
Bisimulation Slices and Transfer Functions

Clemens Grabmayer

Gran Sasso Science Institute, L’Aquila, Italy
clemens.grabmayer@gssi.it

Abstract

We motivate basic concepts for the transfer of specifications from one system to another
that we are developing in the context of the process semantics of regular expressions with
respect to bisimilarity. Specifically we introduce: ‘bisimulating slices’, which relate parts of
labeled transition systems (LTSs) without regard for the context; ‘grounded bisimulation
slices’, which relate parts of a single LTS in such a way that these slices can easily be
extended into bisimulations; ‘transfer functions’, which are functional bisimulations, and
as such permit to transfer specifying expressions (process specifications, programs) be-
tween LTSs; ‘local transfer functions’, which are functional grounded bisimulation slices;
and ‘elevations of sets of states above’ an LTS, which are partial unfoldings of an LTS.

We give definitions and state basic results that link them. While purpose-built for the
transfer of regular-expression specifications of processes between LTSs, these ideas might
be useful in other situations as well. We are interested in finding links to similar concepts.

We report on concepts that we currently develop for linking specifications of finite-state
processes that are represented by regular expressions. The motivating goal is to prove equal, in
an equational proof system, any two specifications of processes that have the same behavior in
the specific sense of being bisimilar. Two expedient tools for this purpose are the minimization
of labeled transition systems (LTSs) under bisimilarity, and the transfer of specifications via
functional bisimulations. In the context of our work we have to deal with LTSs that are not
minimized optimally, but in which self-bisimulations can be decomposed into ‘slices’ that relate
states in common strongly connected components. In order to adapt to this situation, we aim to
transfer specifications also via slices of bisimulations that behave as functions locally. For this
reason we formally define, in Section 1, ‘bisimulating slices’ and ‘grounded bisimulation slices’.
Subsequently in Section 2 we link ‘local transfer functions’ (functional grounded bisimulation
slices) to ‘transfer functions’ (functional bisimulations) via ‘elevations’ of their co-/domains.
Finally we informally explain how we intend to use these concepts to show that specifications
are provably invariant not only under transfer functions, but also under local transfer functions.

1 Bisimulating slices and grounded bisimulation slices

By a labeled transition system (LTS) we here mean a 4-tuple L = 〈T,A,→, ↓〉 where T is a set
of states, A is a set of actions, → ⊆ T × A × T is a transition relation, and ↓ ⊆ T is a set of
terminating states (or states with immediate termination).

We define a ‘bisimulating slice’ between two LTSs L1 and L2 as a binary relation B between
their state sets for which the forth-, and the back-condition of a bisimulation is only required for
transitions within the active domain of B, and within the active codomain of B, respectively.
Our use of the term ‘slice’ is inspired by its use by Baeten, Bergstra, and Klop in [1] for patterns
of context-free process graphs that facilitate the construction of regular infinite bisimulations.

Definition 1.1. We consider two LTSs Li = 〈Ti,A,→i, ↓i〉 for i ∈ {1, 2}. A bisimulating slice
between L1 and L2 is a binary relationB ⊆ T1×T2 with active domainW1 := domact(B) = π1(B)
and active codomain W2 := codact(B) = π2(B), where πi : T1 × T2 → Ti, πi(〈t1, t2〉) = ti, for
i ∈ {1, 2}, such that B 6= ∅, and for every 〈t1, t2〉 ∈ B the following conditions hold:



Bisimulation Slices and Transfer Functions Clemens Grabmayer

a

b cd

a

b c e

a

b cd

a

cb e

L L

Figure 1: Example of a grounded bisimulation slice B on an LTS L given by the magenta links.

By adding identity pairs, the brown links, a bisimulation B on L is obtained, see Prop. 1.3.

(forth)s ∀a ∈ A ∀t′1 ∈ T1
(
t1

a−→1 t
′
1 ∧ t′1 ∈W1 =⇒ ∃t′2 ∈ T2

(
t2

a−→2 t
′
2 ∧ 〈t′1, t′2〉 ∈ B )

)
,

(back)s ∀a ∈ A ∀t′2 ∈ T2
(
∃t′1 ∈ T1

(
t1

a−→1 t
′
1 ∧ 〈t′1, t′2〉 ∈ B

)
⇐= t2

a−→2 t
′
2 ∧ t′2 ∈W2

)
,

(termination)s t1↓1 ⇐⇒ t2↓2 .
The condition (forth)s entails t′2 ∈W2, and the condition (back)s entails t′1 ∈W1. Furthermore,
by a bisimulation slice between L1 and L2 we mean a bisimulating slice between L1 and L2 that
is contained in a bisimulation between L1 and L2.

Bisimulation slices are related to bisimulations as follows. Every bisimulation slice B be-
tween LTSs L1 and L2 is a bisimulation between the full sub-LTS of L1 on domact(B), and
the full sub-LTS of L2 on codact(B). A bisimulation slice B between LTSs L1 and L2 is a
bisimulation if domact(B) and codact(B) are transition closed in L1 and in L2, respectively.

In order to guarantee that a bisimulating slice B on a single LTS L can be extended into a
bisimulation on L, different sufficient conditions are conceivable. The simplest one is to require
that any transition from a state ti with i ∈ {1, 2} of a pair 〈t1, t2〉 ∈ B that leaves the active
domain of B, or accordingly, the active codomain of B, can be joined by a transition to the
same target state with the same action label from the other state t3−i. This idea leads us to
the definition of ‘grounded bisimulation slices’, and the containment result in Prop. 1.3 below.

Definition 1.2. Let L = 〈T,A,→, ↓〉 be an LTS. A bisimulating slice (a bisimulation slice) on
an LTS L is a bisimulating slice (and respectively, a bisimulation slice) between L and L itself.

We say that a bisimulating slice B ⊆ T × T on an LTS L = 〈T,A,→, ↓〉 is a grounded
bisimulation slice if for all 〈t1, t2〉 ∈ B the following additional forth/back conditions hold:

(forth)g ∀a ∈ A ∀t′1 ∈ T1
(
t1

a−→ t′1 ∧ t′1 /∈W1 =⇒ t2
a−→ t′1 ∧ t′1 /∈W2

)
,

(back)g ∀a ∈ A ∀t′2 ∈ T1
(
t1

a−→ t′2 ∧ t′2 /∈W1 ⇐= t2
a−→ t′2 ∧ t′2 /∈W2

)
.

where W1 := domact(B) is the active domain, and W2 := codact(B) the active codomain of B.

Proposition 1.3. For every grounded bisimulation slice B ⊆ T×T on an LTS L = 〈T,A,→, ↓〉,
the relation B := B ∪ === is a bisimulation on L.

In Fig. 1 we provide an example for this proposition. We illustrate a grounded bisimulation

slice B on an LTS L, and its extension B into a bisimulation on L.

2 Transfer functions and local transfer functions

While the grounded bisimulation slice B in Fig. 1 is functional, this does not hold for the extend-
ing bisimulation. Hence specification transfer via B is not clear immediately. In this section we
will link functional grounded bisimulation slices, which are graphs of a ‘local transfer functions’

2



Bisimulation Slices and Transfer Functions Clemens Grabmayer

according to the definition below, to ‘transfer functions’ that define a functional bisimulations.

Definition 2.1. A transfer (partial) function between LTSs L1 and L2, for Li = 〈Ti,A,→i, ↓i〉
where i ∈ {1, 2}, is a partial function φ : T1 ⇀ T2 whose graph {〈t, φ(t)〉 | t ∈ T1} is a bisimu-
lation between L1 and L2.

A local-transfer (partial) function on an LTS L = 〈T,A,→, ↓〉 is a partial function φ : T ⇀ T
whose graph {〈t, φ(t)〉 | t ∈ T} is a grounded bisimulation slice on L.

Local-Transfer functions can be linked to transfer functions via the concept of ‘elevation LTS’
EW(L) of a set W of states above a LTS L = 〈T,A,→, ↓〉, which is constructed as follows. Its
set of states consists of two copies of the set T of states of L, the ‘ground floor’ T ×{0}, and the
‘first floor’ T ×{1}. These two copies of T are linked by copies of the corresponding transitions
of L with the exception that transitions 〈t, a, t′〉 of L with t′ /∈W do not give rise to a transition
〈〈t, 1〉, a, 〈t′, 1〉〉 on the first floor, but are redirected as transitions 〈〈t, 1〉, a, 〈t′, 0〉〉 to target
the corresponding copy 〈t′, 0〉 of t′ on the ground floor. The sub-LTS of EW(L) that consists of
all transitions between vertices on the ground floor is an exact copy of the original 1-LTS L.
Yet within the elevation EW(L) of W above L, a number of vertices on the ground floor will
have additional incoming transitions from vertices on the first floor.

Definition 2.2. Let L = 〈T,A,→, ↓〉 be an LTS, and let W ⊆ T be a subset of the vertices of
L. The elevation of W above L is the LTS EW(L) = 〈TEW

,A,→EW
, ↓EW

〉 :

TEW
:= T × {0,1} , →EW

:=
{
〈〈t1, 1〉, a, 〈t2, 1〉〉

∣∣ 〈t1, a, t2〉 ∈ → ∧ a ∈ A ∧ t2 ∈W
}

∪
{
〈〈t1, 1〉, a, 〈t2, 0〉〉

∣∣ 〈t1, a, t2〉 ∈ → ∧ a ∈ A ∧ t2 /∈W
}

∪
{
〈〈t1, 0〉, a, 〈t2, 0〉〉

∣∣ 〈t1, a, t2〉 ∈ →} .
↓EW

:=
{
〈t, i〉

∣∣ t ∈ T, i ∈ {0,1} , t↓} ,
Lemma 2.3. Let L = 〈T,A,→, ↓〉 be an LTS. Let W ⊆ T be a subset of its set of states. Then
the projection function π1 : T × {0,1} → T , 〈t, i〉 7→ t is a transfer function from EW(L) to L.

Proposition 2.4. Let L = 〈T,A,→, ↓〉 be an LTS. Every local-transfer function φ : T ⇀ T
on L with field W := field(φ) := dom(φ) ∪ ran(φ) can be lifted to a transfer function:

φ̂ : (T × {0,1}) −⇀ (T × {0,1})

〈t, i〉 7−→ φ̂(〈t, i〉) :=


〈φ(t), i〉 if i = 1 ∧ t ∈ dom(φ) ,

undefined if i = 1 ∧ t /∈ dom(φ) ,

〈t, i〉 if i = 0 ,

on the elevation EW(L) of W above L such that the diagram below commutes on the first floor

of EW(L), i.e. (π1 ◦ φ̂)(〈t, 1〉) = (φ ◦ π1)(〈t, 1〉) for all t ∈ dom(φ):

L L local transfer function φ (grounded functional bisimulation slice)

projections π1 are transfer functions (functional bisimulations)

EW(L) EW(L) transfer function φ̂ (functional bisimulation)

φ

φ̂

π1 π1

In Fig. 2 we illustrate the statement of this proposition for obtaining a transfer function
from the local transfer function underlying the grounded bisimulation slice B in Fig. 1.

Finally we informally describe the purpose for which we are developing these concepts. We
first explain how we used transfer of specifications of regular expressions via transfer functions
in [2], and then sketch the extension of this technique to local transfer functions as defined here.
By a specification of an LTS L we mean a function S : T → Exp from the states T of L to a
set Exp of process expressions in a formalism like Basic Process Algebra BPA.

3



Bisimulation Slices and Transfer Functions Clemens Grabmayer

a

b

c

d

a

b

c

e

a

b

c

d

a

b

c

e
first floor first floor

a

b c
d

a

cb
e

a

b c
d

a

cb
e

ground
floor

EW(L)

ground
floor

EW(L)

Figure 2: The dashed magenta links form a functional bisimulation that defines a transfer
function φ̂ on the elevation EW(L) of W := domact(B) ∪ codact(B) over L, for the grounded

bisimulation slice B on the LTS L in Fig. 1. Hereby φ̂ results via the statement of Prop. 2.4 from
the local transfer function φ on L whose graph is the grounded bisimulation slice B in Fig. 1.

In a completeness proof [2] for a proof system P for the process semantics of regular expres-
sions modulo bisimilarity we used the following technique for showing that process specifications
are provably equal at bisimilar states. It is based on the following two lemmas: (P) LTS specifi-
cations can be pulled backwards over functional bisimulations. (U) Specifications of LTSs that
satisfy a certain structural property P are unique modulo provability in P. — On this basis, one
can argue as follows. Suppose that φ : T1 → T2 is a functional bisimulation between LTSs L1

and L2 where L1 satisfies P. Let S1 and S2 be specifications of L1 and L2, respectively. Then
by (P), S2◦φ is a specification of L1. By (U), S1(t) =P (S2 ◦ φ)(t) = S2(φ(t)) holds for all states
t ∈ T1 of L1, where =P indicates provable equality in P. This shows that the specifications S1

of L1 and S2 of L2 are provably equal in P at all bisimilar vertices that are linked by φ.
Based on Prop. 2.4, this technique for showing provable invariance of specifications, with

respect to a proof system P, can be adapted from transfer functions to local-transfer functions,
if additionally the structural property P in (U) lifts to elevations of LTSs. Suppose that
φ : T ⇀ T is a local-transfer function on an LTS L that satisfies P. Let S be a specification
of L. Then by (P), S ◦ π1 is a specification on EW(L) for W := field(φ), and the same holds

for S ◦ π1 ◦ φ̂ on dom(φ̂). By the additional assumption, also EW(L) satisfies P. Then by (U),

S ◦ π1 and S ◦ π1 ◦ φ̂ are provably equal in P, for all states in dom(φ̂) ⊇ dom(φ)× {1}. Hence

S(t) = (S ◦ π1)(〈t, 1〉) =P S ◦ π1 ◦ φ̂(〈t, 1〉) = (S ◦ φ ◦ π1)(〈t, 1〉) = S(φ(t)), for all t ∈ dom(φ),
where we use diagram commutativity on the first floor as stated by Prop. 2.4.

References

[1] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Decidability of Bisimulation Equivalence
for Processes Generating Context-Free Languages. J. ACM, 40(3):653–682, 1993.

[2] Clemens Grabmayer and Wan Fokkink. A Complete Proof System for 1-Free Regular Expres-
sions Modulo Bisimilarity. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’20, page 465–478, New York, NY, USA, 2020. ACM.

4


	Bisimulating slices and grounded bisimulation slices
	Transfer functions and local transfer functions

