι C[D[φ, ιx . Q(x)], D[ψ, ιx . Q(x)]]

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 381

in which the rightmost occurrence of ιx . Q(x) is duplicated. The resulting formula takes
on the same shape again, hence defining D0 = D and Di+1[21,22] = C[Di [φ,21],
Di [ψ,22]], gives rise to the infinite rewrite sequence

D0[ιx . Q(x), ιx . Q(x)] → ιD1[ιx . Q(x), ιx . Q(x)] → ιD2[ιx . Q(x), ιx . Q(x)] → ι. . .

Thus we have shown:

THEOREM 5.7. Suppose that the schematic paraphrase A[P, Q] contains more than
one occurrence of P. Then the description elimination system is not terminating: applying
the wide-scope strategy to a formula containing two (closed) descriptions gives rise to an
infinite reduction sequence. (F1)

We will see that other scope strategies give rise to better elimination behavior.

REMARK 5.8. A priori, occurrences of G could occur nested in the right-hand side of
the above rule, that is, as C[G(D[G(φ)])]. Below we will show that such situtations cannot
occur in predicate logic, but could in more general settings. For now it suffices to note that
the same substitutions as above would then give rise to a step

ιx . Q(x) = ιx . Q(x) → ι C[D[φ = ιx . Q(x)] = ιx . Q(x)]

the result of which contains, as before, two disjoint occurrences of ιx . Q(x). This suffices
to carry out the above analysis, still entailing nontermination of description elimination.

Nonunitary matching A fourth deficiency of the description elimination Rule (1) is that,
even if G is taken to be a context variable, and a scope strategy and the position where to
apply the rule are given, description elimination may still lead to distinct results. To wit, the
left-hand side G(ιx . F(x)) of the rule matches with the formula P(ιx . Q(x), ιx . Q(x))
in two distinct (linear) ways: substituting λx . Q(x) for F and either λy. P(y, ιx . Q(x)) or
λy. P(ιx . Q(x), y) for G yields

P(ιx . Q(x), ιx . Q(x)) → ι ∃ x . (∀ y. Q(y) ↔ x = y) ∧ P(x, ιx . Q(x)) or

P(ιx . Q(x), ιx . Q(x)) → ι ∃ x . (∀ y. Q(y) ↔ x = y) ∧ P(ιx . Q(x), x)

In such cases, when several substitutions can be used for matching, one says that matching
is not unitary. The culprit is the occurrence of an expression (ιx . F(x)) nested inside a
variable (G) in the left-hand side of the rule.

We will see shortly that this entails that the rewrite relation lacks confluence, an im-
portant property of rewrite relations. Whereas termination guarantees existence of normal
forms, confluence ensures their uniqueness.

DEFINITION 5.9. A rewrite relation →R is confluent,17 if for all objects a, a1, a2 such
that there are rewrite sequences from a to both a1 and a2, there exists an object a′ and
rewrite sequences from both a1 and a2 to that object a′, see Figure 2.

The example in Remark 5.6 witnesses that non-head-definedness leads to nonconfluence.
Matching being nonunitary also leads to nonconfluence as can be seen by prolonging the
above steps from P(ιx . Q(x), ιx . Q(x)) to rewrite sequences to distinct normal forms:

∃ x . (∀ y. Q(y) ↔ x = y) ∧ ∃ x ′. (∀ y′. Q(y′) ↔ x ′ = y′) ∧ P(x, x ′)
∃ x . (∀ y. Q(y) ↔ x = y) ∧ ∃ x ′. (∀ y′. Q(y′) ↔ x ′ = y′) ∧ P(x ′, x)

17 Confluence is also known as the Church–Rosser property.

382 GRABMAYER, LEO, VAN OOSTROM, VISSER

Fig. 2. Confluence.

However the present case is more benign in the sense that although the resulting formulas
are not the same, they are logically equivalent, something which does not hold for the
example in Remark 5.6. Still, an additional device (constraint, strategy) is desirable to let
every formula with description operators stand for a unique formula without them.

REMARK 5.10. Trying to apply Russell and Whitehead’s disambiguation device (see
Section §3) directly to P(ιx . Q(x), ιx . Q(x)) would yield something like:

[ιx . Q(x)][ιx . Q(x)]P(ιx . Q(x), ιx . Q(x))

which is clearly not what is intended. Of course, the two occurrences of ιx . Q(x) could
have been renamed apart first by a change of variables, but then one would give up on the
standard convention of working modulo the names of bound variables, a cure which seems
worse, or in any case not better, than the disease, cf., the discussion on α-conversion in §2.

In this section we have argued that Russell’s description elimination suffers from exis-
tence (termination) issues as well as from uniqueness (confluence) issues. The deficiencies
vindicate, in our opinion, our name ambiguous description operator. In the next section we
will investigate how these problems can be overcome.

5.2. Disambiguating descriptions in term rewriting. Nontermination of description
elimination, as in the previous section, was caused on the one hand by paraphrases con-
taining multiple occurrences of the ‘context’ G, and on the other hand by adhering to the
wide-scope convention for descriptions. Here we show that remedying either suffices to
regain termination of the elimination process.

We will assume throughout that descriptions are eliminated in a one-hole context, that
is, that G in Rule (1) on Page 378 is a context-variable.

THEOREM 5.11. Suppose that the schematic paraphrase A[P, Q] contains only one
occurrence of P. Then the description elimination system is terminating, and normal forms
of formulas of predicate logic do not contain description operators. (F2)

Proof. We claim that all occurrences of F and G in the right-hand side of the ambiguous
description elimination rule are disjoint, that is, they cannot occur nested as, for example,
in C[G(D[G(φ)])]. Assuming for the moment the claim holds, the assumption implies the
rule must have shape

G(ιx . F(x)) → ι C[F(φ1), . . . , F(φi), G(t), F(φi+1), . . . , F(φn)]

where all occurrences of F and G are displayed. It suffices to assign a suitable measure
to expressions and show that it decreases with every step. We will measure expressions by
means of multisets of natural numbers and order these by means of the so-called multiset-
extension ># of the usual > order on natural numbers.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 383

Multisets, also known as bags, are ‘sets’ where elements have a multiplicity. For in-
stance, [2, 2, 0] is a multiset of natural numbers where 2 has multiplicity 2, and 0 has
multiplicity 1. The multiset-extension ># of > allows to replace a single occurrence of
some element by an arbitrary number of smaller elements with arbitrary multiplicty, for
instance [2, 2, 0] ># [2, 1, 1, 0] ># [2, 1, 1]: first an occurrence of 2 is replaced by
two occurrences of the smaller element 1 and next an occurrence of 0 is replaced by
no elements. In the following, we use that the multiset-extension ># of a terminating
relation > is terminating (Terese, 2003, Section A.6).

Take as measure |e| of an expression e the multiset (Terese, 2003) of depths of occur-
rences of ιin it, where the depth of an occurrence of ιis the number of ι’s on the path from
the root to that occurrence. For instance, |P(ιx .x = (ιy. y = 0), ιz. z = 0)| = [1, 2, 1].
We show the measure before a step is greater than the measure after it, that is, we construct
a witness to

|D[E[ιx . B[x]]]| ># |D[C[B[φ1], . . . , B[φi], E[t], B[φi+1], . . . , B[φn]]]|
by tracing back each position p of ιafter the step, to a position of ιbefore the step (see
Figure 3):

• if p occurs in D or E after the step, it traces back to the corresponding position in
D or E before the step. Note that this yields a bijection between occurrences of ι

at the same depth;
• if p occurs in one of the B after the step, it traces back to the corresponding position

in B before the step (it exists by the assumption that E is a one-hole context); note
that in general many occurrences on the right trace back to a single occurrence on
the left, but each at a depth one less than on the left;

• p cannot occur in C , t , or one of the φ j since paraphrases were assumed to be
description-free.

This shows that the measure decreases in each description elimination step, entailing ter-
mination of the elimination process. To conclude, note that a normal form of an expression
for a predicate logic formula does not contain ι’s: if it would, an outermost such would
exist which would be eliminable from the smallest formula encompassing it (which exists
by the assumption that the expression is a formula and there are no binding operators in
predicate logic, cf., Remark 5.12).

It remains to prove the claim. We show it is entailed by the general requirement that in a
higher-order rewrite system the free variables of the right-hand side of a rule be contained
in those of the left-hand side (here {F, G}), combined with the constraints imposed by the
specific types of the symbols in the signature �0(

ι). To see this, observe that G has type

Fig. 3. Tracing occurrences of ιback along a step.

384 GRABMAYER, LEO, VAN OOSTROM, VISSER

trm → prp, hence if it were to occur nested then there would be an expression of type
trm having a subexpression of type prp. We show that is impossible, using the following
property.18

For a simply typed λ-term e : τ in β-normal form, the types of the sub-λ-terms of e are
all subtypes of either τ or the types of its free variables.

By the property, any subexpression of an expression of type trm has as type either trm
or a subtype of the type of one of the symbols in the signature, treating occurrences of
the latter as free variables. Inspection of the types of the symbols in the signature (note
that we assume the description operator ιnot to occur in the right-hand side!) then yields
that an expression of type . . . → prp can only occur nested into another such expres-
sion. In particular, an expressions of type prp can never occur nested in an expression of
type trm. �

REMARK 5.12. The restriction to formulas in the statement of Theorem 5.11 is nec-
essary, since the ambiguous description elimination rule does not allow to eliminate the
description operator from terms. For example, ιx .x = 0 is a normal form despite that it
contains a description operator. Even stronger, if terms would be allowed to contain bind-
ing operators, then the rule would not even suffice to eliminate the description operators
from all formulas, for example, not from 100 <

∑44
x=0

ιy.x + 1 = y (cf., the discussion
on ‘wrong’ reductions in §2).

The result might fail if one goes beyond first-order predicate logic. In particular if the
ambiguous description rule (1) could have shape

G(ιx . F(x)) → ι F(C[G(t)])

then termination would fail immediately, as witnessed by reducing the formula

P(ιx . Q(x, x), ιx . Q(x, x))

according to the wide-scope strategy, substituting in the first step λy.P(y, ιx . Q(x, x)) for
G and ιx . Q(x, x) for F . Note that the example is based on the possibility, absent from
first-order predicate logic, to construct a context C which takes a formula and yields a term.

Clearly, to overcome running into infinite sequences of description eliminations, the
wide-scope strategy should be abandoned. A solution is to adhere to the narrow-scope
strategy, that is, to rewrite descriptions only within the narrowest of scopes.

THEOREM 5.13. Independently of the form of the schematic paraphrase, the description
elimination system is normalizing. In particular, the narrow-scope strategy gives rise to a
computable, normalizing, and deterministic strategy. (F4)

Proof. By the narrow-scope convention we can write expressions in an alternative
way, by combining a context E consisting of a predicate symbol with all description
operators of which the symbol is the head-symbol of its (narrow-)scope, into a new quanti-
fier symbol θE , which we call a combination symbol. For instance, the expression
� = ∀ x . P(1, (ιy.x = y) + (2 + (ιz. z = 3 + (ιw.w = 4)))) is now rendered as
∀x . θC (1, λy.x = y, 2, λz.θD(z, 3, λw.w = 4)) with θC representing the combination C =
P(2, ι2 + (2 + ι

2)) of the predicate symbol P with its description operators (and the
symbols in between, here two +-symbols), and θD representing the combination

18 The property is known as the subformula property, the name deriving from the identification of
types with formulas through the Curry–Howard isomorphism.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 385

2 = (2+ ι2) of = with its description operator. The ι-degree of a combination symbol θE

is the number of ι’s in E . For instance, the ι-degrees of θC and θD are 2 and 1, respectively.
Because narrow scopes are employed when making combinations, each expression can be
unambiguously written using these combination symbols. The point is that the ambiguous
description elimination rule can then be rendered via rules for combination symbols of
shape

θE (t1, . . . , tn) → ι e

for all combination symbols θE , where each ti is either xi or λx . Fi (x), and the right-hand
side is constructed from the variables in the left-hand side and combination symbols. The

ι-degree of the rule is the ι-degree of θE . For instance, the first descriptor can be eliminated
from the expression � using Russell’s paraphrase by means of the following combination
rule

θC (x1, λx . F2(x), x3, λx . F4(x)) → ι∃ x . (∀ y. F2(y) ↔ x = y) ∧ θC ′(x1, x, x3, λx . F4(x))

with C ′ = P(2,2 + (2 + ι2)). Note that the ι-degree of θC ′ is one less than the ι-
degree of θC , simply because one of the ι’s has been eliminated. This holds in general:
all combination symbols in the right-hand side of a combination rule have an ι-degree one
less than the combination symbol in the left-hand side. That is, applying a rule of ι-degree
can only create rule instances of lesser degree (but rule instances already existing before
the step can be replicated many times). In the terminology of rewriting, this expresses
that the combination rules constitute a higher-order term rewriting system, here denoted
by NS , with bounded creation depth. Since higher-order term rewriting systems with
bounded creation depth are terminating, a consequence of the the so-called Finite Family
Developments Theorem (van Oostrom, 1997), we conclude that NS is terminating, and
hence that the narrow-scope strategy is indeed a normalizing strategy.

The narrow-scope strategy is evidently computable and easily made into a deterministic
strategy, for example, by always selecting to eliminate the leftmost ι-symbol. �

REMARK 5.14. Theorem 5.13 and its proof go through directly when adjoining binding
operators such as summation or quantifiers. In particular, rules with right-hand sides as in
Remark 5.8 or in the second part of Remark 5.12 would present no problem for termination,
unlike what was the case for Theorem 5.11. But of course the first part of Remark 5.12 still
applies: with extra binding operators the elimination process may terminate prematurely,
that is, in the resulting normal form description operators might remain.

5.3. Disambiguated descriptions as term rewriting system. The narrow-scope strat-
egy of the previous section can be viewed as a(n implicit) description elimination dis-
ambiguation device. Here we reflect on the notion of disambiguation of the description
elimination operation, show that reifying it leads naturally to the (explicit, binary) disam-
biguated description operator ιιι, and that the corresponding elimination rule (cf.,
§2) enjoys all good (term rewriting) properties.

Choosing to always eliminate the leftmost among the description operators in a narrow-
scope in the proof of Theorem 5.13, gives that for every combination symbol there is
exactly one rule in the higher-order term rewriting system NS . From a rewriting per-
spective this causes formulas to be unambiguous: every expression can be rewritten to a
unique description-free formula which will be reached in finitely many description elimi-
nation steps. Therefore NS represents a disambiguation of description elimination. The
combination symbols of NS are by their very nature complex, and a simpler way to

386 GRABMAYER, LEO, VAN OOSTROM, VISSER

disambiguate the ambiguous scope elimination rule is preferable. This raises the question
what disambiguation is. We view disambiguation as a way to choose in every formula the
scope of each description operator such that this choice is preserved along the elimination
process. Indeed, the culprit of the infinite elimination process witnessing Theorem 5.7 is
not choosing wide scopes for description operators, but rather that the choice of scopes is
not preserved, that is, the scope-widening (of the second description operator) taking place
along the elimination.

This raises the question how to represent scopes for description operators in the syn-
tax itself, in such a way that they are preserved along reduction. Russell and White-
head’s device was meant to serve that purpose, but suffers from several defects as was
discussed in §3. We base ourselves instead upon the observation that an occurrence of
G(ιx . F(x)), the left-hand side of the ambiguous description elimination rule in a formula,
is completely fixed by a pair of positions 〈p, q〉: the position p of the scope G and the
position q of the eliminated description ιx . F(x). Now such a pair of positions represents
a path through the expression and for these to be preserved along reduction, the paths
should not have overlap (should not have positions in common).

EXAMPLE 5.15. The pairs corresponding to the two eliminations in Remark 5.6 are
〈1, 2〉 and 〈ε, 2〉 and overlap on Positions 1 and 2.

The disambiguated description operator ι, as presented in §3, can be seen as a way to
reflect the choice of such a nonoverlapping set of pairs19 in the syntax: the notation singles
out in advance both the description operator and its scope. We show that this suffices, that
is, that the elimination process of ιιιenjoys good properties, in particular that it is confluent
and terminating. To that end we proceed as in §5.1, employing standard higher-order term
rewriting theory.

The elimination step ιιι(FG) �→ C[F, G] for the language of disambiguated descrip-
tions �0(

ιιι) gives rise to the rewrite rule

ιιι(λx . F(x), λy.G(y)) → ιιι e (2)

where e is the expression corresponding to C[F, G], that is, a higher-order term over the
signature with free variables among {F, G} of type trm → prp.

EXAMPLE 5.16. The disambiguated version of the ambiguous rule of Example 5.3 is

ιιι(λx . F(x), λy.G(y)) → ιιι ∃ x . (∀ y. F(y) ↔ x = y) ∧ G(x)

That this rewrite system enjoys good properties is a direct consequence of the following
three points:

Pattern The rewrite system is a so-called higher-order pattern rewrite system. The left-
hand side ιιι(λx . F(x), λy.G(y)) of the rewrite Rule (2) is of a special shape, it is a so-called
pattern (Mayr & Nipkow, 1998, Definition 3.1). This makes that matching is first-order
like: it is decidable (in linear time) and unitary, meaning that a matching substitution can
be searched for effectively and if it exists, it exists uniquely.

Orthogonal The rewrite system is orthogonal: distinct occurrences of ιιιin a formula can
be eliminated independently of one another, in the sense that a final result will not depend

19 Pairs 〈p, q〉, 〈p, q ′〉 overlapping at their root p are allowed as well: They can be disambiguated
by ordering them (in some arbitrary but fixed way).

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 387

on the order of their elimination. Technically, orthogonality of the system guarantees that
its associated rewrite relation is confluent (Mayr & Nipkow, 1998, Theorem 6.11). The
fact that the elimination process yields at most one formula without occurrences of the
description operator, independently of the order of elimination, is a direct consequence of
confluence (Terese, 2003, Theorem 1.2.2(i)).

Developments The rewrite system is a so-called higher-order recursive program scheme
(Khasidashvali, 1994): the left-hand side of the rule consists of just of a single symbol,
the description operator, and its right-hand side can be thought of as the definition of the
symbol. Since we assume that the description operator ιιιdoes not occur in the right-hand
side, definition unfolding (elimination) is even nonrecursive: along any rewrite sequence
starting from an expression e only copies of occurrences of ιιι in e are reduced, making
the rewrite sequence a so-called development (of those occurrences). This guarantees that
the associateted rewrite relation is terminating (Terese, 2003, Theorem 11.5.11). The fact
that the elimination process eventually yields some formula without occurrences of the
description operator, independent of the order of elimination, is a direct consequence of
termination.

These three proints justify speaking of ιιιas a disambiguated description operator: each of
its occurrences in a formula can be eliminated in a unique way and the elimination process
is unambiguous as well:

THEOREM 5.17. For a language with scope disambiguated descriptions (i.e., descrip-
tions considered as binary quantifiers), we have termination and unique normal forms for
the description elimination system, independent of the precise choice of the (schematic)
paraphrase. (F5)

Observe that higher-order term rewriting is a suitable formalism here: not only does it
allow for a concise and precise specification of the language and the elimination process,
but after that, the desired properties of the elimination process, confluence and termination,
follow from known higher-order term rewriting theory.

§6. A theorem in propositional logic. In Theorem 5.11 we proved that if a paraphrase
A[P, Q] that is equivalent to Russell’s paraphrase contains only one occurrence of P , then
the description elimination system is terminating (result F2 of the Introduction). In this
section, we show that for every language of predicate logic with an expressively complete
repertoire of propositional connectives such a paraphrase exists (result F3).

We establish F3 by proving a theorem of propositional logic that roughly says the
following. Let φ be a formula of propositional logic with connectives in {
, ¬, ∧}. Then
for every other expressively complete repertoire � of propositional connectives there is
an equivalent formula ψ with connectives in � such that every proposition symbol has at
most as many occurrences in ψ as in φ.

For a precise formulation of this result we make use of the terminology of universal
algebra. We start with the definition of �-algebra, and of how terms are interpreted in a
�-algebras.

DEFINITION 6.1. A (first-order) signature is a set of function symbols, where each f in�
is associated with an n ∈ N, the arity of f .

A �-algebra 〈A, �·�〉 consists of a domain A, and an interpretation function �·�
that maps every symbol f ∈ � with arity n to its interpretation, which is an n-ary function
� f � : An → A.

388 GRABMAYER, LEO, VAN OOSTROM, VISSER

Let A be a �-algebra, and let X = {x1, x2, x3, . . .} be a set of variables. The inter-
pretation of a term t ∈ T (�, X) in A is defined as the function that to every valuation
v : X → A assigns the interpretation �t�v ∈ A of t under v , which is inductively defined
by:

�x�v = v(x) � f (t1, . . . , tn)�v = � f �(�t1�v , . . . , �tn�v) .

If the interpretation of a term t in a �-algebra C is equal to the interpretation of a term
t ′ in a �′-algebra C′, then we say that t (in C) is equivalent to t ′ (in C′).

We define two notions of functional completeness for �-algebras, a strict, and a nonstrict
one.

DEFINITION 6.2. Let � be a signature, X = {x1, x2, x3, . . .} a set of variables, and let
A = 〈A, �·�〉 be a �-algebra.

We say that a term t ∈ T (�, X) represents in A a function γ : An → A if for all
valuations v : X → A:

γ (v(x1), . . . , v(xn)) = �t�v .

The �-algebra A is called functionally complete (strictly functionally complete) if for
every function γ : An → A there exists a term t ∈ T (�, X) (in the strict case: a term
t ∈ T (�, {x1, . . . , xn})) that represents γ .

The relation between the two notions of functional completeness can be succinctly
characterized as follows.

PROPOSITION 6.3. A �-algebra with a nonempty domain is strictly functionally com-
plete if and only if it is functionally complete and � contains a 0-ary function symbol.

Proof. Suppose that C = 〈A, �·�〉 is strictly functionally complete. Then clearly C is also
functionally complete. Let a ∈ A be arbitrary. By strict functional completeness, the 0-ary
function γ : A0 → A, ∅ �→ a can be represented by a term t ∈ T (�, ∅) without variables.
The existence of such a term implies that � contains at least one function symbol of arity
zero.

Suppose that C is functionally complete, and that it contains a 0-ary function symbol,
say c. For showing that C is strictly functionally complete, let γ : An → A be arbitrary,
with some n ∈ N. We have to show the existence of a term t ∈ T (�, {x1, . . . , xn}) that
represents γ . Since C is functionally complete, there exists a term t ′ ∈ T (�, {x1, x2, . . .})
that represents γ . But then for the result t of substituting c in t ′ for each occurrence of a
variable other than x1, . . . , xn it holds: t ∈ T (�, {x1, . . . , xn}), and t represents γ . �

For the remainder of this section we restrict our attention to ‘boolean �-algebras’. In this
context, terms over � can be viewed as formulas of propositional logic with connectives
in �.

DEFINITION 6.4. A �-algebra is called a boolean �-algebra if its domain is {0, 1}. The
terms of a boolean �-algebra are called �-formulas.

While for boolean functions the nonstrict notion of functional completeness is more
widely used in the literature, the results in this section lend themselves better to a formula-
tion for strictly functionally complete boolean �-algebras (but see Remark 6.10 for results
concerning functionally complete boolean �-algebras). For an illustration of the difference
between these notions, consider two standard boolean �-algebras.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 389

NOTATION 6.5. We denote by �−
s := {¬, ∧} and by �s := {
, ¬, ∧} two standard

signatures for propositional logic. By C−
s we denote the boolean �−

s -algebra in which ¬
and ∧ are interpreted as usual, and by Cs the �s-algebra that extends C−

s by adding the
usual interpretation of the boolean constant
.

In contrast with Cs, which is strictly functionally complete, C−
s is only functionally com-

plete, because the 0-ary boolean function γ
 : {0, 1}0 → {0, 1}, ∅ �→ 1 (the interpretation
of
 in Cs) cannot be represented by a �−

s -formula without variables. Note, however, that
γ
 can be represented, employing a ‘dummy variable’, by the �−

s -formula ¬(¬ p ∧ p)).
The next lemma shows that for every strictly functionally complete boolean algebra,

negation can be formulated with only one variable.

LEMMA 6.6. Let C be a strictly functionally complete boolean �-algebra. Then there
exists a �-formula N (p) that in C is equivalent to ¬ p in Cs, and that has one occurrence
of p, and no occurrence of any other variable.

Proof. Let N (p, . . . , p) be a �-formula that in C is equivalent to ¬ p in Cs, and that has
n occurrences of p, each of which is indicated. Since C is strictly functionally complete,
we may assume that N (p, . . . , p) has no occurrences of other variables.

We show that if n > 1, then there exists a �-formula that is equivalent to ¬ p, with at
most to n − 1 occurrences of p, and no occurrence of any other variable.

So, suppose n > 1. Let F and T be �-formulas that do not contain variables, and that are
equivalent to ⊥ and to
, respectively; such formulas exist since C is strictly functionally
complete. Consider the formulas

A(p, . . . , p) := N (F, p, . . . , p) ,

B(p) := N (p, T, . . . , T) .

On the basis that N (p, . . . , p) defines negation, the following truth tables are possible:

In case (a) we are done, since then A(p, . . . , p) is equivalent to ¬ p, and it has n − 1
occurrences of p. It remains to argue further for case (b). Since

A(T, . . . , T) = N (F, T, . . . , T) = B(F),

the value of B at 0 has to be the same as the value of A at 1, and it follows that case (c) is not
possible for B. In the remaining case (d) we have again carried out the desired reduction,
since then B(p) is equivalent to ¬ p, and it has just one occurrence of p. �

For conjunction we have a similar result: for every strictly functionally complete boolean
�-algebra, conjunction can be represented by a �-formula with only two variables.

LEMMA 6.7. Let C be a strictly functionally complete boolean �-algebra. Then there
exists a �-formula C(p, q) that in C is equivalent to p ∧ q in Cs, and that has one
occurrence of p, one occurrence of q, and no occurrences of other propositional variables.

390 GRABMAYER, LEO, VAN OOSTROM, VISSER

Proof. Let C(p, . . . , p, q, . . . , q) be a �-formula that in C is equivalent to p ∧ q in
Cs, that has n occurrences of p and m occurrences of q, each of which is indicated, and
that does not have occurrences of other variables. It suffices to show that if n + m > 2,
then there exists a �-formula that is equivalent to p ∧ q that has n′ occurrences of p and
m′ occurrences of q with n′ + m′ < n + m, and that does not have occurrences of other
variables.

So suppose that n + m > 2. Furthermore, assume that n > 1. In case that n = 1 and
m > 1 the argument below can be carried out analogously. Let F and T be �-formulas that
are equivalent to ⊥ and
, respectively, and that do not contain variables. As guaranteed
by Lemma 6.6, let N (q) be a �-formula equivalent to ¬q, with precisely one occurrence
of q, and no occurrences of other variables. Now consider the formulas:

A(p, . . . , p, q, . . . , q) := C(F, p, . . . , p, q, . . . , q) ,

B(p, q, . . . , q) := C(p, T, . . . , T, q, . . . , q) .

On the basis that C(p, . . . , p) defines conjunction, the following truth tables are possible
for A and B:

We proceed by case distinction on the possibilities (a)–(d) for A, and will refer to the
possibilities (e)–(h) for B in order to treat cases for A that cannot be settled directly. In
case (b) we are done, because then A(p, . . . , p, q, . . . , q) is equivalent to p ∧ q, and it has
n−1 occurrences of p and m occurrences of q. In case (c), A(p, . . . , p, q, . . . , q) is equiv-
alent to p ∧ ¬q. This leads to the desired reduction, because then A(p, . . . , p, N (q), . . . ,
N (q)) is equivalent to p ∧ q and it has n − 1 occurrences of p and m occurrences of q. It
remains to argue further for the cases in which the truth table for A is (a) or (d).

We note that A(T, . . . , T, q, . . . , q) = C(F, T, . . . , T, q, . . . , q) = B(F, q, . . . , q),
and that therefore the values of B at 〈0, 0〉 and 〈0, 1〉 have to be the same as the values of
A at 〈1, 0〉 and 〈1, 1〉, respectively. This eliminates the cases (f) and (g). Hence for B the
cases (e) and (h) remain. However, in case (e) it follows that the formula B(p, q, . . . , q) is
equivalent to p ∧ q, and hence we are done, because this formula has only one occurrence
of p (and thus less than A) and m occurrences of q. In case (h), B(p, q, . . . , q) is equivalent
to ¬ p ∨ q . Hence the formula N (B(p, N (q), . . . , N (q))) is equivalent to p ∧ q, and it
has one occurrence of p (recall that n > 1) and m occurrences of q. Thus we have again
obtained a reduction of the desired kind. �

As an easy consequence of these two lemmas we obtain the result mentioned at the
beginning of this section.

THEOREM 6.8. Let C be a strictly functionally complete boolean �-algebra.
For every �s-formula φ there exists a �-formula ψ , such that ψ in C is equivalent to φ

in Cs, and each variable has in ψ at most as many occurrences as it has in φ.

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 391

Proof. Let F and T be variable-free �-formulas that in C are equivalent to ⊥ and to

, respectively. As we remarked before, such formulas exist since C is strictly functionally
complete. Let furthermore N (p) and C(p, q) be �-formulas that in C are equivalent to ¬ p
and to p ∧ q, respectively, with the properties stated in Lemma 6.6 and Lemma 6.7.

Now the theorem follows by induction on the structure of �s-formulas. �

REMARK 6.9. The theorem has a straightforward generalization: a similar claim holds
if we extend the standard signature �s with ∨, →, and any other connectives that have
the property that their interpretation can be represented by a �s-formula in which no
propositional variable has more than one occurrence. However, adding ↔ (bi-implication)
to the signature would invalidate the claim of the theorem, because for p ↔ q there is no
equivalent �s-formula with only one occurrence of p and one of q. This in turn follows
from the fact that, in each component, γ↔ is neither monotonic nor antimonotonic.

REMARK 6.10. For functionally complete boolean �-algebras C that are not necessar-
ily strictly functionally complete, the following two statements hold, where (i) is similar to
Lemma 6.6 and Lemma 6.7, and (ii) is similar to Theorem 6.8:

(i) There exist �-formulas N (p), C(p, q) that in C are equivalent to ¬ p and to p ∧ q,
respectively, that contain one occurrence of each of their indicated variables, and
that otherwise only contain occurrences of a single additional variable.

(ii) For every �s-formula φ there exists a �-formula ψ such that ψ in C is equivalent
to φ in �s, and such that each variable of φ has in ψ at most as many occurrences
as it has in φ, and ψ otherwise only contains occurrences of a single additional
variable.

Here (i) is an easy consequence of Lemma 6.6 and Lemma 6.7, and (ii) follows from (i) by
an analogous proof as that of Theorem 6.8.

Finally, we apply Theorem 6.8 to obtain the result F3 stated in the introduction.

THEOREM 6.11. Let L be a language of predicate logic with a functionally complete
set of propositional connectives, and with at least one of the quantifiers ∃ and ∀.

Then there exists a formula A[P, Q] in L that is equivalent to Russell’s paraphrase and
in which P occurs only once. (F3)

Proof. We assume that L contains the quantifier ∀. In case that L contains ∃ instead, it
can be argued similarly. Let � be the signature of propositional connectives of L , of which
we initially assume that it is strictly functionally complete (with respect to the boolean
�-algebra that is fixed by the semantics for L).

Let ψ0(p, q) ∈ T (�, {p, q}) be a �-formula that is equivalent to p ↔ q ; such a for-
mula exists since the set of propositional connectives is strictly functionally complete. Let
A0[Q] be the formula ∀y ψ0(Qy, x = y). Then A0[Q] is equivalent to ∀y (Qy ↔ x = y).

By Theorem 6.8 there exists a �-formula ψ1(p) with one occurrence of p that is equiv-
alent with ¬ p, and a �-formula ψ2(p, q) with one occurrence of each of p and q such
that ψ2(p, q) is equivalent to ¬(p ∧ q).

Now let A[P, Q] be the formula ψ1(∀xψ2(A0[Q], Px)). Then, A[P, Q] is equivalent to
¬∀x ¬(∀y (Qx ↔ x = y) ∧ Px), and hence also to Russell’s paraphrase, and P occurs
in A[P, Q] only once.

If the set � of propositional connectives is functionally complete, but not strictly func-
tionally complete, then we modify the argument slightly. In order to be able to apply Theo-
rem 6.8 we create a 0-ary connective by the means of predicate logic: arbitrary tautologies,

392 GRABMAYER, LEO, VAN OOSTROM, VISSER

or a formula like ∀x x = x in a language with equality, can be used as a substitute for the
0-ary connective
.20 �

A direct consequence of the Theorems 5.11 and 6.11 is that independently of what
specific complete repertoire of propositional connectives has been chosen, there exist
paraphrases equivalent to Russell’s paraphrase for which termination of the description
elimination system is guaranteed.

§7. Afterword. We feel that our paper underlines an important point. We think that
philosophers should know some logic, also from the new areas like logic & linguistics and
logic & computer science. We tried to illustrate the importance of a branch of logic &
computer science, to wit term rewriting. Term rewriting originated from logic in the work
of Church and Curry. It offers a more articulate and more dynamical vision of syntax than
what is provided by traditional logic. Term rewriting is an approach in the foundations of
computation. It has a level of generality that covers not only proof theory and, specifically
cut-elimination, but, for example, also semantical processes.

We hope to have given the reader at least an impression of how term rewriting provides
precisely the right framework to think about a technical question that emerges naturally
from a classical philosophical contribution: Russell’s theory of descriptions.

§8. Dedication. Dedicated to the memory of Joop Doorman (1928–2009). Joop Door-
man was an inspiring philosopher and a man of great honesty and integrity.

BIBLIOGRAPHY

Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic
Logic, 5, 56–68.

Fleischer, R. (2007). Die another day. In Crescenzi, P., Prencipe, G., and Pucci, G., editors.
FUN, volume 4475 of Lecture Notes in Computer Science. New York: Springer, pp. 146–
155.

Gödel, K. (1944). Russell’s mathematical logic. In Schilpp, P. A., editor. The Philosophy
of Bertrand Russell, volume 5 of The Library of Living Philosophers. Chicago, IL:
Northwestern University Press, pp. 123–153.

Khasidashvili, Z. (1994). On higher order recursive program schemes. In Sophie, T.,
editor. Trees in Algebra and Programming, 19th International Colloquium, CAAP’94,
Edinburgh, UK, April 1113, 1994, volume 787 of Lecture Notes in Computer Science.
New York: Springer, pp. 172–186.

Korp, M., Sternagel, C., Zankl, H., & Middeldorp, A. (2009). Tyrolean termination tool
2. In Proceedings of the 20th International Conference on Rewriting Techniques and
Applications, volume 5595 of Lecture Notes in Computer Science. Berlin: Brası́lia, pp.
295–304.

Kripke, S. (2005). Russell’s notion of scope. Mind, 114, 1005–1037.
Levy, J., & Villaret, M. (2000). Linear second-order unification and context unification

with tree-regular constraints. In Leo, B., editor. Rewriting Techniques and Applications,
11th International Conference, RTA 2000, Norwich, UK, July 10-12, 2000, Proceedings,
volume 1833 of Lecture Notes in Computer Science. Berlin: Springer, pp. 156–171.

20 Alternatively, one can make use of the Remark 6.10, (ii).

ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM 393

Mayr, R., & Nipkow, T. (1998). Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192(1), 3–29.

Moser, G. (2009). The Hydra battle and Cichon’s principle. Applicable Algebra in
Engineering, Communication and Computing, 20(2), 133–158.

Neale, S. (1990).Descriptions. Cambridge, MA:MIT Press.
Quine, W. V. O. (1937).New foundations for mathematical logic. American Mathematical

Monthly, 44, 70–80.
Quine, W. V. O. (1996). Mathematical Logic. Cambridge, MA: Harvard University Press.
Russell, R. (1905). On denoting. Mind, 14, 479–493.
Russell, B., & Whitehead, A. N. (1970). Principia Mathematica to ∗56. London:

Cambridge University Press.
Terese. (2003). Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge: Cambridge University Press.
van Oostrom, V. (1997). Finite family developments. In Proceedings of the 8th

International Conference on Rewriting Techniques and Applications, volume 1232 of
Lecture Notes in Computer Science. Berlin: Springer, pp. 308–322.

Wolfram, D. A. (1993). The Clausal Theory of Types, volume 21 of Cambridge Tracts in
Theoretical Computer Science. Cambridge: Cambridge University Press.

DEPARTMENT OF PHILOSOPHY
UTRECHT UNIVERSITY

JANSKERKHOF 13A, UTRECHT, THE NETHERLANDS
E-mail: clemens.grabmayer@phil.uu.nl, joop.leo@phil.uu.nl,

vincent.vanoostrom@phil.uu.nl, albert.visser@phil.uu.nl

