
Infinite streams

Jörg Endrullis∗, Clemens Grabmayer†,
Dimitri Hendriks‡, and Jan Willem Klop§

February 11, 2009

Abstract

Infinite streams of data are interesting from various points of view: Theo-
retically, because they are a paradigm example for the application of coal-
gebraic techniques as well as infinitary rewriting techniques. Practically,
because infinite streams arise naturally in several applications concerning
data transmissions. And graphically, because they can be visualized by
‘drawing turtles’ as graphic trajectories that display curious patterns, from
aesthetically beautiful to intractably chaotic. In this note we discuss some
of these aspects.

1 Background and context

The background and context of this note is the work done during the last three
years in the framework of NWO BRICKS-project Infinity, a cooperation project
of VU Amsterdam, CWI Amsterdam, and Utrecht University. The main objec-
tive of that work is to study infinite objects, typically given by recursion equa-
tions, from various points of view, to wit, proof theory (find complete proof
systems and their relations), rewrite theory (in particular infinitary rewriting),
and coalgebraic techniques. The present authors at the VU and the UU were es-
pecially concerned with the specialized area of infinite streams over the natural
numbers or booleans 0, 1. In particular we zoomed in on the problem of recog-
nizing the well-definedness of recursive stream specifications, better known as
‘productivity’ after a proposal of Dijkstra [7], using familiar operators such as
tail, zip, even, odd, etc. In fact we outlined a rather expressive format of such
stream operators or functions, called the pure stream format, and proved de-
cidability of productivity for recursive stream definitions staying within in the
pure format.

∗Dept. of Computer Science, Vrije Universiteit Amsterdam, e-mail: joerg@few.vu.nl .
†Dept. of Philosophy, Universiteit Utrecht, e-mail: clemens@phil.uu.nl .
‡Dept. of Computer Science, Vrije Universiteit Amsterdam, e-mail: diem@cs.vu.nl .
§Dept. of Computer Science, Vrije Universiteit Amsterdam, e-mail: jwk@cs.vu.nl .

1

2 History: streams in various disciplines

Infinite streams, also called infinite sequences, infinite words, or ω-words, are
the subject of study in several disciplines. A landmark was the work of Axel
Thue, who devised in 1906 infinite sequences of symbols avoiding certain sim-
ple patterns such as squares ww or cubes www where w is a finite word. He
introduced the famous sequence 0110100110010110 . . . that is obtained from the
morphism 0 → 01, 1 → 10 with initial word 0. This sequence is cube-free and
turned out to be ubiquitous indeed (see [1]), and was rediscovered by Marston
Morse in 1921 in the mathematical context of dynamical systems and ergodic
theory. The Thue–Morse sequence is also known to be an ‘automatic sequence’
(see [2]), and in particular it is a morphic sequence or D0L sequence. In the
terminology of [2], the sequence is obtained by a ‘substitution’, another word
for morphism.

So infinite streams (we will often just call them streams) arise in theoretical
computer science, in particular in the areas of formal languages and combina-
torics, and also in mathematics, with applications in dynamical systems and
number theory. They also appear on the more practical side of computer sci-
ence where functional programming languages reside [17].

3 Productivity

The notion of productivity (sometimes also referred to as liveness) was first
mentioned by Dijkstra [7]. Since then several papers [18, 15, 5, 11, 17, 4] have
been devoted to criteria ensuring productivity. Technically, the common essence
of these approaches is a quantitative analysis, in terms of a quantitative in-
put/output behaviour of a stream function f by a ‘modulus of production’ νf :
Nk → N with the property that the first νf(n1, . . . , nk) elements of f(t1, . . . , tk)
can be computed whenever the first ni elements of ti are defined. We have
adopted and elaborated this approach; in [9, 10, 8] we describe a calculus by
means of which we can compute composition, infimum and fixed points of
periodically increasing production functions.

A general observation is that productivity is in some sense the infinitary
analogon of finitary termination, a notion that is widely studied in term rewrit-
ing, and for which there nowadays exists an extensive tool technology.

Let us now consider two easy examples, that illustrate the essence of the
productivity problem. A specification of the Thue–Morse stream is given in
Figure 1. For this specification it is fairly easy to see, or even to prove, that it is
productive in the sense that unfolding (by infinitary rewriting [12], to be pre-
cise) the definitions will never stagnate, but will ‘always eventually’ produce
more elements of the stream. In short, the specification is productive.

Now let us consider a second example:

J = 0 : 1 : even(J) (1)

2

M = 0 : zip(inv(M), tail(M))

tail(x : σ) = σ zip(x : σ, τ) = x : zip(τ, σ)

even(x : σ) = x : odd(σ) inv(0 : σ) = 1 : inv(σ)

odd(x : σ) = even(σ) inv(1 : σ) = 0 : inv(σ)

Figure 1: A pure specification for the Thue–Morse stream.

where even is defined as before. Although at first glance this specification looks
perfectly OK, it nevertheless is not productive: it only produces 4 elements and
then continues with infinitely long unproductive calculations. It will produce
an infinitary normal form, namely 0 :1 :0 :0 :evenω, but this is not good enough:
we want infinite normal forms built from constructors only, not including un-
evaluated function calls.

These two examples are setting the scene. In more complicated specifica-
tions it is not easy to see whether they are productive or not. In fact, the notion
is in general undecidable. So we have to find a restricted format for which
productivity is still decidable, but such that it is still sufficiently expressive.

In [9, 8, 10] we have defined and analyzed such a restrictive yet expressive
format. We will refrain here from stating the full technical definition, but a
good first impression is given by the examples in this section. Basically, the
specification is a layered one: in the top-layer, there is a recursive definition of
the intended stream constant, like M; the recursive definition may actually be
a system of recursive equations. In the second layer, a declaration of stream
functions is given, like zip. In the third and last layer, we declare the data func-
tions involved. The whole specification consists of orthogonal rewrite rules,
thereby guaranteeing confluence, and other useful properties.

Now for this restricted format we do have decidability. And not only theo-
retical decidability, but practical decidability. We have developed a tool, avail-
able at http://infinity.few.vu.nl/productivity/ that accepts such
specifications, and yields the verdict “productive”, or “not productive, only
producing n elements”. The tool produces a pdf file with the productivity
analysis in full detail. An example for Thue–Morse is in Figure 2; an example
for the unproductive stream specification J is in Figure 3.

Let us consider a variation on the specification for M given in Figure 1.
There the use of the ‘fine’ definition of zip is crucial. If we replace the definition
of zip by the ‘coarser’ one: zip∗(x : σ, y : τ) → x : y : zip∗(σ, τ), then the spec-
ification produces only one element. The reason is that in rewrite sequences
starting from M, the second argument of zip∗ will never match with a stream
constructor. The constant M rewrites, in the limit, to an infinite term with no
reducible expressions in it, and hence to an infinite normal form. However,
as mentioned before, due to the stacking of unevaluated function calls, this is
not a constructor normal form as required for productivity. The altered specifi-
cation therefore is not productive. This shows that one has to be careful when
replacing stream functions by variants that are ‘extensionally equivalent’; the

3

[M] = µM.•([zip]([inv](M), [tail](M)))

= µM.•(4(box(−++, box(−+,M)), box(+−+, box(−−+,M))))

�R µM.•(4(box(−++,M), box(+−−++,M)))

�R µM.box(+−+,4(box(−++,M), box(+−−++,M)))

�R µM.4(box(+−+, box(−++,M)), box(+−+, box(+−−++,M)))

�R µM.4(box(+−+,M), box(++−−++,M))

�R 4(µM.box(+−+,M), µM.box(++−−++,M))

�R 4(src(∞), src(∞))

�R src(∞)

Figure 2: Output of our productivity decision tool: a computation yielding that eval-
uation of the stream constant M in the specification of Figure 1 can generate infinitely
many data-elements, establishing the specification’s productivity.

[J] = µJ.•(•(box(−+−, J))) �R µJ.box(+−+, box(+−+, box(−+−, J)))

�R µJ.box(++−+, box(−+−, J)) �R µJ.box(++−+−, J) �R src(4)

Figure 3: For the specification (1) we obtain that J is not productive (only 4 elements
can be evaluated).

property of productivity is sensitive to such replacements, due to the ‘inten-
sional’ aspect of such stream specifications.

4 Complexity

Another challenging cluster of questions concerns the logical complexity, in
terms of the classical arithmetic and analytical hierarchy, of various notions in-
volved in stream specifications. The arithmetical hierarchy classifies sets by the
complexity of first-order formulas describing them, which in turn is defined as
the number of quantifiers of the prenex normal form. The analytical hierarchy
continues the classification using second-order formulas.

We present two of the main facts:

(i) Productivity is Π02. The problem of deciding whether a given orthogo-
nal term rewriting system is productive, is Π02-complete — a level of the
arithmetical hierarchy —, and thereby equivalent to the well-known uni-
form halting problem for Turing machines.

(ii) Infinitary normalization is Π11. A term rewriting system is called infinitary
normalizing if all (possibly transfinitely long) rewrite sequences end in a
(possibly infinite) normal form; the counterpart of normalization when

4

considering infinite terms. The complexity of this property exceeds the
arithmetical hierarchy and thereby classical first-order theory. Its precise
complexity is Π11, a level of the analytical hierarchy.

Both results are taken from work in progress. The result in item (i) has been ob-
tained by Endrullis, Grabmayer and Hendriks, item (ii) by Endrullis, Geuvers
and Zantema.

5 Comparing Streams

How can we compare streams? Not with respect to recursion-theoretic com-
plexity, because the streams we are interested in are all computable. Some of
the tools that come to mind are Kolmogorov complexity, and the technical no-
tion known as ‘subword complexity’. With respect to this measure morphic
streams (such as Thue–Morse, Toeplitz) have complexity at most quadratic,
whereas the subfamily of sturmian streams, to which the Fibonacci stream be-
longs, have the lowest possible complexity, namely n+ 1.

We will consider another approach. As we have seen, the streams Thue–
Morse and Toeplitz are strongly related, they are twin brothers, the one can
be easily converted into the other. From Thue–Morse to Toeplitz this is just
taking the differences of consecutive elements modulo 2, call this operation
diff, and the other way around undiff is equally simple. (Actually, there are two
undiff’s, undiff0 and undiff1, depending on choosing the first element.) Both
transformations can be easily defined in our framework.

Another way of defining these transformation operations such as diff is by
means of a finite state transducer (FST), in which we can read in, starting at the
unique root, an infinite word σ, on the way recording how each symbol of σ,
depending on the current state that we reached in the FST, is transformed into
a finite (possibly empty) word.

An example is M and M/3, where M is the Morse stream and M/3 is the
stream obtained by taking every third element. Then it is not hard to find
FST’s to transform M into M/3 and M/3 back into M. We therefore define that
the ‘degree’ of M and M/3 is the same. An interesting result obtained by Sebas-
tian Stern in his recent master thesis [16] at the VU, is that every arithmetical
subsequence (in fact some more) of Morse either is eventually periodic, or is
still equivalent to Morse, in that it can be transformed back to Morse.

To make a connection with the turtle trajectories: the turtles can be seen
as FST’s where stream symbols are uniformly translated into machine instruc-
tions such as turn, etc.

To wind up this story, we get a partial order of degrees of streams, where
a degree is an equivalence class of streams modulo the equivalence obtained
by streams being interconvertible via FST’s, see Figure 4. The trivial degree
is the degree 0 of eventually periodic streams. We get an ordering between
degrees in a straightforward way. Of special interest to us are minimal non-
trivial degrees (call them ‘prime’ degrees), that have the property that there is

5

no non-trivial degree less than that degree. Our favourite conjecture is that the
degree of Morse is such a prime degree. Prime degrees are not hard to find,
e.g. one is the degree generated by the stream 1101001000100001000001

prime
degree

M = T S

morphic stream degrees, countable

sup?
ascending sequence of degrees

eventually periodic streams

partial order of stream degrees, uncountable

?

= ?

Figure 4: The partial order of degrees of streams.

6 Graphics

Recently, a surprising connection was discovered by Holdener and Ma [14],
who showed that there is a strong connection beween the Thue–Morse stream
and the famous snowflake of Helge von Koch [13], also from 1906. The dis-
covery was done by using ‘turtle graphics’, an endeavour that was used in the
1980’s for didactical purposes: let a turtle with a writing head and a tiny mem-
ory draw a trajectory in the plane according to a simple program describing the
elementary drawing steps. In the present case, Holdener and Ma gave the tur-
tle as program the Thue–Morse sequence, where a 0 was interpreted as: draw
a line segment of one unit length in the direction in which the write head is
positioned, 0 turn the write head over π3 . The first 50 or so steps a trajectory
is drawn that crosses itself or overlaps itself, but does not evoke many asso-
ciations. However, when the drawing is continued, sometimes scaling back
the figure when it spills over the edges of the screen, a most remarkable phe-
nomenon appears: the trajectory starts to resemble the Koch snowflake. And
indeed, in the limit, one obtains precisely the snowflake. The limiting process
is interesting, in that it uses the Hausdorff metric.

Subsequently, it was pointed out by Allouche [3] that such a connection
between Thue–Morse and Koch was already implicit present in the work of

6

F.M. Dekking [6], in the terminology of exponential sums. An even simpler
rendering was noticed by the present authors: the Toeplitz stream T, that is the
stream of ‘first differences’ of the Thue–Morse stream, considered as a turtle
program, gives the Koch snowflake right away; see Figure 10. The drawing
instructions are clear from the figure. Note that the Koch snowflake nicely
connects the Thue–Morse stream and the Toeplitz stream: the first can be read
off above the snowflake, the second below the snowflake.

Another nice exercise is to consider the Sierpinski curve, see Figure 5, with

1

0

1 1

1

00

0

1

0

1 1

1

00

0

Figure 5: Construction of the Sierpinski triangle.

its associated 0-1-stream, and find a neat definition of that stream. It turns
out that the Sierpinski stream, as we will call it, belongs to a familiar fam-
ily of streams, namely the Toeplitz streams, that are in a simple sense ‘self-
generating’. Triggered by these turtle drawings, we generated several thou-
sands of such drawings, for various streams and various drawing instructions.

Several streams yield chaotic pictures, depending on the turtle instructions.
For the Fibonacci stream defined by the morphism 0 → 01, 1 → 0 starting on 0,
we often find regular, aesthetically pleasing patterns, see Figure 9.

An example of a stream whose turtle trajectories are chaotic is the Kolakoski
stream. This stream K is identical to the sequence of its ‘run-lengths’, that is,
K = 22 11 2 1 22 1 22 11 . . . , where the run-lengths of the alternating blocks
of similar symbols are 2 2 1 1 2 1 2 2 The Kolakoski stream can also be
specified in the format of [8], as follows:

K = f2(2 : tail(K))

f1(1 : σ) = 1 : f2(σ) f1(2 : σ) = 1 : 1 : f2(σ)

f2(1 : σ) = 2 : f1(σ) f2(2 : σ) = 2 : 2 : f1(σ)

For the turtle trajectory for K we find very chaotic patterns, see Figure 6. This
stream is the subject of many open problems.

7 Problems

We conclude by mentioning a number of areas for further developments:

(i) Integration into functional languages environments: In collaboration with
people from the functional programming community, we want to exam-
ine whether the results on automated recognition of stream productivity
[9, 10] can be used to improve compilers.

7

Figure 6: A turtle trajectory for the
Kolakoski sequence K for a prefix of
2 · 106 entries.

Figure 7: A turtle trajectory for the
Toeplitz stream, which can be obtained
by the morphism 0 → 11, 1 → 10 on
the initial word 1.

Figure 8: A turtle trajectory for the
Mephisto Waltz, the stream which can
be obtained from the morphism 0 →
001, 1 → 110 on the initial word 0.

Figure 9: A turtle trajectory for the Fi-
bonacci stream.

8

0

1

1

11

1

11

0

00

000
1

111

0

0

0

0

0 0

1

111

1

11

morse 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

k o c h

toeplitz 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

Figure 10: Construction of the Koch snowflake from the Toeplitz stream.

(ii) Relation between productivity and unique definedness: There is a close con-
nection between productivity of a stream specification S and the prop-
erty of S to have a unique solution. It is easy to see that productivity im-
plies unique solvability, but the converse direction fails in general. Here
we mention a recent interesting result by Zantema giving a criterion for
unique solvability in terms of finitary termination.

(iii) Connection with finitary termination: There is a large arsenal of termination
methods in the finitary setting, which can be applied in various ways (for
example by the result mentioned in (ii)) to stream specifications.

(iv) Connection with with lambda calculus theory of Ω-free Böhm Trees, i.e. totally
defined Böhm Trees.

(v) Graphical aspects: We aim to study the connections between the graphical
aspects of turtle renderings of streams, and the complexity properties of
the streams. At present this is ‘terra incognita’ for us.

References

[1] J.-P. Allouche and J. Shallit. The Ubiquitous Prouhet–Thue–Morse Se-
quence. In Sequences and Their Applications: Proceedings of SETA ’98, pages
1–16. Springer–Verlag, 1999.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Gen-
eralizations. Cambridge University Press, New York, 2003.

[3] J.-P. Allouche and G. Skordev. Von Koch and Thue–Morse revisited, 2006.

[4] W. Buchholz. A Term Calculus for (Co-)Recursive Definitions on Stream-
like Data Structures. Annals of Pure and Applied Logic, 136(1-2):75–90, 2005.

[5] Th. Coquand. Infinite Objects in Type Theory. In H. Barendregt and
T. Nipkow, editors, TYPES, volume 806, pages 62–78. Springer-Verlag,
Berlin, 1994.

9

[6] F.M. Dekking. On the distribution of digits in arithmetic sequences. In
Séminaire de Théorie des Nombres de Bordeaux, volume 12, pages 3201–3212,
1983.

[7] E.W. Dijkstra. On the Productivity of Recursive Definitions, 1980.
EWD749, available at http://www.cs.utexas.edu/users/EWD/.

[8] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Pro-
ductivity. In Logic for Programming, Artificial intelligence and Reasoning 2008,
number 5330 in LNCS, pages 79–96. Springer, 2008.

[9] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Pro-
ductivity of Stream Definitions. In Proceedings of FCT 2007, number 4639
in LNCS, pages 274–287. Springer, 2007.

[10] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Pro-
ductivity of Stream Definitions. Technical Report Preprint 268, Logic
Group Preprint Series, Department of Philosophy, Utrecht University,
2008. Accepted for publication in a forthcoming special issue of TCS.
Available at http://www.phil.uu.nl/preprints/lgps/.

[11] J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive
Systems Using Sized Types. In POPL ’96, pages 410–423, 1996.

[12] J.W. Klop and R.C. de Vrijer. Infinitary Normalization. In S. Artemov,
H. Barringer, A.S. d’Avila Garcez, L.C. Lamb, and J. Woods, editors, We
Will Show Them: Essays in Honour of Dov Gabbay (2), pages 169–192. College
Publications, 2005.

[13] H. von Koch. Une méthode géométrique élementaire pour l’étude de
certaines questions de la theorie des courbes planes. In Acta Math., vol-
ume 30, pages 145–174, 1906.

[14] J. Ma and J.A. Holdener. When Thue–Morse Meets Koch. In Fractals:
Complex Geometry, Patterns, and Scaling in Nature and Society, volume 13,
pages 191–206, 2005.

[15] B.A. Sijtsma. On the Productivity of Recursive List Definitions. ACM
Transactions on Programming Languages and Systems, 11(4):633–649, 1989.

[16] S. Stern. The Thue–Morse Sequence. Master’s thesis, Vrije Universiteit
Amsterdam, 2008.

[17] A. Telford and D. Turner. Ensuring Streams Flow. In AMAST, pages 509–
523, 1997.

[18] W.W. Wadge. An Extensional Treatment of Dataflow Deadlock. TCS, 13:3–
15, 1981.

10

