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Chapter 1

A \Computational Anomaly"

dis
overed by Vestergaard

in a typed !G3[mi℄-System

1

In [TS96℄ the Gentzen-systems G3[mi
℄ (for minimal, intuitionisti
 and 
lassi
al logi
)

are presented as a formulation of sequent-
al
uli (proof-systems that were developed by

G. Gentzen) with the ande
edents and su

edents of sequents 
onsisting of multisets of

formulas, where the stru
tural rules weakening and 
ontra
tion do not appear as expli
it

rules of the systems. In relation to the G3-systems these rules o

ur only as derived rules,

that is, as lemmas about derivability. This 
ontrasts with the basi
 Gentzen-systems

G1[mi
℄ and partly also with the systems G2[mi
℄ de�ned in [TS96℄: Whereas in the

G1-systems (that remain 
losest to Gentzen's original sequent-
al
uli LK and LJ) expli
it

weakening and 
ontra
tion rules are part of the systems, weakening does not longer appear

as a derivation rule in the G2-systems (it has instead been absorbed into the other rules

and be
ome a derived rule), but 
ontra
tion is still present there as a formal rule.

The designation G3 for Gentzen-systems without expli
it weakening and 
ontra
tion

rules originated with S.C. Kleene, who in [Kl52℄ presented a sequent-
al
ulus under this

name. The formulation of the G3-systems in [TS96℄ owes mu
h|at least in the intuition-

isti
 
ase|to a Gentzen-system GHPC for intuitionisti
 logi
 given by A.G. Dragalin in

[Drag79℄, in whi
h also the su

edents of sequents are permitted to 
onsist of mulitsets of

1

I do want to thank Prof. A.S. Troelstra for his suggestion to investigate the two di�erent, but related

topi
s in proof-theory treated in this thesis, for his 
areful reading of my drafts and for many ideas about

how to improve both the mathemati
al pre
ision and then also the style of expression and exposition; I

do think that I have learned mu
h through this from him. Prof. Troelstra has also found many errors and

mistypes for me, for whi
h I feel very thankful. (If other misprints or more severe errors have nevertheless

slipped through or there appear short
omings in pre
ision and the exposition-style, this only shows that I

have been negligent in wat
hing my responsibilities. I do want to learn to do better in the future.)

2
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formulas. In GHPC more than one formula may o

ur in the su

edent of a sequent (but

subje
t to restri
tions impli
it in the spe
i�
 formulation of the rules). This has 
ertain

advantages for the exposition of a proof for 
ut-elimination in GHPC, but on the other

hand it is an un
ommon formulation of a sequent-
al
ulus for intuitionisti
 logi
. For this

reason the system was reformulated in the G3[mi℄-systems with exa
tly one formula in

the su

edent of every sequent (as in Gentzen's LJ and Kleene's G3) by A.S. Troelstra in

[TS96℄.

The fa
t that theG3-systems do not 
ontain stru
tural derivation rules has noteworthy

e�e
ts on the stru
ture of possible 
ut-elimination pro
edures in these systems. In proofs

of 
ut-elimination for the G1-systems and in Gentzen's original proof for 
ut-elimination

in LK and LJ the lo
al transformation steps applied to a derivation, that are needed for

removing a 
ut or for redu
ing the depth of at least one subderivation of a 
urrently treated


ut, depend heavily on the use of the stru
tural rules weakening and 
ontra
tion

2

. This

is no longer in the same way possible in proofs for 
ut-elimination for the G3-systems.

Here two ways of 
arrying out su
h a proof are pra
ti
able: Either (1) in situations, where

a weakening or a 
ontra
tion is ne
essary to link a derivation D to other derivations by

rules of the system or by 
ut, 
ertain lemmas have to be relied on, that state, given

D is a 
utfree derivation, another derivation D

0


an e�e
tively be found, in whi
h the


orresponding weakening or 
ontra
tion has (in relation to D) already taken pla
e. Or

(2), expli
it weakening and 
ontra
tion rules are again permitted to o

ur temporarily

during the 
ourse of performing 
ut-elimination in a derivation for the purpose of making

some of the involved lo
al transformation steps possible, but have to be removed later

separately (and also regularly as part of the entire pro
edure at many o

asions).

To refer to these matters more pre
isely, the de�nition of the G3[mi℄-systems in the

spe
ial 
ase of their impli
ative fragments will be repeated here as well as the most im-

portant properties of these 
al
uli (that they still admit weakening and 
ontra
tion to be

derived rules). In the 
ase of the impli
ative fragments the most important parti
ularity

of the G3-systems is the asymmetri
 formulation of the L!-rule.

De�nition 1.1 (G3[mi℄ 's impli
ative fragments !G3m and !G3i). The formal

system !G3i , the impli
ative fragment of the system G3i in [TS96℄, is de�ned by the

following axioms and rules:

Ax P;�) P (P atomi
)

A;�) B

R!

�) A! B

A! B;�) A B;�) C

L!

A! B;�) C

2

In the 
ase of LK and LJ also \ex
hange" is ne
essary, sin
e Gentzen 
onsidered the ante
edents (as

well as the su

edents in the 
lassi
al 
ase) to be lists of formulas instead of sets or mulitsets.
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The impli
ative fragment !G3m of G3m is the same system as !G3i; !G3m and

!G3i will here together be referred to as!G3mi.

The 
ut-rule Cut relative to these systems for minimal and intuitionisti
 logi
 takes

on the shape

�) D D;�) C

Cut

��) C

.

Whenever !G3mi will be 
onsidered to be enri
hed by the additional presen
e of Cut,

the extended system will be denoted as either of!G3mi+Cut, respe
tively. �

The system!G3mi does not 
ontain weakening and 
ontra
tion rules

�) C

W

A;�) C

and

A;A;�) C

C

A;�) C

,

but has instead been formulated in su
h a manner, that these rules are derived or admis-

sible rules of the systems. This is the 
ontent of the following lemma.

Lemma 1.1. Suppose that the notation `

n

symboli
ally designates the notion of deriv-

ability in !G3mi by a dedu
tion of depth � n. Then for all A;C;�;� it holds:

(i) If `

n

�) C , then `

n

��) C.

(ii) If `

n

A;A;�) C , then `

n

A;�) C.

The proof of (i) 
an be done by an immediate indu
tion on n; (ii) 
an also be shown in

this way, but there is one non-obvious 
ase: This o

urs, if the formula to be 
ontra
ted

happens to be also the prin
ipal formula of an appli
ation of L! in the last step, i.e. in

the following situation:

D

0

`

n

B ! D;B ! D;�) B

D

1

`

n

D;B ! D;�) C

L!

`

n+1

B ! D;B ! D;�) C

.

(1.1)

The indu
tion hypothesis is appli
able to `

n

B ! D;B ! D;�) B (and gives `

n

B !

D;� ) B), but not dire
tly to `

n

D;B ! D;� ) C. For the purpose of treating this

premise of L! in (1.1) a

ordingly an additional lemma (right-sided inversion with respe
t

to L!) is usually applied �rst.

Lemma 1.2 (Inversion lemma with respe
t to the rule L!). For !G3mi the fol-

lowing holds for all A;B;C;� in the notation of the pre
eding lemma:

If `

n

A! B;�) C, then also `

n

B;�) C.

Proof. By a straightforward indu
tion on n.
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The argument in the 
ase (1.1) for the indu
tion-step in the proof of (ii) in Lemma 1.1


an now be 
arried through: By an appli
ation of Lemma 1.2 to the right premise of L!

in (1.1) `

n

D;B ! D;� ) C also `

n

D;D;� ) C follows. The indu
tion hypothesis


an then be applied to this latter statement and implies `

n

D;�) C. Together with the

already established statement `

n

B ! D;�) C the desired result

`

n

B ! D;�) B `

n

D;�) C

L!

`

n+1

B ! D;�) C

for the 
ompletion of the indu
tion step follows.

Lemma 1.2 
an also be interpreted as stating that the rule

A! B;�) C

Inv

B;�) C

,


alled inversion of L! (with respe
t to its right premise), is an admissible rule in the

system G3[mi℄.

The proof of 
ut-elimination for the G3-systems in [TS96℄ (there Theorem 4.1.2, p.77)

relies in some 
ases of lo
al transformation-steps on the possibility to perform 
ontra
tions

in a given derivation e�e
tively; that is, a form of Lemma 1.1 is applied in some situations

3

.

Thereby for the G3[mi℄-systems also an inversion-lemma with respe
t to the rule L!, a

version for the system 
onsidered 
omparable to its spe
ial 
ase Lemma 1.2 for!G3mi,


omes in impli
itly, sin
e the proof of the fa
t that 
ontra
tion is a derived rule in!G3mi,

depends on su
h an inversion-lemma (as des
ribed above). The proof of a 
ut-elimination

theorem for!G3mi is a
tually a spe
ial 
ase of the proof of 
ut-elimination for G3[mi℄

in [TS96℄, in whi
h Lemma 1.1 (whi
h relies on Lemma 1.2 impli
itly) 
an be used to

perform weakenings and 
ontra
tions to given derivations.

There is a very natural (many-to-one, but surje
tive) map from derivations in an

intuitionisti
 (or minimal) sequent 
al
ulus to natural-dedu
tion derivations, whi
h was

�rst des
ribed and utilized in the 
ontext of his dis
overy of \normalization" for natural-

dedu
tion derivations by D. Prawitz in [Pra65℄. The relation between sequent- and natural-

dedu
tion 
al
uli under su
h a map and the exa
t 
onne
tion between the 
on
epts of 
ut-

elimination and normalization in these systems was �rst deeply investigated in a paper

[Zu74℄ of J. Zu
ker.

He found out, that for a suitable LJ-near sequent-
al
ulus S and relative to a surje
tive

map � from S-derivations to natural-dedu
tion derivations (essentially a map like the

one used by Prawitz) 
ut-elimination steps in a S-derivation D and normalization-steps

on �(D) 
an simulate ea
h other (with respe
t to the 
onne
tion between these formal

systems as given by �), that is, (1) if for a S-derivation D a derivation D

0

is the result of

3

(A form of this lemma that is true for the 
onsidered G3-system (and not just for the impli
ative

fragments!G3i,!G3m of the systems G3[mi℄ as Lemma 1.1).)
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a 
ut-elimination step applied to D, then �(D

0

) 
an be the result of a �nite sequen
e of

normalization-steps performed in �(D), and (2) if for a S-derivation D a derivation

~

D

0

is

the result of a normalization-step performed in �(D), then there exists a S-derivation D

0

su
h that D

0

is the result of a �nite number of 
ut-elimination steps 
arried out starting

from D and �(D

0

) =

~

D

0

. (Zu
ker showed this result relative to a 
ompletely spe
i�ed

list of 
ut-elimination steps (the normalization-steps instead had already been given in

the form of a|almost entirely|�xed list by Prawitz), but for the negative fragment S

�

of his sequent-
al
ulus S only. By work of G. Pottinger in [Pott77℄ this result 
ould be

generalized to 
over a Gentzen-system for full intuitionisti
 logi
 (and even Zu
ker's system

S) by an appropriate 
hoi
e of the possible 
ut-elimination steps.)

R. Vestergaard in [Vest99℄ is interested in whether the exe
ution of 
ut-elimination

steps to a derivation D in the system!G3mi (a

ording to a usually applied pro
edure

in these systems) 
an interfere with the \
omputational meaning" of D in an irregular

manner. In a typed !G3mi-like 
al
ulus he gives an example of a sequen
e fD

n

g

n2N

of pairwisely di�erent derivations, su
h that every D

n

(for n 2 N ) is taken to the same

derivation D

0

by a 
ut-elimination pro
edure very near to the usual one for the untyped

system!G3mi, but where all derivations D

n

have di�erent \meanings". If these \
ompu-

tational meanings" were interpreted as the natural-dedu
tion images �(D

n

) of D

n

under

a map � similar to the one impli
itly given by Prawitz, this result would suggest that

the very smooth relationship between normalization on natural-dedu
tion derivations and


ut-elimination on Gentzen-system derivations|as it exists in the above sket
hed form

with respe
t to Zu
ker's LJ-near system S|
ould be seriously disturbed for the G3[mi℄-

systems.

1.1 A typed !G3m-system G

+

R. Vestergaard in [Vest99℄ 
onsiders a typed system of the impli
ative fragment!G3m

of G3m, a system, that will be referred to here as G

+

v

(in notational similarity to the

system G

+

, that will here be presented and used instead), where (1) the type-expressions

t assigned to a formula C in the su

edent of a 
on
lusion-sequent x

1

: A

1

; : : : ; x

n

: A

n

)

t : C (n 2 N ) of a derivation D des
ribe a 
orresponding natural-dedu
tion derivation D

�

with the 
on
lusion C from the marked assumption-
lasses [A

1

℄

x

1

; : : : ; [A

n

℄

x

n

very dire
tly,

and (2) 
ut-elimination in this typed system 
an still be done as suggested by the proof

of the 
ut-elimination theorem for the untyped G3[mi℄-systems in [TS96℄. Vestergaard

is interested in the \
omputational meaning" of derivations in the G3[mi℄-systems (one


ould understand the related natural-dedu
tion derivation here as this \meaning") and in

how the usual 
ut-elimination pro
edure for these systems interferes with this meaning.

His system is therefore tailor-made for the purpose of des
ribing 
ut-elimination on a

given derivation as a stepwise pro
ess of lo
ally applied transformations (a pro
ess that
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Vestergaard later des
ribes as one that 
an be exe
uted a

ording to rules of an appropriate

rewrite-rule system). Sin
e|as indi
ated earlier|the ne
essity of performing weakenings,


ontra
tions and appli
ations of an inversion-lemma often arises during the 
ourse of a 
ut-

elimination pro
ess for a derivation in a!G3mi-system, expli
it rules for su
h operations

had to be devised and taken into the system. These are expli
it additional rules that on

the one hand will allow to represent 
ut-elimination as a sequen
e of lo
al transition-steps,

but that on the other hand must be treated separately and ultimately have to be removed


ompletely to arrive at a 
ut-free derivation.

Vestergaard's system G

+

v

is very 
lose to the following system G

+

, that will be used

here instead.

De�nition 1.2 (The derivation-term annotated systems G

+

,G

+

0

). The formal sys-

tem G

+

, a typed version of G3m 's or G3i 's impli
ative fragment!G3mi is de�ned as

follows: The ante
edent of a sequent in this system is a multiset of variables of formula-

type (written as variable-annoted formulas), the su

edent 
onsists of a (rigidly) typed

derivation-term, whose free type-variables o

ur in the ante
edent. G

+

has the axioms

and rules as listed below:

Ax x : P;�) ax

x

P

;�

: P (P atomi
)

[x : A℄;�) t : B

R!

�) �x

A

:t

B

: A! B

x : A! B;�) t

0

: A [y : B℄;�) t

1

: C

L!

x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

�) t : C

mW

x

1

: A; : : : ; x

n

: A

n

;�)W

L

n

i=1

fx

A

i

i

g

(t

C

) : C

(x

1

: A

1

)

2

; : : : ; (x

n

: A

n

)

2

;�) t : C

mC

x

1

: A

1

; : : : ; x

n

: A

n

;�) C

L

n

i=1

fx

A

i

i

g

(t

C

) : C

x : A! B;�) t : C

Inv

y : B;�) I

x

A!B

;y

B

(t

C

) : C

Here the following abbreviations and 
onventions were used:

� The operator

L

(:)

i=(:)

denotes the union of multisets.

� Typed variables and terms are used in both the notations x

A

, t

B

and x : A, t : B,

whi
h are 
onsidered to be synta
ti
ally the same, but the longer versions x : A

and t : B informally refer to an assumption A labelled by x (in a 
orresponding

natural-dedu
tion derivation, 
f. se
tion 1.2) or a proof-term t of a G

+

-derivation

with B in the ante
edent of its 
on
lusion-sequent.
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� The notation with a typed variable in bra
kets [ : : : ℄ is here always to be understood

as in the following example: [x : A℄;� refers to one of the multisets ��

L

n

i=1

fx : Ag

(with n 2 N ), where x : A is assumed not to be an element of the multiset � (n = 0

is ex
luded here, i.e. x : A o

urs at least on
e in [x : A℄;�).

The system G

+

0

has the same axioms as G

+

, but 
ontains only the logi
al rules R!

and L! of G

+

, not also inversion Inv and the stru
tural rules mW and mC of this system.

The su

edents of the sequents appearing in a G

+

-derivation will be 
alled derivation-

terms of G

+

.

Any of the two systems S de�ned above 
an be enri
hed by the additional presen
e of

the 
ut-rule

�) t

0

: D [x : D℄;�) t

1

: C

Cut

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

to the system S+Cut. �

The multiple-weakening rule mW 
ould have been written more 
on
isely in the form

�) t : C

mW

��)W

�

(t

C

) : C

,

but was formulated more expli
itly in the above de�nition so as to allow 
omparison with

the more restri
tive (with respe
t to the form of its a
tive formulas) multiple-
ontra
tion

rule mC.

There are some noteworthy aspe
ts, in whi
h the systems G

+

de�ned above di�er

formally and 
on
eptionally from the system (here abbreviated with:) G

+

v


onsidered in

[Vest99℄:

(i) In Vestergaard's system G

+

v

also axioms x : A;� ) x : A are permitted, where

the prin
ipal formula A does not need to be atomi
. For G

+

the stronger 
ondi-

tion on axioms Ax as in the G3-systems from [TS96℄ (to refer to atomi
 prin
ipal

formulas only) was taken over. (This has no immediate 
onsequen
e with respe
t

to Vestergaard's result in the 
ase of a typed system with ante
edents 
onsisting of

multisets.)

(ii) Although Vestergaard's system also 
ontains a weakening rule, the derivation-terms

do not a

ount for its presen
e in a derivation. This is be
ause it looks as if the

phenomenon treated in [Vest99℄ has nothing to do with the fa
t that weakening

is not a formal rule in the G3-systems. Instead derivations are treated there as

\equivalen
e 
lasses" up to appli
ations of weakening, whi
h|although this 
ould

perhaps be made more pre
ise|seems a bit un
lear [to me, C.G.℄. For this reason

(and be
ause expli
it treatment of weakening does not 
ause too mu
h additional
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work and notation) the term notation in G

+

has been designed to re
e
t also the

e�e
ts of weakening by the introdu
tion of a multiple-weakening rule (in a form that

will be useful for the des
ription of the 
ut-elimination pro
edure impli
it in [TS96℄

(there Theorem 4.1.2 on p. 72) in the spe
ial 
ase for the systems G

+

).

(iii) To make it possible that a derivation-term des
ribes a G

+

-derivation 
ompletely,

also the variable-annotated formulas in the 
ontexts of axioms Ax had to be formally

taken into the term-notation.

(iv) With the ex
eption of the multiple-weakening 
onstru
t W

(:)

basi
ally the same

term-expressions are used in [Vest99℄ to designate appli
ations of rules (only slightly

di�erent expressions let x := yt

0

in t

1

are used there instead of let

x

(t

1

; yt

0

), the

notation used in [TS96℄ to des
ribe the appli
ation of a L!-rule).

(v) Vestergaard does not 
onsider the su

edent of a sequent in his system to be a rigidly

typed derivation-term. In his system a su

edent 
onsists of a single formula that is

annotated by a term t, that is not a type-expression, although it 
an also des
ribe a

derivation in his system pre
isely (up to o

urren
es and e�e
ts of weakenings, whi
h

are negle
ted). Derivation-(des
ribing-)terms in Vestergaard's system G

+

v

are only

looked upon as expressions that des
ribe a derivation in his system 
onstru
ted from

assumption variables x; y; z (and also of f; g; h, whi
h he uses ex
lusively for non-

atomi
 formulas) with the use of term-
onstru
tors referring to appli
ations of rules.

(This di�eren
e has some 
onsequen
es, that will be explained below. However,

these 
onsequen
es have no bearing on the phenomenon presented in [Vest99℄.)

A few more things have to be said about the last item: The sequents in Vestergaard's

system all have the form

x

1

: A

1

; x

2

: A

2

; : : : ; x

n

: A

n

) t : C ; (1.2)

where n 2 N , x

1

; : : : ; x

n

are untyped variables, A

1

; : : : ; A

n

; C are formulas, and t is a

derivation-term formed from untyped variables and derivation-terms by the use of term-


onstru
tors indu
tively as expressions

�x:t

0

; let y := xt

0

in t

1

; C

�

(t

0

) ; I

x;y

(t

0

) or t

1

J

J

Jx := t

0

K

K

K (1.3)

(where x; y are variables, t

0

; t

1

are terms (by the indu
tion-hypothesis of the de�nition)).

If the formula in the su

edent of (1.2) is regarded as the type of the derivation-term C,

it 
ould be said, that in this sequent all displayed variables and terms in (1.2) 
arry types,

but subterms of the typed term t

C

do not.

Sequents (1.2) of his system are furthermore assumed to be of the spe
ial kind that no

variable annotates two di�erent formulas in the ante
edent (a restri
tion that is taken into
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the de�nition of the axioms and rules of his system in the form of a ta
it side-
ondition);

but an annotated formula x : A may o

ur there several times (the ante
edents therefore

really may be proper multisets).

Vestergaard's motivation for this side-
ondition in his system is that he intends to

abstra
t away from the derivations as far as possible and that he wants to 
onsider them

only in the form of term-representations instead (and for this aim the side-
ondition really

makes sense); in Appendix A of [Vest99℄ he gives a proof for a statement that every

term (indu
tively de�nable from variables by the 
onstru
tors �, let, C, I and �J

J

J� := �K

K

K

in the above sket
hed way) really represents|under some mild restri
tions on the use

of bound variables|a derivation in his system (here 
alled:) G

+

v

. Although Vestergaard

apparently uses a ta
it 
onvention on the use of variables with the letters f; g ex
lusively

for the annotation of non-atomi
 formulas (
ontrary to his use of variables like x; y; z)

some serious doubts about this statement Lemma 17 on p.8 of [Vest99℄ seem justi�ed,

where [to me, C.G.℄ it looks as if the proof referring to Lemma 14 runs into troubles in the


ase of the two-premise rules L! and Cut. { This 
laim for an inverse map from terms (in

Vestergaard's notion as des
ribed shortly in (1.3)) to derivations in G

+

v

is not essential for

his main argument, sin
e by the de�nition of the axioms and rules in his system G

+

v

every

derivation is nevertheless represented by some derivation-term (whi
h is obvious from the

de�nition of the rules in this system).

These doubts about whether terms of Vestergaard's system G

+

v

really always represent

derivations led to the formulation of the systems G

+

in De�nition 1.2. In these systems

every derivation D really is uniquely determined by the derivation-term in the 
on
lusion-

sequent. It 
an be 
he
ked on the basis of an inspe
tion of the term-notation given together

with the rules of G

+

in De�nition 1.2, that every derivation

D

�) t : C

in G

+


an be

re
onstru
ted from the su

edent term t

C

(whi
h in the rules is written as t : C) in the


on
lusion of D indu
tively. Thereby the term t

C

also allows to rebuild the ante
edent �

of the 
on
lusion-sequent �) t : C of D indu
tively.

De�nition 1.3. The operation ant on G

+

+Cut-derivation-terms is de�ned indu
tively as

follows (where derivation-terms, typed variables and multisets of typed variables o

uring

below are assumed to be arbitrary su
h obje
ts appearing within a G

+

-derivation a

ording

to De�nition 1.2):

ant(ax

x

A

;�

) := fx : Ag � � ;

ant(�x

A

:t

B

) := ant(t

B

)	 [x : A℄ ;

ant(let

y

B

(t

C

1

; x

A!B

t

A

0

)) := ant(t

B

0

) ;

ant(W

�

(t

C

)) := ant(t

C

)�� ;

ant(C

�

(t

C

)) := ant(t

C

)	� ;

ant(I

x

A!B

;y

B

(t

C

)) := (ant(t

C

)	 fx : A! Bg)� fy : Bg ;
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ant(t

C

1

J

J

Jx

D

:= t

D

0

K

K

K)) := ant(t

D

0

)� (ant(t

C

1

)	 [x : D℄) :

(Here �;	 denote multiset-union and multiset-subtra
tion

4

respe
tively. An expression

like � 	 [x : A℄ means the deletion of all o

urren
es of x : A from the multiset �. The

outermost types of the terms (whi
h 
an be re
onstru
ted in an obvious way) on the right

side of the de�nition have been dropped for legibility.) �

Lemma 1.3. For every (G

+

+Cut)-derivation-term t

C

there is exa
tly one derivation D

in (G

+

+Cut) su
h that D is of the form

D

�) t : C

(� a multiset of formulas); for this derivation D moreover � = ant(t

C

) holds

Proof. By indu
tion on the synta
ti
al depth of t

C

, thereby examining all rules of G

+

+Cut

for the indu
tion-step.

1.2 A map � from G

+

0

+Cut-derivations to derivations a

typed!N[mi℄-system

Derivations in intuitionisti
 and minimal sequent-
al
uli 
an be asso
iated with a 
orre-

sponding natural-dedu
tion derivation in a very immediate and straightforward way as

was �rst des
ribed pre
isely by D. Prawitz in [Pra65℄:

\A proof in a 
al
ulus of sequents 
an be looked upon as an instru
tion

on how to 
onstru
t a 
orresponding natural dedu
tion. This is parti
ularly

evident in the 
ase of intuitionisti
 or minimal logi
. A top-sequent then 
orre-

sponds to a natural dedu
tion 
onsisting of just the formula that o

ur both in

the ante
edent and the su

edent. As we go downwards in the proof in the 
al-


ulus of sequents, we su

essively enlarge in two dire
tions the 
orresponding

natural dedu
tions at the bottom, applying the 
orresponding I-rules; when we


ome to appli
ations of ante
edent rules, we usually enlarge the 
orresponding

natural dedu
tions at the top, applying the 
orresponding E-rules." [ : : : ℄

\The proof in the 
al
ulus of sequents 
an in this way be said to pres
ribe

(to some extent) a 
ertain order in whi
h a 
orresponding natural dedu
tion 
an

be 
onstru
ted. This order is often irrelevant and is only partially mirrored

in the 
orresponding natural dedu
tion that results from the 
onstru
tion.

Di�erent proofs in the 
al
ulus of sequents may therefore 
orrespond (in the

way indi
ated) to the same natural dedu
tion."

4

A	 B means the result of a deletion pro
ess, where from the multiset A all elements of the multiset

B are removed as often as they o

ur in B (an element of B 
an but naturally only be removed from A if

it o

urs in (is element of) A at all).
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In the 
ase of the system G

+

a derivation-term t

C

in an end-sequent of a derivation D

does not only allow us to des
ribe D 
ompletely, but gives also|in most 
ases|
lear in-

stru
tions about how a natural-dedu
tion derivation D

0


orresponding to D under Prawitz'

map 
an be built. This is possible for all G

+

-derivations, that do not 
ontain appli
a-

tions of inversion Inv; in the more spe
ial 
ase of G

+

0

-derivations this is the 
ontent of the

de�nition below.

De�nition 1.4 (The maps �; �;�

0

between G

+

0

+Cut and !N[mi℄

�

). The map �

is an operation that takes derivations of the systems G

+

0

+Cut (that is, derivations in

G

+

+Cut 
ontaining only appli
ations of logi
al rules and Cut) to natural-dedu
tion deriva-

tions �(D) in a term-
al
ulus !N[mi℄

�

for !N[mi℄ (
f. [TS96℄, Def. 2.2.2, p. 37 for a

term 
al
ulus for the full systems N[mi℄, whose spe
ial 
ase for N[mi℄ is here referred

to as !N[mi℄

�

). The derivation �

0

(D) in !N[mi℄ will denote the dedu
tion �(D) in

!N[mi℄

�

without the o

urren
es of term-labels for formulas.

� will be de�ned in parallel with a map � that maps an arbitrary G

+

0

+Cut-derivations

D to the term-representation �(D) of the !N[mi℄-derivation �

0

(D) underlying �(D).

Both � and � will be given by an indu
tive de�nition on the depth of D by transitions of

the following stru
ture:

D

�) t : C

goes to

[A

1

℄

x

1

: : : [A

n

℄

x

n

�(D)

�(D) : C

,

where fx

1

: A

1

; : : : ; x

n

: A

n

g � set(�), i.e. set(�) is the set resulting from the multiset �

by dropping multiple o

urren
es of elements in �.

If D 
onsists of an axiom only, then � and � are de�ned by the transition

x : A;�) ax

x

A

;�

: A

goes to

x : A (as marked assumption: A

x

) .

If D ends with an appli
ation of R!, then �(D) and �(D) are de�ned by the transition

D

0

[x : A℄;�) t

0

: B

R!

�) �x

A

:t

B

0

: A! B

goes to

[A℄

x

�(D

0

)

�(D

0

) : B

!I,x

�x

A

:�(D

0

)

B

: A! B

.

In the 
ase of D ending with an appli
ation of L!, �(D) and �(D) are de�ned by the

transition
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D

0

x : A! B;�) t

0

: A

D

1

[y : B℄;�) t

1

: C

L!

x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

goes to

(A! B)

x

hA! Bi

x

�(D

0

)

�(D

0

) : A

!E

[x

A!B

�(D

0

)

A

: B℄

(�(D

1

))

�

[y

B

=(x

A!B

�(D

0

)

A

)

B

℄

(�(D

1

))

�

[y

B

=(x

A!B

�(D

0

)

A

)

B

℄ : C

,

where the stars

�

indi
ate that a renaming in the bound variables o

urring in the terms

within �(D

1

) and in the term �(D

1

) has to be performed to make the substitution of

x

A!B

�(D

0

)

B

for y

B

in �(D

1

) possible. Furthermore, the angle-notation hA ! Bi

x

in

�(D) above is intended to refer to only a part of the assumption-
lass [A! B℄

x

, namely to

that part, whi
h 
onsists just of all o

urren
es of marked assumptions (A! B)

x

in �(D)

originating from the assumption-
lass [A ! B℄

x

in �(D

0

) (whereas the full assumption-


lass [A ! B℄

x

in �(D) 
ontains all o

urren
es of (A ! B)

x

in �(D) originating from

�(D

0

) and from �(D

1

) as well as the single additional assumption (A! B)

x

in the major

premise of the expli
itly shown appli
ation of !E). (This notation will be used in similar

meaning also for 
omparable situations.)

If D ends with a 
ut, �(D) and �(D) are de�ned a

ording to:

D

0

�) t

0

: D

D

1

[x : D℄;�) t

1

: C

Cut

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

goes to

�(D

0

)

[�(D

0

) : D℄

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄ : C

.

Again, the stars indi
ate a ne
essary renaming pro
ess in the bound variables, 
arried out

simultaneously in �(D

1

) and �(D

1

) to make the substitution of �(D

0

)

D

for x

D

possible.

The derivation �

0

(D) in!N[mi℄ is de�ned from �(D) by dropping the term-express-

ions in all formulas, that do not o

ur in a leaf at the top of the derivation �(D) (there

the terms are retained as assumption-markers). �

It would also have been possible to extend the maps � and � to 
over derivations D

in the systems G

+

, if D 
ontains appli
ations of weakening mW and 
ontra
tion mC, too,

but no inversion Inv. This 
ould be done by taking the transitions

D

0

�) t

0

: C

mW

�)W

�

(t

0

) : C

and

D

0

�) t

0

: C

mC

�) C

�

(t

0

) : C

go to

�(D

0

)

�(D

0

) : C

into De�nition 1.4.
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Vestergaard does not refer to su
h a map � from derivations in his system G

+

v

to

natural-dedu
tion derivations expli
itly, he but bases his argument merely on formal ob-

servations about terms, whi
h|with the 
on
epts and the terminology used here|
an

be looked upon as derivation-terms �(D) des
ribing natural-dedu
tion derivations �

0

(D)

asso
iated with derivations D in the system G

+

(for Vestergaard these derivations are

derivations in the system G

+

v

, whi
h here was only taken as the basis for the formula-

tion of G

+

in De�nition 1.2 above). He takes these derivation-terms �(D) of natural-

dedu
tion derivations �

0

(D) to be the \
omputational meaning" of derivations D in the

typed sequent-
al
ulus. { De�nition 1.4 was set up with the intention of following Vester-

gaard's paper as 
losely as possible, but also with the aim of looking at the phenomenon

he des
ribes from a slightly di�erent (namely a proof-theoreti
) angle.

There is one noti
eable feature of the map � as de�ned above (also by way of following

the argument of Vestergaard) above, whi
h distinguishes it from an analogous map used

by J. Zu
ker in [Zu74℄: In the 
ase of a derivation D ending with the 
ut-rule, having

D

0

and D

1

as immediate subderivations, the transition in De�nition 1.4 ne
essitates the

amalgamation in �(D) of open assumption-
lasses [A℄

x

with A

x

6� D

x

, that o

ur both in

the derivations �(D

0

) and �(D

1

) (given by the indu
tion-hypothesis of the de�nition of

�). In �(D), whi
h then 
an be written in the form

hAi

x

�(D

0

)

[�(D

0

) : D℄ hAi

x

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄ : C

,

a new assumption-
lass [A℄

x

is formed, that now 
onsists of all o

urren
es of A

x

at pla
es

hAi

x

(whi
h here in �(D) stand for the o

urren
es of marked assumptions A

x

in the

subderivation �(D

0

) and in the part originating from �(D

1

).)

In the 
ase of Zu
ker's sequent-
al
ulus S su
h an amalgamation of assumption-
lasses

by his (rather similar) map � does not happen, whi
h is due to a very spe
ial|indeed


areful|way of the formulation of the logi
al rules and the 
ut-rule in S based on a spe
ial

indexing system for ante
edent-formulas. An identi�
ation of di�erent assumption-
lasses

is in this system only possible in the image under � of a S-derivation ending with an

appli
ation of (an unrestri
ted version of) the 
ontra
tion-rule.

A situation, similar to a G

+

-derivation ending with Cut, arises for a derivation D end-

ing with L!, that has immediate subderivations D

0

and D

1

. There, too, identi�
ations of

assumption-
lasses from �(D

0

) and �(D

1

) take pla
e impli
itly in the respe
tive transition

of De�nition 1.4, that is, all o

urren
es of marked assumptions C

z

(if C

z

6� (A! B)

x

) in

�(D), that originate from open assumptions C

z

in �(D

0

) or �(D

1

), are taken to form the

new open assumption-
lass [C℄

z

of �(D). The open assumption 
lass [A ! B℄

x

of �(D)
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ontains all open assumptions of the form [A ! B℄

x

, that originate from open assump-

tions in �(D

0

) or �(D

1

) and one additional o

urren
e of (A ! B)

x

(as apparent from

the de�nition of �(D)).

While in the 
ase of Zu
ker's sequent-
al
ulus S ea
h two-premise-rule R (in
luding

Cut) was formulated in su
h a way that in the image �(D) of a S-derivation D ending

with R identi�
ations of assumption-
lasses originating from �(D

0

) and �(D

1

) (D

0

and D

1

,

the immediate subderivations of D) never take pla
e (during the formation of �(D) from

�(D

0

) and �(D

1

)), this is not in the same way possible for a typed 
al
ulus of a!G3mi-

system: The formulation of the L!-rule with a multiset � appearing simultaneously in

the ante
edents of both premises and in the 
on
lusion of the rule leads to the ne
essity

of amalgamating assumption-
lasses from D

0

and D

1

in the image �(D) of a derivation

ending with L! (D

0

and D

1

are here again the immediate subderivations of D).

1.3 Cut-elimination for G

+

A pro
edure for 
ut-elimination in the system G

+

relies for some steps on the possibility

of renaming variables in the ante
edents of a sequent and throughout the immediate

subderivations appropriately. This 
ould be done as a lo
al pro
ess by the introdu
tion

of a new renaming-
onstru
t in addition to the rules of G

+

just like mW, mC and Inv,

and by a separate treatment of appli
ations of this new 
onstru
t for the purpose of 
ut-

elimination in a derivation.

Sin
e Vestergaard des
ribes 
ut-elimination in his system as a pro
ess of su

essive

appli
ations of rewrite-rules on derivation-terms, and be
ause substitution is a familiar

notion for terms, he refers for this matter on substitution-lemmas like the below ones

instead:

Lemma 1.4. Let D be a derivation of the form

D

[(x : A)

n

℄;�) t : C

(where n 2 N ) in G

+

, that 
ontains rule-appli
ations of logi
al rules of G

+

only. Then

for all type-variables y

A

, that are distin
t from all bound variables in t

C

D[x

A

=y

A

℄

(y : A)

n

;�) t[x

A

=y

A

℄ : C

holds.

Proof. By an indu
tion on the depth jDj of D.

One key 
ase for the validity of this lemma (a 
ase involving the prin
ipal formula

of an appli
ation of L!, that is the root of trouble in many similar situations) shall be
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shown here. If x : A is the prin
ipal annotated formula x : B ! D (i.e. if A � B ! D) of

a bottom-most appli
ation of L! in D and if n = l + 1, then D is of the form

D

0

[x : B ! D; (x : B ! D)

l

℄;�) t

0

: B

D

1

[z : D℄; [(x : B ! D)

l

℄;�) t

1

: C

L!

[(x : B ! D)

n

℄;�) let

z

D

(t

C

1

; x

B!D

t

B

0

) : C

,

where l 2 N

0

. If l > 0, then the indu
tion-hypothesis 
an be applied to both D

0

and D

1

,

and due to z

D

6� y

B!D

the results D

0

[x

B!D

=y

B!D

℄ and D

1

[x

B!D

=y

B!D

℄ 
an be linked

together again by L! with the derivation

D

0

[x

B!D

=y

B!D

℄

y : B ! D; (y : B ! D)

l

;�) t

0

[x=y℄ : B

D

1

[x

B!D

=y

B!D

℄

[z : D℄; (y : B ! D)

l

;�) t

1

[x=y℄ : C

L!

(y : B ! D)

n

;�)

�

let

z

D

(t

C

1

; x

B!D

t

B

0

)

�

[x

B!D

=y

B!D

℄ : C)

as out
ome. If l = 0 the indu
tion-hypothesis has to be applied only to D

0

and the

resulting derivation D

0

[x

B!D

=y

B!D

℄ 
an then be linked together again with D

1

by L!

to rea
h a derivation of the desired form.

Lemma 1.5. For all G

+

-derivations

D

�) t : C

and all typed variables x

A

a G

+

-

derivation D

(x

A

)

and thus also a derivation-term t

(x

A

)


an e�e
tively be found (by renaming

annotated variables in the ante
edents and in derivation-terms only) su
h that

D

(x

A

)

�) t

(x

A

)

: C

and x

A

does not o

ur among the bound variables of t

(x

A

)

and in D

(x

A

)

.

Proof. By indu
tion on the depth of D, 
arrying out a renaming of x

A

to another variable

(x

0

)

A

not previously o

uring in the derivation (whi
h 
an be done by an appropriate use

of Lemma 1.4) in the indu
tion-step, whenever x

A

appears as a bound variable.

Lemma 1.6. Let D be a derivation of the form

D

[(x : A)

n

℄;�) t : C

(where n 2 N )

in G

+

, that only 
ontains rule-appli
ations of logi
al rules. Then for all variables y

D

(y

A

)

[x

A

=y

A

℄

(y : A)

n

;�) t

(y

A

)

[x

A

=y

A

℄ : C

holds, where D

(y

A

)

and t

(y

A

)

are in relation to D; t and y

A

de�ned (and impli
itly 
on-

stru
ted in the proof of) Lemma 1.5.

Proof. This is immediate from Lemma 1.4 and Lemma 1.5.



CHAPTER 1. VESTERGAARD'S \COMPUTATIONAL ANOMALY" 17

Theorem 1.1. Cut-elimination holds for G

+

.

More pre
isely, every derivation D in (G

+

+Cut) 
an be transformed by a �nite se-

quen
e of su

essively applied lo
al redu
tion-steps with a 
ut-free derivation in G

+

0

as

result, i.e. a derivation D

0

, that 
ontains neither appli
ations of the 
ut-rule nor of the

rules multiple-weakening mW, multiple 
ontra
tion mC or inversion Inv.

Furthermore the pro
ess of 
ut-elimination for a derivation D in G

+


an be 
ompletely

simulated on derivation-terms by appli
ations of rules from an appropriate rewrite-rule

system starting at the derivation-term t of D; these rule-appli
ations have to respe
t a


ertain order, in whi
h single rewrite-rule steps are su

essively exe
uted.

Proof. The proof of this theorem relies on two lemmas below, that together deal with the


ase of a G

+

-derivation D, i.e. a derivation not 
ontaining Cut but arbitrary many appli-


ations of weakening mW, 
ontra
tion mC and inversion Inv (Lemma 1.7 and Lemma 1.8

below give|with the help of an immediate indu
tion on the number of appli
ations of

mW, mC and Inv in D|that every su
h derivation D 
an e�e
tively be transformed in

the desired manner to a derivation D

0

in G

+

0

, thus to a derivation D

0

, that possesses only

appli
ations of logi
al rules). It suÆ
es therefore here to show that every derivation D

terminating with an appli
ation of Cut, su
h that the immediate subderivations D

0

and

D

1

of D 
ontain only logi
al rules, 
an be transformed by stepwise and lo
al transforma-

tions to a 
ut-free derivation D

0

in G

+

0

, i.e. a derivation having only appli
ations of logi
al

rules. (The theorem then follows by indu
tion on the number of appli
ations mW, mC,

Inv or Cut in D

0

, an indu
tion, in whi
h always topmost o

urren
es of these rules are

treated and removed.)

This 
an be shown by an indu
tion on one plus the logi
al depth of the formula A

within the annotated 
ut-formula x : A in the 
ut at the bottom of D, whi
h is 
alled the

rank of the 
ut, together with a subindu
tion on the level jD

0

j+ jD

1

j of this 
ut, where

D

0

and D

1

are its immediate subderivations.

The proof is very similar to that of the 
ut-elimination theorem for the G3-systems

(
f. Theorem 4.1.2 on p. 77 in [TS96℄), more pre
isely, it is analogous to the proof of a


ut-elimination theorem for the impli
ative fragments!G3mi of G3[mi℄.

For a derivation D in G

+

+Cut of the form

D

0

�) t

0

: D

D

1

[x : D℄;�) t

1

: C

Cut S

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

with D

0

;D

1

G

+

0

-derivations (thus 
ontaining only appli
ations of logi
al rules) three 
ases

are distinguished and treated separately: (1) If one of the premises of the 
ut S 
onsists

of an axiom, then a redu
tion whi
h removes the 
ut in one step 
an be performed. (2) If

both premises are not axioms, and the 
ut-formula is not prin
ipal in at least one of the

rule-appli
ations S

0

; S

1

immediately pre
eding S, then the 
ut 
an be permuted upwards
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over the logi
al rule S

i

(i = 0; 1)) in that respe
tive premise, thereby redu
ing the level

of the resulting 
ut(s) by at least one; in the 
ase of a two-premise rule two new 
uts

of lower level may appear. The indu
tion-hypothesis 
an then be applied to show that

the new 
ut(s) is (are) transformable to a 
ut-free form. The resulting derivation(s) 
an

then be linked together again (either with ea
h other, in the 
ase of two new 
uts, or

otherwise with a weakened subderivation of D) by a logi
al rule of the same type as S

i

to build the result of 
ut-elimination for D. (3) If both of the premises of the 
ut at the

bottom of D are not axioms, and the 
ut-formula is prin
ipal in both premises, then a

\fork-redu
tion" (a term from [Drag79℄ for a similar redu
tion) 
an take pla
e. In the

perhaps most frequent 
ase (the 
ut-formula does o

ur just on
e in the ante
edent of the

left premise of the 
ut at the bottom of D) a redu
tion 
an be performed by splitting the


ut S in one 
ut S

0

1

of the same rank, but lower level, and two su

eeding 
uts S

0

2

and S

0

3

of lower rank than that of S, 
uts, whi
h are then followed by a number of 
ontra
tions.

Th subindu
tion-hypothesis 
an be applied to the derivation

~

D

0

1

terminating with S

0

1

for

showing that

~

D

0

1


an be transformed to a 
ut-free derivation in G

+

0

in the desired way.

Then the indu
tion-hypothesis 
an be used twi
e and su

essively to show that S

0

2

and S

0

3


an also be removed in this way. The su

eeding 
ontra
tions 
an then be done away with

by an appeal to Lemma 1.8 to arrive ultimately at a derivation in G

+

0

. { In the se
ond


ase of a fork-redu
tion for a (G

+

0

+Cut)-derivation D, that o

urs if the 
ut-formula of the


ut S at the bottom of D appears more than on
e in the ante
edent of its left premise, a

similar redu
tion is performed: Now S is split into two 
uts S

00

1

and S

00

2

of the same rank as

S, but of lower level, that are linked together by a 
ut S

00

3

and followed by a 
ut S

00

4

, both of

lower level than S, the latter of whi
h is then su

eeded by a number of 
ontra
tions in the

resulting derivation D

00

. The subindu
tion-hypothesis and the indu
tion-hypothesis 
an

then be applied similar as before to show that D

00

is transformable to a 
ut-free derivation

in G

+

in the desired way.

All these redu
tion-steps are rather straightforward to perform and|ex
ept for one


ase, that will be shown here below|analogous

5

to the ones for an untyped !G3mi

e

-

system (de�ned pre
isely in De�nition 2.1). For this system the redu
tion-steps are dis-

played in the lists A{C in 
hapter 2, following De�nition 2.1, where they were gathered

for the formulation of a strong 
ut-elimination theorem.

Sin
e derivation-terms in G

+

uniquely represent derivations in these systems, the

redu
tion-steps referred to in this proof 
an be given in the form of rewrite-rules on

derivation-terms. These respe
tive rules will be given at the end of this proof.

In 
ase (1) the situation of a derivation D of the form

5

(with the sole ex
eption of the se
ond 
ase of a \fork-redu
tion"-step just des
ribed, whi
h is an

analogue to a 
ut-elimination-step ne
essary for dealing with a similar situation in the Kleene-System

!GK3mi)
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x : P;�) ax

x

P

;�

: P

D

1

[(y : P )

n

℄;�) t

1

: C

Cut

x : P;��) t

C

1

J

J

Jy

P

:= ax

x

P

;�

K

K

K : C


an o

ur. D 
an be then be transformed to a 
ut-free derivation D

0

(D

1

)

(x

P

)

[y

P

=x

P

℄

(x : P )

n

;�) (t

1

)

(x

P

)

[y

P

=x

P

℄ : C

mC

(x : P )

n�1

;�) C

fx

P

g

�

(t

1

)

(x

P

)

[y

P

=x

P

℄

�

: C

mC

.

.

.

mC

x : P;�) C

fx

P

g

�

: : :C

fx

P

g

| {z }

n�1

�

(t

1

)

(x

P

)

[y

P

=x

P

℄

�

: : :

�

: C

mW

x : P;��)W

�

�

C

fx

P

g

�

: : :C

fx

P

g

�

(t

1

)

(x

P

)

[y

P

=x

P

℄

�

: : :

��

: C

with the help of an appli
ation of Lemma 1.6. D

0


an then be seen to be transformable to a

derivation, whi
h only 
ontains appli
ations of logi
al rules (or 
onsists of a single axiom)

by n � 1 su

essive appeals to Lemma 1.8 (for the 
ontra
tions) and one to Lemma 1.7

(for the weakening).

The rewrite-rules originating from 
ut-elimination steps in this proof are gathered in

the lists A{C below

6

:

A. Axiomati
 Cut-Redu
tion Rewrite-Rules

a. t

C

1

J

J

Jy

P

:= ax

x

P

;�

K

K

K �!

(Cut)

W

�

�

C

fx

P

g

�

: : :C

fx

P

g

| {z }

n�1

((t

C

1

)

(x

P

)

[y

P

=x

P

℄) : : :

��

,

where

7

n := mult(y

P

; ant(t

C

1

)),

and (t

C

1

)

(x

P

)

is de�ned in relation to t

C

1

and x

P

by an appli
ation of Lemma 1.5.

b. ax

y

P

;�

J

J

Jy

P

:= t

P

0

K

K

K �!

(Cut)

W

�

(t

P

0

)


. ax

x

P

;y

D

;�

0

J

J

Jy

D

:= t

D

0

K

K

K �!

(Cut)

ax

x

P

;ant(t

D

0

)�

0

.

B. Rewrite-Rules for Upwards-Permutation of Cut

a. t

C

1

J

J

Jy

D

:= let

z

B

(t

D

01

; x

A!B

t

A

00

)K

K

K �!

(Cut)

let

(z

0

)

B

�

t

C

1

J

J

Jy

D

:= t

D

01

[z

B

=(z

0

)

B

℄K

K

K; x

A!B

W

ant(t

C

1

)	[y:D℄

(t

A

00

)

�

for z

0

su
h that

�

(z

0

)

B

=2 ant(t

C

1

)	 [y : D℄ ^

^

�

z � z

0

_ (z

0

)

B

does not o

ur in t

D

01

��

.

6

The symbols used here are essentially meta-language symbols (as \by default" throughout the thesis),

whi
h has the 
onsequen
e that variables x and y, formulas A and B or typed variables x

A

, y

B

need

not stand for di�erent variables or formulas in general expressions, ex
ept this is expli
itly stated using

formulations like for instan
e x 6� y, A 6� B or x

A

6� y

B

.

7

Where for every multiset � and every obje
t a the expression mult(a;�) means the multipli
ity of a

in �, i.e. the number of o

urren
es of a in �.
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b. (�x

A

:t

B

10

)J

J

Jy

D

:= t

D

0

K

K

K �!

(Cut)

�(x

0

)

A

:((t

B

10

[x

A

=(x

0

)

A

℄)J

J

Jy

D

:= t

D

0

K

K

K)

for x

0

su
h that

�

(x

0

)

A

=2 ant(t

D

0

) ^

^

�

x � x

0

_ (x

0

)

A

does not o

ur in t

B

10

��

.


. Whenever y

D

6� x

A!B

:

�

let

z

B

(t

C

11

; x

A!B

t

A

10

)J

J

Jy

D

:= t

D

0

K

K

K

�

�!

(Cut)

let

(z

0

)

B

�

(t

C

11

[z

B

=(z

0

)

B

℄)J

J

Jy

D

:= t

D

0

K

K

K; x

A!B

t

A

10

J

J

Jy

D

:= t

D

0

K

K

K

�

for z

0

su
h that

�

(z

0

)

B

=2 ant(t

D

0

) ^

^

�

z � z

0

_ (z

0

)

B

does not o

ur in t

C

11

��

.

C. Fork Redu
tion Rewrite-Rule

let

(z

B

)

(t

C

11

; y

A!B

t

A

10

)J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

K �!

(Cut)

8

>

>

>

>

>

<

>

>

>

>

>

:

C

��

�

t

C

11

J

J

Jz

B

:= t

B

00

J

J

Jx

A

:= t

A

10

J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

KK

K

KK

K

K

�

: : : if � = �

0

(or equivalently if: mult(y

A!B

; t

A

10

) = 1)

C

�

�

C

��

0

�

(t

C

11

J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

K)J

J

Jz

B

:= t

B

00

J

J

Jx

A

:= t

A

10

J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

KK

K

KK

K

K

��

: : : if � ) �

0

(or equivalently if: mult(y

A!B

; t

A

10

) > 1)

,

where � := ant(t

B

00

)	 [x : A℄,

� := ant(t

A

10

)	 fy : A! Bg and

�

0

:= ant(t

A

10

)	 [y : A! B℄.

(It is immaterial to understand the reason for the parti
ular form of the subs
ript-notation

used in derivation-terms in the above rewrite-rules for their appli
ation. Yet, this notation


omes from one for subderivations of a given derivation D, where for n 2 N the derivation

D

i

1

;::: ;i

n

(i

1

; : : : ; i

n

2 N

0

) is indu
tively de�ned as the subderivation of D leading to the

(i

n

+ 1)-th premise from the left of the bottom-most rule appli
ation in D

i

1

;::: ;i

n�1

, if

n > 1, or in D, if n = 1; if D for example terminates with a one-premise rule, then

only the immediate subderivation D

0

of D is de�ned in this way, not also D

1

;D

2

; : : : , and

similar for more-premise rules. This notation was extended here to derivation-terms for

devising and 
he
king the above rewrite-rules and it was thought that this origin should

not get 
on
ealed in the result.)

It is apparent from the above rewrite-rules, that during the pro
ess of 
ut-elimination

in a derivation a

ording to the stepweise and lo
al pro
edure used here impli
itly new

appli
ations of weakening or of 
ontra
tion or of both appear in a derivation, that pre-

viously may only have 
ontained appli
ations of logi
al rules and of 
ut. Therefore these
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rewrite-rules for 
ut-elimination on derivation-terms will have to be supplemented by fur-

ther rules for the redu
tion of derivation-terms 
ontaining subterms W

�

t for weakening-

and C

�

t for 
ontra
tion-appli
ations. These additional rules 
orrespond to the pla
es in

this proof, where Lemma 1.7 and Lemma 1.8 are used (so to say as subroutines) and will

be given together with the proofs for these statements.

Cut-elimination on a G

+

-derivation-term t 
an then be seen as a �nite sequen
e of

redu
tions a

ording to the system of rewrite-rules partly given here and being 
om-

pleted below: A redu
tion-pro
ess, in whi
h always an innermost o

urren
e of a 
ut-

term t

1

J

J

Jx := t

0

K

K

K in t is 
onsidered, where (a) �rst t

0

and t

1

are transformed by a �nite

subsequen
e of redu
tions (involving appli
ations of rewrite-rules for the treatment of

weakening-, 
ontra
tion- and inversion-subterms) to terms

~

t

0

and

~

t

1

, that only 
ontain ap-

pli
ations of logi
al rules (or that are axioms), su
h that then (b) the 
ut

~

t

1

J

J

Jx :=

~

t

0

K

K

K 
an

get redu
ed by one of the above 
ut-redu
tion rules to a term

~

t (by arguments used above

it is 
lear that one of these rules is then always appli
able). The proof guarantees the

termination of this pro
ess for every given G

+

-derivation-term, provided the termination

of the subpro
esses, whi
h will be justi�ed separately in Lemma 1.7 and Lemma 1.8.

Lemma 1.7. Every derivation D in G

+

, that 
ontains only appli
ations of weakenings

mW and logi
al rules, 
an be transformed by a �nite number of lo
al transformation-steps

to a derivation D

0

in G

+

0

(i.e. D

0


ontains no appli
ation of mW any more, nor su
h of

mC or Inv); this elimination pro
ess of weakenings 
an take pla
e on the 
orresponding

derivation-terms as the su

essive appli
ation of appropriate rewrite-rules.

Proof. It suÆ
es to show that weakening 
an be e�e
tively eliminated from a derivation D

in G

+

terminating with an appli
ation of mW, that for the rest 
ontains only appli
ations

of logi
al rules (the lemma then follows by indu
tion on the number of weakenings in a

given derivation). This in turn 
an be shown by indu
tion on the depth jDj of D:

If jDj = 1 and mW therefore is applied dire
tly to an axiom in D, then an easy

redu
tion of D to a new axiom, whi
h now in
orporates the weakening, 
an take pla
e.

If jDj > 1, then the rule mW is permuted upwards one step over a rule R! or L! and

then the indu
tion hypothesis is appli
able. In the 
ase of R! the following redu
tion is

possible:

D

0

[x : A℄;�) t

0

: B

R!

�) �x

A

:t

B

0

: A! B

mW

��)W

�

(�x

A

:t

B

0

)

A!B

: A! B

redu
es to
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D

0

[x

A

=(x

0

)

A

℄

[x

0

: A℄;�) t

0

[x

A

=(x

0

)

A

℄ : B

mW

[x

0

: A℄;��)W

�

�

t

B

0

[x

A

=(x

0

)

A

℄

�

: B

R!

��) �(x

0

)

A

:W

�

�

t

B

0

[x

A

=(x

0

)

A

℄

�

: A! B

.

The substitution of (x

0

)

A

for x

A

in D

0

is possible by Lemma 1.4, if (x

0

)

A

does not o

ur as

a bound variable in t

B

0

; to keep x

0

: A distin
t from elements of � furthermore the stronger


ondition, that (x

0

)

A

does not o

ur in t

B

0

at all, is ne
essary. The appli
ation of R! after

mW in the displayed way in the redu
ed derivation is possible, if (x

0

)

A

62 �. { The 
ase

with mW following an appli
ation of L! at the bottom of D is more 
ostly to write down,

but quite analogously to treat.

Sin
e the derivation-term t for a G

+

-derivation D allow to represent (and to re
on-

stru
t) D 
ompletely, the redu
tions referred to (and in the 
ase of R! expli
itly given) in

this proof 
an be gathered for the following list D of rewrite-rules for weakening-redu
tions:

D. Weakening Rewrite-Rules

a. W

�

(ax

x

P

;�

) �!

(Weak)

ax

x

P

;��

.

b. W

�

(�x

A

:t

B

) �!

(Weak)

�(x

0

)

A

:W

�

�

(t[x

A

=(x

0

)

A

℄)

B

�

,

where x

0

is su
h that (x

0

)

A

does not o
-


ur in � nor in the term t

B

.


. W

�

(let

(y

0

)

B

(t

C

1

; x

A!B

t

A

0

)) �!

(Weak)

let

(y

0

)

B

�

W

�

�

(t

1

[y

B

=(y

0

)

B

℄)

C

�

; x

A!B

W

�

(t

A

0

)

�

,

where y

0

is su
h that (y

0

)

B

does neither o

ur in �

nor in t

C

1

.

Weakening-elimination on derivation-terms takes the form of su

essive redu
tions of in-

nermost o

urren
es of weakening in a term t a

ording to the above rewrite-rules, i.e.

of o

urren
es W

�

(t

0

) in t, su
h that t

0

does not 
ontain further subterms of the form

W

�

0

(t

00

).

Lemma 1.8. Every derivation D in G

+

, that 
ontains only appli
ations of the rules mul-

tiple-
ontra
tion mC, inversion Inv and logi
al rules, 
an be transformed e�e
tively by a

�nite number of transformation-steps to a derivation D

0

in G

+

0

(i.e. one, that possesses

only appli
ations of logi
al rules). This elimination pro
ess 
an furthermore be 
arried

through 
ompletely on the derivation-terms 
orresponding to G

+

0

-derivations in the form

of appli
ations of rules of a rewrite-rule system.

Proof. It again suÆ
es to show that an appli
ation of inversion or multiple-
ontra
tion


an e�e
tively be removed from a G

+

-derivation D terminating with either Inv or mC,
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but otherwise 
ontaining only appli
ations of logi
al rules (the lemma then follows by

indu
tion on the number of appli
ations of inversion and multiple-
ontra
tion in D). This

in turn 
an be shown by an indu
tion on either the logi
al 
omplexity jA ! Bj of the

annotated inversion-formula x : A! B in an appli
ation I

x

A!B

;y

B

(:::) of inversion

8

, if the

bottom-most rule in D is an inversion, or on the sum of the logi
al 
omplexities of the


ontra
tion-formulas in � of an appli
ation C

�

(: : : ) of mC at the bottom of D, together

with|in both 
ases|a subindu
tion on the depth jDj of D.

Appli
ations of mC or Inv, that follow axioms in D, 
an be dire
tly redu
ed to other

axioms. Appli
ations of these rules following logi
al rules 
an be permuted upwards over

L! and R! in most 
ases, mu
h in the same way as in the 
ase for mW in Lemma 1.7;

the subindu
tion hypothesis 
an then always be applied.

There are two less obvious 
ases:

(1) If D terminates with the inversion of the prin
ipal formula of an immediately pre
eding

appli
ation of L!, then D is of the form

D

0

x : A! B;�) t

0

: A

D

1

[(z : B)

n

℄;�) t

1

: C

L!

x : A! B;�) let

z

B

(t

C

1

; x

A!B

t

A

0

) : C

Inv

y : B;�) I

x

A!B

;y

B

�

(let

z

B

(t

C

1

; x

A!B

t

A

0

))

C

�

: C
,

where n 2 N .

The inversion 
an here be removed by taking the right subdedu
tionD

1

of L!, 
arrying

out a renaming y

B

for z

B

with the help of Lemma 1.6 and by then using a number of


ontra
tions for the annotated formulas y : B. The indu
tion hypothesis 
an then be

applied to all of these 
ontra
tions, sin
e the logi
al 
omplexity jBj of B is smaller than

that of A! B. The redu
ed derivation then has the form

(D

1

)

(y

P

)

[z

P

=y

P

℄

(y : B)

n

;�) (t

C

1

)

(y

P

)

[z

P

=y

P

℄ : C

mC

(y : B)

n

;�) C

fy

P

g

�

(t

C

1

)

(y

P

)

[z

P

=y

P

℄

�

: C

mC

.

.

.

mC

y : B;�) C

fy

P

g

�

: : :C

fy

P

g

�

| {z }

n�1

(t

C

1

)

(y

P

)

[z

P

=y

P

℄

�

: : :

�

: C
.

(2) If D terminates with a 
ontra
tion mC, that involves the prin
ipal annotated formula

x : A! B of an appli
ation of L! immediately pre
eding the inversion, then D is of the

8

Su
h an appli
ation was here indi
ated as an operation on derivation-terms.
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form

D

0

x : A! B; x : A! B;�) t

0

: A

D

1

[y : B℄; x : A! B;�) t

1

: C

L!

x : A! B; x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

mC

x : A! B;�	 (�	 fx : A! Bg)) C

�

(: : : ) : C

.

D 
an here be transformed to the derivation

D

0

x : A! B; x : A! B;�) t

0

: A

mC

x : A! B;�) C

�

(t

0

) : C

D

1

[y : B℄; x : A! B;�) t

1

: C

Inv

[y : B℄;�) I

x

A!B

;y

B

(t

1

) : C

mC

[y : B℄;�) C

�	fx

A!B

g

�

I

x

:

;y

:

(t

1

)

�

: C

L!

x : A! B;�) let

y

B

�

C

�	fx

A!B

g

�

I

x

A!B

;y

B

(t

1

)

�

; x

A!B

C

�

(t

0

)

�

: C

,

where � :� �	 (�	 fx : A! Bg).

Here, sin
e jD

0

j; jD

1

j < jDj holds, the subindu
tion-hypothesis 
an be applied to see

that the inversion immediately below D

1

and the 
ontra
tion su

eeding the end-sequent

of D

0


an be eliminated (by a required stepwise lo
al pro
ess) with the results D

0

0

and

~

D

0

1

, that only 
ontain logi
al rules. The indu
tion hypothesis 
an then be applied to

~

D

0

1

to see that a 
ontra
tion C

�	fx

A!B

g

immediately su

eeding

~

D

0

1


an be eliminated as a

desired stepwise lo
al pro
ess with result D

0

1

in G

+

0

. Linking together D

0

0

and D

0

1

by L!

then leads to an inversion- and 
ontra
tion-free derivation D

0

in G

+

0

.

On derivation-terms the redu
tions needed in the proof of this lemma 
an be presented

as rewrite-rules of the following lists E and F.

E. Contra
tion Rewrite-Rules

a. C

�

(ax

x

P

;�

) �!

(Cont)

ax

x

P

;�	�

.

b. C

�

(�x

A

:t

B

) �!

(Cont)

�x

A

:C

�

(t

B

) .


. C

�

�

let

y

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Cont)

(

let

(y

B

)

�

C

�

(t

C

1

); x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

=2 �

let

(y

B

)

�

C

�	fx

A!B

g

�

(I

x

A!B

;y

B

(t

C

1

)

�

; x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

2 �

.

F. Inversion Rewrite-Rules

a. I

x

A!B

;y

B

(ax

z

P

;x

A!B

;�

) �!

(Inv)

ax

z

P

;y

B

;�

.

b. I

x

A!B

;y

B

(�z

C

:t

D

) �!

(Inv)

�(z

0

)

C

:I

x

A!B

;y

B

(t

D

[z

C

=(z

0

)

C

℄) ,

where z

0

is su
h that (z

0

)

C

6� y

B

and (z

0

)

C

does not o

ur in t

D

.
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. I

x

A!B

;y

B

�

let

w

D

(t

E

1

; z

C!D

t

C

0

)

�

�!

(Inv)

let

(w

0

)

D

�

I

x

A!B

;y

B

�

(t

1

[w

D

=(w

0

)

D

℄)

E

�

; z

C!D

I

x

A!B

;y

B

(t

C

0

)

�

,

where w

0

is su
h that (w

0

)

D

6� y

B

and (w

0

)

D

does not

o

ur in the term t

E

1

.

d. I

x

A!B

;y

B

�

let

z

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Inv)

C

fy

B

g

�

: : :C

fy

B

g

�

| {z }

n�1

(t

C

1

)

(y

B

)

[z

B

=y

B

℄

�

: : :

�

,

where n := mult(z : B; ant(t

C

1

)) and

9

(t

C

1

)

(y

B

)

is de�ned a

ording to Lemma 1.5.

Contra
tion- and inversion-elimination on a G

+

0

-derivation-term t, that 
ontains no wea-

kening-subterms, 
an then be looked upon as a pro
ess 
onsisting of su

essive redu
tions

of innermost o

urren
es of 
ontra
tion- or inversion-subterms in t a

ording to the above

rewrite-rules in the lists E and F; the termination of this pro
ess is guaranteed by the

arguments above (that apply also for derivation-terms, sin
e by Lemma 1.3 G

+

-derivations

and G

+

-derivation-terms 
orrespond to ea
h other uniquely).

1.4 Vestergaard's \Anomaly"

In introdu
tory remarks at the begin of se
tion 5 in [Vest99℄, where the \
omputational

anomaly" in his system is presented, Vestergaard starts from the observation, that with

respe
t to his system G

+

v

there are two inversion-redu
tion rewrite-rules, for whi
h it is

apparent from their shape, that they do not preserve the identity of derivation-terms.

That is, synta
ti
ally di�erent derivation-terms t

1

and t

2


an get redu
ed to the same

derivation-term t. Only one of these two rules 
orresponds to a respe
tive rewrite-rule

for inversion-redu
tion in the setting of the system G

+


onsidered here instead; the other

would 
orrespond to the redu
tion of a derivation, whi
h 
onsists of the appli
ation of an

inversion I

x

A!B

;y

B

(: : : ) (here indi
ated as an operation on derivation-terms) to an axiom

ax

x

A!B

;�

with a non-atomi
 annotated prin
ipal formula A ! B (su
h axioms have but

been ex
luded in the formulation of G

+

similar as in the systems G3[mi℄ in [TS96℄).

The one remaining inversion-redu
tion rewrite-rule with this noti
eable property is the

rewrite-rule F.d given in the proof of Lemma 1.8:

I

x

A!B

;y

B

�

let

z

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Inv)

C

fy

B

g

�

: : :C

fy

B

g

�

| {z }

n�1

(t

C

1

)

(y

B

)

[z

B

=y

B

℄

�

: : :

�

;

(where n := mult(z : B; ant(t

C

1

)) and (t

C

1

)

(y

B

)

is de�ned a

ording to Lemma 1.5). Here

the subterm t

A

0

o

uring in the derivation-term on the left side of the redu
tion is obviously

9

See footnote 7 for an explanation of multipli
ities mult.
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lost in the redu
tion, sin
e it does not appear in the redu
ed term. Therefore di�erent

terms 
an get redu
ed to the same result by appli
ations of this rule.

Vestergaard then asks whether it is possible that during the pro
ess of 
ut-elimination

(represented as a �nite redu
tion-sequen
e on derivation-terms) appli
ations of the two

rewrite-rules appearing with respe
t to his system, that do not preserve identity of terms,


an a
tually 
hange the \
omputational meaning" of derivation-terms in an unexpe
ted

way. Or whether an \unfortunate use of the inversion-prin
iple" does never happen during

a 
ut-elimination pro
ess|perhaps due to some very spe
ial features of this pro
ess as a

whole. Unstated though (and only hinted at other pla
es in the arti
le), he seems to ask

here, whether it is possible that the \
omputational meaning" of a derivation-term 
an be


hanged during the exe
ution of the usual 
ut-elimination pro
edure substantially di�erent

from the way, how the \meaning" of a derivation is a�e
ted by normalization (whi
h in

the 
ase of derivation-terms for derivations of an intuitionisti
 of minimal 
al
ulus simply


orresponds to �-redu
tion).

He then immediately pro
eeds by giving his example of a \
omputational anomaly",

whi
h is intended to provide an answer insofar, as it shows that the 
omputational mean-

ing of a derivation 
ontaining 
ut in his system 
an indeed be 
hanged during the 
ut-

elimination pro
ess in an unexpe
ted way, that is, in a way not 
orresponding to normal-

ization (�-
ontra
tion) on derivation-terms.

Before looking 
loser at the \anomaly", let us brie
y note this: Vestergaard does not

mention the parallel 
ase of a rewrite-rule among those ne
essary for dealing with axiomati



ut-redu
tions, whi
h does obviously also not preserve the identity of derivation-terms and

whi
h appears in his system as well as in G

+

: Here it is the rule A.
,

ax

x

P

;y

D

;�

0

J

J

Jy

D

:= t

D

0

K

K

K �!

(Cut)

ax

x

P

;ant(t

D

0

)�

0

; (1.4)

given in the proof of Theorem 1.1. Apparently the term t

D

0

disappears during this redu
tion

(only the annotated formulas in the ante
edent of the derivation D

0

represented by t

0

remain as side formulas of the resulting axiom, whi
h but do not tell anything about

the derivation D

0

that leads to the 
on
lusion ant(t

0

) ) t

0

: D). { Were it then also

possible that the \meaning" of a derivation-term 
ould be (unexpe
tedly) 
hanged due

to an appli
ation of this rule during a pro
ess of 
ut-elimination exe
uted on derivation-

terms?

If G

+

0

+Cut -derivation terms t are given the \meaning" of their natural-dedu
tion

derivation image �(D) of the derivation D represented by t, this is not possible, as 
an

be seen in the following way: On the related G

+

0

+Cut-derivations the redu
tion (1.4)


orresponds to:

D

0

ant(t

D

0

)) t

0

: D [y : D℄; x : P;�

0

) ax

x

P

;y

D

;�

0

: P

Cut

x : P; ant(t

D

0

);�

0

) ax

x

P

;y

D

;�

0

J

J

Jy

D

:= t

D

0

K

K

K : P
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redu
es to

x : P; ant(t

D

0

);�

0

) ax

x

P

;ant(t

D

0

);�

0

: P :

If now the images under the map � from se
tion 2 are formed from the derivations on the

left and on the right side of this axiomati
 
ut-redu
tion, it easily turns out, that both

natural-dedu
tion derivation images are equal to P

x

. Thus this \meaning" of derivation-

terms is 
ertainly not 
hanged by appli
ations of the rule A.
 .

It is therefore possible, that the \
omputational meaning" of a derivation-term (if this

is interpreted as the natural-dedu
tion image of the 
orresponding G

+

0

+Cut-derivation) is

not a�e
ted by appli
ations of rewrite-rules with the seemingly very bad property that the

identity of the terms, on whi
h they a
t, is not preserved. On the other hand it 
an easily

be 
he
ked for the rewrite-rules for upwards-permutation of Cut of the list B in the proof of

Theorem 1.1, that while \identity of terms" is preserved under appli
ations of these rules,

they do nevertheless a
tually 
hange the natural-dedu
tion images of the 
orresponding

G

+

-derivations (if only in a way that 
orresponds to the exe
ution of normalization steps

on these natural-dedu
tion derivations). Zu
ker in [Zu74℄ 
alls 
ut-elimination steps of

these kind in list B permutative 
onversions and they play a vital rule for his result of a


lose 
orresponden
e between 
ut-elimination in his intuitionisti
 sequent-
al
ulus S and

normalization on N , his intuitionisti
 system of natural-dedu
tion.

For the eÆ
ient treatment of weakening in the exposition of Vestergaard's \anomaly"

the following de�nition, whi
h introdu
es an abbreviation for weakened derivation-terms,

and a lemma about the relation between this new notation and weakening-redu
tion

�!

�

(Weak)

on derivation-terms will be used.

De�nition 1.5. Let t be a derivation-term of a derivation D in G

+

0

.

Then for typed variables x

A

1

1

; : : : ; x

A

n

n

the term tfx

A

1

1

; : : : ; x

A

n

n

g denotes the derivation-

term of that derivation, whi
h results from D by adding x

1

: A

1

; : : : ; x

n

: A

n

in the

ante
edent of every sequent in D as well as to the side-formulas � in every axiom-subterm

ax

y

P

;�

(for arbitrary y

P

) of a derivation-term o

uring in D. �

Lemma 1.9. Every derivation D in G

+

of the form

D

0

�) t : C

mW

x

1

: A

1

; : : : ; x

n

: A

n

;�) t : C

,

where D

0

is a derivation in G

+

0

(hen
e it is an axiom or 
ontains only appli
ations of

logi
al rules) and the typed variables x

A

1

1

; : : : ; x

A

n

n

do not o

ur as bound variables in t

C

,


an be e�e
tively transformed to a derivation D

0

in G

+

0

of the form

D

0

0

x

1

: A

1

; : : : ; x

n

: A

n

;�) tfx

A

1

1

; : : : ; x

A

n

n

g : C

.



CHAPTER 1. VESTERGAARD'S \COMPUTATIONAL ANOMALY" 28

Moreover, with respe
t to the weakening-redu
tion rewrite-rules in the list D given in the

proof of Lemma 1.7 for every derivation-term t of a G

+

0

-derivation D and arbitrary typed

variables x

A

1

1

; : : : ; x

A

n

n

, that do not o

ur as bound variables in t,

W

L

n

i=1

fx

A

i

i

g

(t) �!

�

(Weak)

tfx

A

1

1

; : : : ; x

A

n

n

g

holds.

Proof. Can be seen to be impli
it in the proof of Lemma 1.7.

The example of a \
omputational anomaly" given by Vestergaard uses the following

derivation-terms {

n

and |

n

(for n 2 N

0

):

{

n

:�

(

ax

z

P

;s

P!P

: : : n = 0

let

(x

n

)

P

�

ax

x

P

n

;z

P

; s

P!P

{

P

n�1

�

: : : n > 0

(1.5)

and

|

n

:�

(

ax

z

P

;(s

P!P

)

2

: : : n = 0

let

y

P

�

{

n

fy

P

g; s

P!P

{

P

1

fs

P!P

g

�

: : : n > 0

.

(Here the same designations of these terms and of the involved variables in the type-

expressions (more pre
isely, the names of the typed variables here, if the formula-types

were dropped) have been kept to make 
omparisons with the redu
tion-sequen
e in [Vest99℄

easier.)

Vestergaard's example of a \
omputational anomaly" in his system G

+

v


an now be

rewritten as sequen
es �

n

of redu
tions (n 2 N refers to the subterm |

n

in the �rst term t

n

in all of these sequen
es) by appli
ations of rewrite-rules from the lists A{F in se
tion 1.3

for a 
ut-elimination pro
ess a

ording to Theorem 1.1. For all n 2 N the following holds:

let

(y

0

)

P

�

|

n

f(y

0

)

P

g; g

P!P

{

1

fg

P!P

; s

P!P

g

�

J

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K

�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

|

n

f(y

0

)

P

gJ

J

J(y

0

)

P

:= ax

(z

0

)

P

;z

P

J

J

Jz

P

:= {

1

fg

P!P

; s

P!P

gJ

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

KK

K

KK

K

K

�

�!

(Cut)

C

f::: g

�

: : : J

J

J : : : J

J

Jz

P

:= let

x

P

1

�

ax

x

P

1

;z

P

;s

P!P

;g

P!P

J

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K;

s

P!P

({

0

fg

P!P

; s

P!P

gJ

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K)

�

K

K

KK

K

K

�

�!

(Cut)

C

f::: g

�

: : : : : : J

J

J : : : J

J

Jz

P

:= let

x

P

1

�

ax

x

P

1

;z

P

;(z

0

)

P

;s

P!P

;

s

P!P

({

0

fg

P!P

; s

P!P

gJ

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K)

�

K

K

KK

K

K

�
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�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

|

n

f(y

0

)

P

gJ

J

J(y

0

)

P

:= ax

(z

0

)

P

;z

P

J

J

Jz

P

:= let

x

P

1

�

ax

x

P

1

;(z

0

)

P

;z

P

;s

P!P

; s

P!P

ax

z

P

;(s

P!P

)

2

;(z

0

)

P

�

K

K

KK

K

K

�

�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

|

n

f(y

0

)

P

gJ

J

J(y

0

)

P

:= ax

(z

0

)

P

;(z

0

)

P

;(s

P!P

)

2

;z

P

K

K

K

�

�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

W

f((z

0

)

P

)

2

;z

P

;(s

P!P

)

2

g

(|

n

)

�

�!

�

(Weak)

C

f(z

0

)

P

;z

P

;s

P!P

g

(|

n

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g)

� C

f(z

0

)

P

;z

P

;s

P!P

g

�

let

y

P

�

{

n

fy

P

g; s

P!P

{

P

1

fs

P!P

g

�

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

� C

f(z

0

)

P

;z

P

;s

P!P

g

�

let

y

P

�

{

n

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g;

s

P!P

{

P

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g

��

�!

(Cont)

let

y

P

�

C

fz

P

;(z

0

)

P

g

I

s

P!P

;y

P

({

n

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g);

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

({

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g)

�

�!

(Inv)

let

y

P

�

C

fz

P

;(z

0

)

P

g

�

ax

y

P

;z

P

f((z

0

)

P

)

2

; z

P

; s

P!P

g

�

;

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

({

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g)

�

�!

(Cont)

let

y

P

�

ax

y

P

;z

P

f(z

0

)

P

; s

P!P

g

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

({

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g)

�

�!

(3)

(Cont)

let

y

P

�

ax

y

P

;z

P

f(z

0

)

P

; (s

P!P

)g; s

P!P

(({

1

fs

P!P

g)f(z

0

)

P

; z

P

; s

P!P

g)

�

� let

y

P

(ax

y

P

;z

P

; s

P!P

{

1

fs

P!P

g)f(z

0

)

P

; s

P!P

g .

(The �!

�

(Weak)

-redu
tion step above has its justi�
ation in Lemma 1.9, in the step

�!

(3)

(Cont)

three appli
ations of 
ontra
tion-redu
tion rewrite-rules have been gathered.)

Let for n 2 N the term t

n

be the �rst derivation-term in the above redu
tion-sequen
e

�

n

and let t

0

denote the resulting derivation-term (n 2 N refers to the free o

urren
e of n in

|

n

in the derivation-term at the beginning). If one looks at the natural-dedu
tion derivation

images �(D

n

) and �(D

0

) for the (G

+

+Cut)-derivations D

n

and D

0


orresponding to the

derivation-terms t

n

and t

0

, it 
an easily be seen, that �(D

n

) is the typed natural-dedu
tion

derivation

(P ! P )

s

(P ! P )

s

(P ! P )

s

P

z

!E

sz : P

!E

s(sz) : P

.

.

.

s

n�1

z : P

!E

s

n

z : P

,

(1.6)
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whereas �(D

0

) is just

(P ! P )

s

(P ! P )

s

P

z

!E

sz : P

!E

s(sz) : P

.

(1.7)

Sin
e for n > 2 the derivations �

0

(D

n

) do not redu
e to �

0

(D

0

) by normalization (�

0

(D

n

)

and �

0

(D

0

) being the derivations �(D

n

) and �(D

0

) after dropping the term-labels in all


on
lusions of rule-appli
ations), this means that \something more" than what would

have 
orresponded to normalization must have happened during 
ut-elimination here. It

is straightforward to 
he
k that the \jump" for n > 2 of �(D

(i)

n

) (with D

(i)

n

being the

derivation 
orresponding to the i-th derivation-term in �

n

) from (1.6) to (1.7) o

urs just

in the single inversion-redu
tion step in �

n

.

Informally it is 
lear, that an unne
essarily 
ompli
ated proof, the natural-dedu
tion

derivation in (1.6), has obviously been redu
ed to a more 
ompa
t form, the derivation

in (1.7). But this redu
tion on proofs (as informal obje
ts that are thought to underly

formal derivations (
f. for example G. Kreisel in [Kr71℄, p. 111)) is not re
e
ted by the

way how normalization on natural-dedu
tion simpli�es proofs. (It also has to be noted

that the \proof-redu
tion" between (1.6) and (1.7) is 
ertainly not optimal and therefore

seemingly indeed of a spe
ial kind.)

It is interesting, that in the setting of a system G

+


omparable to Vestergaard's (in

the notation here:) G

+

v

, but 
ontaining an expli
it weakening-rule, Vestergaard's example

does not look 
onvin
ing any more: This is be
ause the 
ontra
tion-redu
tion rewrite-rule

E.
 in the proof of Lemma 1.8 
an 
ertainly be modi�ed to the following more 
areful

form:

C

�

�

let

y

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Cont)

8

>

>

>

>

>

<

>

>

>

>

>

:

let

(y

B

)

�

C

�

(t

C

1

); x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

=2 � or

�

x

A!B

2 � and 2:mult(x

A!B

;�) < mult(x

A!B

; ant(t

0

))

�

let

(y

B

)

�

C

�	fx

A!B

g

�

(I

x

A!B

;y

B

(t

C

1

)

�

; x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

2 � and 2:mult(x

A!B

;�) = mult(x

A!B

; ant(t

0

)))

On the 
orresponding G

+

0

-derivations this means: Multiple 
ontra
tion is always allowed

to permute upwards over L! dire
tly (without the use of inversion) also in 
ase that the

prin
ipal formula of L! is a
tive in the su

eeding 
ontra
tion, whenever it is possible to

do this. That is, whenever there are enough o

urren
es of the prin
ipal formula of L!

also in the right premise of the involved appli
ation of this rule to 
arry out the required

multiple 
ontra
tion also there: If x : A! B 2 �, then
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D

0

x : A! B; x : A! B;�) t

0

: A

D

1

[y : B℄; x : A! B;�) t

1

: C

L!

x : A! B; x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

mC

x : A! B;�	 (�	 fx : A! Bg)) C

�

((let

y

B

(t

C

1

; x

A!B

t

A

0

))

C

) : C

is now allowed to redu
e (as in the �rst 
ase of the rule E.
) to

D

0

x : A! B; x : A! B;�) t

0

: A

mC

x : A! B;�) C

�

(t

A

0

) : A

D

1

[y : B℄; x : A! B;�) t

1

: C

mC

[y : B℄;�) C

�

(t

C

1

) : C

L!

x : A! B;�) let

y

B

�

C

�

(t

C

1

); x

A!B

C

�

(t

A

0

)

�

: C

,

(where � :� �	 (�	fx : A! Bg)) whenever (A! B)

2:mult(A!B;�)

� ��fA! Bg, or

equivalently (A! B)

2:mult(A!B;�)

( �� fA! B;A! Bg = ant(t

0

) holds.

Given this formulation of the inversion-redu
tion rewrite-rule E.
, the redu
tion-se-

quen
e for a 
ut-elimination pro
ess in Vestergaard's example would then 
ontinue after

the weakening redu
tion-steps su

eeding the six 
ut-elimination redu
tions as follows:

: : : �!

�

(Weak)

C

f(z

0

)

P

;z

P

;s

P!P

g

(|

n

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g)

� C

f(z

0

)

P

;z

P

;s

P!P

g

�

let

y

P

�

{

n

fy

P

g; s

P!P

{

P

1

fs

P!P

g

�

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

�!

(Cont)

let

y

P

�

C

f(z

0

)

P

;z

P

;s

P!P

g

�

{

n

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

;

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

�

{

P

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g

�

�

�!

(3)

(Cont)

let

y

P

�

let

y

P

�

: : :

�

; s

P!P

{

1

f(z

0

)

P

; (s

P!P

)

2

g

�

�!

(Cont)

let

y

P

�

let

x

P

n

�

C

f(z

0

)

P

;z

P

;s

P!P

g

�

ax

x

P

n

;z

P

fy

P

; ((z

0

)

P

)

2

; (z

0

)

P

; (s

P!P

)

2

g

�

;

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

�

{

n�1

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

; : : :

�

�!

�

(Cont)

let

y

P

�

let

x

P

n

�

ax

x

P

n

;z

P

fy

P

; (z

0

)

P

; s

P!P

g; s

P!P

{

n�1

fy

P

; (z

0

)

P

; s

P!P

g

�

; : : :

�

� let

y

P

�

{

n

fy

D

; (z

0

)

P

; s

P!P

g; s

P!P

(({

1

fs

P!P

g)f(z

0

)

P

; s

P!P

g)

�

� |

n

f(z

0

)

P

; s

P!P

g.

(The �!

�

(Weak)

-redu
tion-step in this redu
tion-sequen
e is again justi�ed by Lemma 1.9,

in the redu
tion-step�!

(3)

(Cont)

means three su

essive appli
ations of 
ontra
tion-redu
tion

rewrite-rules. In the last redu
tion-step, that 
onsists of a gathered number of single


ontra
tion-redu
tion steps, it was used that the 
ontra
tion involved on the left 
an then
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be permuted upwards indu
tively over all of the n�1 appli
ations of L! in {

n�1

similarly

as in the previous step over the bottom-most appli
ation L! in {

n

.)

Here an inversion-redu
tion step is no longer needed during this pro
ess and the form of

the resulting term

~

t

0

n

is not independent of n any more. This means, that if the redu
tion-

sequen
es ~�

n

for n 2 N of this kind were 
onsidered as appli
ations of an operation 
f (to

make terms 
ut-free) on derivation-terms t

n

(the left-most terms in the sequen
es), then

the identity of derivation-terms from the family ft

n

g

n2N

would be preserved under this

operation 
f . Moreover, if the natural-dedu
tion image �(

~

D

0

n

) under � of the derivation

~

D

n

in G

+

0

, whi
h 
orresponds to

~

t

0

n

, is looked at, the derivation �(D

n

) in (1.6) is en
oun-

tered again. The \meanings" of the terms t

n

and

~

t

0

n

at the start and at the end of ~�

n

are

therefore identi
al.

Closer inspe
tion shows that the whole pro
ess of 
ut-elimination for D

n

is here|under

the just slightly modi�ed 
onditions of a variant of the 
ontra
tion-redu
tion rewrite-rule

E.
 used here instead|undete
table from the natural-dedu
tion images of the derivation-

terms (there are also no 
hanges in this natural-dedu
tion images during the 
ourse of the

derivation, as is easy to 
he
k). { The \anomaly" has disappeared here.

Yet, it is possible to give another example of a \
omputational anomaly" also in the

system G

+

with an expli
it weakening rule. Here essentially the idea behind the example of

Vestergaard is used, but in a slightly di�erent way. The example below was initially found

by 
onsidering 
ut-elimination in a rather easy derivation of the untyped G3[mi℄-system

(
f. this example in Appendix A on p. 77), for whi
h the �rst step in the 
ut-elimination

pro
edure ne
essitates the appli
ation of a fork-redu
tion of list C in se
tion 1.3.

The derivation-terms {

n

(for n 2 N ) in (1.5) from Vestergaard's example will be used

again in the new example. Furthermore let t

B

00

be the derivation-term

t

B

00

:= let

(z

0

)

P

�

ax

y

B

;x

A

;z

P

;(z

0

)

P

; s

P!P

ax

z

P

;x

A

;y

B

;s

P!P

�

.

Then for all n 2 N the following redu
tion-sequen
e ��

n

on derivation-terms represents a

pro
ess of 
ut-elimination a

ording to Theorem 1.1:

let

y

B

�

{

n

fx

A

; y

B

g; w

A!B

ax

x

A

;w

A!B

;z

P

;s

P!P

�

J

J

Jw

A!B

:= �x

A

:t

B

00

K

K

K

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:= t

B

00

J

J

Jz

P

:= ax

x

A

;w

A!B

;z

P

;s

P!P

J

J

Jw

A!B

:= �x

A

:t

B

00

K

K

KK

K

KK

K

K

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:= t

B

00

J

J

Jz

P

:= ax

x

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

K

K

KK

K

K

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:=W

fy

B

;(z

P

)

2

;(s

P!P

)

2

g

(t

B

00

)K

K

K

�!

�

(Weak)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:= t

B

00

fy

B

; (z

P

)

2

; (s

P!P

)

2

gK

K

K
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�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

let

(z

0

)

P

�

{

n

fx

A

; y

B

g

J

J

Jy

B

:= ax

y

B

;x

A

;y

B

;(z

P

)

3

;(z

0

)

P

;(s

P!P

)

2

K

K

K;

s

P!P

W

fx

A

;z

P

;s

P!P

g

(ax

z

P

;x

A

;(y

B

)

2

;(z

P

)

2

;(s

P!P

)

3

)

�

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

�

let

(z

0

)

P

�

W
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(The �!

�

(Weak)

-steps here are again justi�ed as appli
ations of Lemma 1.9.)

Let

�

t

n

and

�

t

0

denote the topmost and bottom-most derivation-terms in the above

derivation-sequen
e ��

n

respe
tively. It is straightforward to 
he
k that for the G

+

0

+Cut-

derivation

�

D

n


orresponding to

�

t

n

the image �(

�

D

n

) under � is equal to �(D

{

n

) (D

{

n

the G

+

0

-derivation 
orresponding to {

n

), whi
h for n � 1 in turn equals (1.6). But the

derivation

�

D

0


orresponding to

�

t

0

has simply P

z

as its natural-dedu
tion image �(

�

D

0

).

This means that for n > 1 something spe
ial has happened here again to the natural-

dedu
tion images of derivation-terms in a redu
tion-sequen
e ��

n

of the above kind, some-

thing, that is not explainable by normalization-steps on the natural-dedu
tion images of

the derivation-terms o

uring in �

n

. { Closer inspe
tion shows that the one and only jump

takes pla
e|as in Vestergaard's example|in the single inversion-redu
tion step o

urring

in the redu
tion-sequen
e.



CHAPTER 1. VESTERGAARD'S \COMPUTATIONAL ANOMALY" 34

1.5 Closer analysis of the \problemati
" 
ut-elimination

step in G

+

In the introdu
tion to [Vest99℄ R. Vestergaard refers to an arti
le by G. Kreisel in [Kr71℄ of

1971, whi
h was intended by the author to supplement an earlier arti
le with aspe
ts and

thoughts springing up from the 
onsequen
es of the then re
ent dis
overy of normalization

for natural-dedu
tion derivations by D. Prawitz in the early and mid-1960ies. Kreisel was

interested in what exa
tly the new 
on
ept 
ould tell about properties of and relations

between proofs (as informal obje
ts that mathemati
ians are familiar with):

\Here I wish to emphasize formal results and and problems 
on
erning rela-

tions between proofs, for example the identity relation between proofs des
ribed

by formal derivations of a given system."

With respe
t to \normal derivations and 
onversions" Kreisel lists the following desirable

properties of normal derivations (in a not dire
tly spe
i�ed formal system, that for example


an be both a sequent- or a natural-dedu
tion 
al
ulus) su
h that they 
an \serve as


anoni
al representations of all proofs represented in the system 
onsidered, the way the

numerals are 
anoni
al notations for the natural numbers":

\A minimum requirement is then that any derivation 
an be normalized ,

that is transformed into a unique normal form by a series of steps, so-
alled

\
onversions", ea
h of whi
h preserves the proof des
ribed by the derivation.

This requirement has a formal and an informal part:

(�) The formal problem of establishing that the 
onversions terminate in a

unique normal form (independent of the order in whi
h they are applied).

(�i) The informal re
ognition (by inspe
tion) that the 
onversion steps 
on-

sidered preserve identity, and the informal problem of showing that

(�ii) distin
t, that is in
ongruent normal derivations represent di�erent proofs

(in order to have unique, 
anoni
al, representations)."

Vestergaard draws from this a 
onne
tion to his �ndings and spe
i�
ally stresses the above

requirement (�i) for this. He goes on to interpret the proof thought to be underlying a

derivation D in his typed !G3mi-like system G

+

v

as just the natural-dedu
tion image

�(D) of D (to be pre
ise, only for a derivation D in G

+

0

not 
ontaining an appli
ation of

inversion). If this is done, his example of a \
omputational anomaly" really shows that

the 
ut-elimination pro
edure he uses similar to the one for the G3[mi℄-systems given

impli
itly in [TS96℄ indeed 
hanges \proofs", in Kreisel's use of this word, it thus does not

preserve the identity of proofs.
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But it has to be remembered at the same time that|as Zu
ker's result from 1974

shows|also the 
ut-elimination steps in the seemingly mu
h better behaved LJ-near sys-

tem S do not preserve the so-understood identity of proofs, insofar as the steps for upwards

permutation of 
ut (Zu
ker 
alls these steps permutative 
onversions) 
hange the natural-

dedu
tion images of derivations; again, if only in a way that 
an be simulated on the

images by a �nite sequen
e of normalization-steps

10

.

It seems doubtful, that Kreisel had really wanted to have the meaning of the word

\proof" in the quoted passages understood as just a natural-dedu
tion derivation (sin
e

this is again a derivation in a stri
t formal system that 
an only model the mathemati
al

pra
ti
e of proving and therefore does not really 
ontain the proofs mathemati
ians deal

with and have in their minds). Nevertheless, in the absen
e of better suited 
andidates

natural-dedu
tion surely 
an serve as a very good approximation to the informal notion

of proof.

Zu
ker in [Zu74℄ takes this as a starting point and provides arguments for the follow-

ing: If one a

epts the view that the performan
e of normalization-steps on a natural-

dedu
tion derivation does not 
hange the underlying (informal) proof (a 
onje
ture by

D. Prawitz in [Pra71℄), that is, that synonymity of derivations is equivalent to interre-

du
ibility by normalization-redu
tions, then the results in [Zu74℄ 
an be seen as a jus-

ti�
ation to interpret|at least for the negative fragment S

�

of Zu
ker's sequent-system

S|the synonymity of derivations in the sequent-system S as the property of their interre-

du
ibility by (appropriately spe
i�ed) 
ut-elimination steps in S. (Pottinger in [Pott77℄

later indi
ated a way how to generalize Zu
ker's result to a full intuitionisti
 
al
ulus.)

Vestergaard's result shows that \synonymity" of derivations in his typed!G3mi-like

system G

+

v


annot be interpreted just as the interredu
ibility of their natural-dedu
tion

images by normalization, if this so-understood \meaning" of derivations shall be preserved

by a 
ut-elimination pro
edure near to that for G3[mi℄ given impli
itly in [TS96℄ (this

result was transferred here to a system 
omparable to Vestergaard's but with an additional

expli
it weakening rule).

Prawitz above mentioned 
onje
ture \Two [natural-dedu
tion℄ derivations represent

the same proof if and only if they are equivalent [i.e. interredu
ible by normalization-steps℄"

in [Pra71℄ was 
hallenged by S. Feferman in [Fef75℄, parti
ularly for the 8-
ontra
tion step

of normalization. He suggested instead:

\Even if it does not settle the relation of identity between proofs, the work

des
ribed by Prawitz may give simple synta
ti
 explanations of other familiar

relations and operations, for example, for the idea of one proof spe
ializing

to another or of extra
ting from a proof just what is needed for its parti
ular


on
lusion."

10

It is easy to 
he
k that the same is true in the here 
onsidered system G

+

for the derivation-redu
tions


orresponding to the rewrite-rules of list B in se
tion 3 for upwards-permutation of Cut.
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Following Feferman's above words here an argument shall be given, why it 
an be thought,

that even the problemati
 step during a 
ut-elimination pro
ess in the system G

+

as well as

in G

+

v

, namely upwards-permutation of 
ontra
tion that needs an additional appli
ation of

inversion (
f. the 
ontra
tion-redu
tion rewrite-rule E.
, se
ond 
ase, that is the immediate


ause of the anomaly), does in fa
t lead to the extra
tion from a given derivation D in

G

+

0

+Cont just what is needed to prove its 
on
lusion. In the more pre
ise sense that

only su
h unne
essary subderivations are getting \axed out" as a 
onsequen
e of this

step during 
ontra
tion-elimination, for whi
h another subderivation leading to a stronger


on
lusion stays in the transformed derivation.

For simpli
ity let us 
onsider the \problemati
" step in the 
ut-elimination pro
edure

for G

+

in the 
ase of an analogous step that o

urs during the 
ut-elimination pro
e-

dure impli
it in [TS96℄ for the untyped !G3mi-system. There during a subpro
ess of


ontra
tion-elimination the following situation of a derivation D

D

0

A! B;A! B;�) A

D

1

B;A! B;�) C

L!

A! B;A! B;�) C

C

A! B;�) C

(1.8)


an o

ur. Here the 
ontra
tion at the bottom of D 
annot be dire
tly permuted upwards

over L!, at least not in the 
ase, when A ! B 62 �. Here D gets transformed by the

pro
edure in a �rst step to

D

0

A! B;A! B;�) A

C

A! B;�) A

D

1

A! B;B;�) C

Inv

B;B;�) C

C

B;�) C

L!

A! B;�) C

(1.9)

by the use of an additional appli
ation of inversion. The removal of the inversion at the bot-

tom of D

1

is then responsible for the unwanted e�e
ts des
ribed by Vestergaard's anomaly,

sin
e during this operation of inversion-elimination some sub-derivations of D

1


an disap-

pear 
ompletely (in the setting of the typed 
al
ulus G

+

in an analogous situation some

subderivations 
an equally get lost when going over to the respe
tive natural-dedu
tion

images, an e�e
t, whi
h ultimately leads to the \anomalies"). It shall be tried to argue

here, that while in a proof thought to be underlying (1.8) as an informal obje
t indeed

some sub-proofs, 
orresponding to subderivations of D

1

, 
an be lost as a 
onsequen
e of

inversion-redu
tion steps in D

1

following after the situation (1.9), su
h lost subproofs lead

only to weaker versions of the sequent A ! B;� ) A, a proof of whi
h must then still

underly the transformed derivation D

0

after the elimination of the su

eeding 
ontra
tion

in (1.9) there.
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To be able to demostrate this, two lemmas are ne
essary, the �rst analyzes the stru
ture

of D

1

in (1.9) and the se
ond des
ribes the result of eliminating the newly appearing

inversion there 
ompletely from the left immediate subderivation of L!.

Lemma 1.10. Every derivation D

1

in !G3mi with the 
on
lusion B;A ! B;� ) C

has the stru
ture

D

11

(A! B;�

1

�

1

�

1

) C

1

) : : :

D

1n

(A! B;�

n

�

n

�

n

) C

1

)

D

10

B;A! B;�) C

(1.10)

(here a sequent in bra
kets (: : : ) means exa
tly one o

urren
e of this sequent as a leaf in

the derivation-tree of the \partial derivation" D

10

), where

(i) ea
h derivation D

1i

(i = 1; : : : ; n) is either an axiom or terminates with an appli
a-

tion of L! and is hen
e of the form

D

1i0

A! B;�

i

�

i

�

i

) A

D

1i1

B;�

i

�

i

�

i

) C

i

L!

A! B;�

i

�

i

�

i

) C

i

,

(1.11)

where furthermore for all i 2 f1; : : : ; ng

�

i

� � and (1.12)

8D 2 � [ fBg

�

D 2 �

i

_

�

9D

0

stri
tly positive subformula of D

�

(D

0

2 �

i

)

i

(but no property of the formulas in �

i

is singled out here).

(ii) D

10

is a partial derivation (i.e. it 
ontains sequents A! B;�

i

�

i

�

i

) C

i

as top-leafs,

that are not ne
essarily axioms), whi
h 
ontains no axioms ex
ept ones that o

ur

among the D

11

; : : : ;D

1n

and no L!-appli
ation with prin
ipal formula A! B.

Lemma 1.11. The result D

0

1

of eliminating a bottom-most appli
ation of inversion a
-


ording to the 
ut-elimination pro
edure impli
it in [TS96℄

11

in the !G3mi-derivation

~

D

1

of the form

D

11

(A! B;�

1

�

1

�

1

) C

1

) : : :

D

1n

(A! B;�

n

�

n

�

n

) C

n

)

D

10

B;A! B;�) C

Inv

B;B;�) C

,

(1.13)

11

Cf. the item (vii) of the inversion-lemma in the Proposition on p. 66, 67 and its proof in [TS96℄, on

whi
h the proof of the 
ut-elimination theorem for the G3[mi℄-systems relies for the treatment of su
h a

subproblem.



CHAPTER 1. VESTERGAARD'S \COMPUTATIONAL ANOMALY" 38

where the immediate subderivation D

1

of the bottom-most inversion in

~

D

1

is of the form

(1.10) with the 
onditions on D

10

;D

1i

;�

i

;�

i

;�

i

as in Lemma 1.10, is

D

0

11

(B;�

1

�

1

�

1

) C

1

) : : :

D

0

1n

(B;�

n

�

n

�

n

) C

n

)

D

10

fA! B=Bg

B;B;�) C

(1.14)

(where D

10

fA! B=Bg means the result of repla
ing exa
tly one o

urren
e of A! B in

the ante
edent of every sequent by B) and where for all i = 1; : : : ; n

D

0

1i

:=

(

D

1i1

: : : if D

1i

is not an axiom

(the axiom:) B;�

i

�

i

�

i

) C : : : if D

1i

is an axiom

(1.15)

(D

1i0

and D

1i1

mean the subderivations of D

1

with these denotations from Lemma 1.10).

The Proofs of these two lemmas 
onsist just of|appropriately formulated|indu
tions

on the depth of the derivation D

1

.

The derivation D

1

in (1.9) 
an by Lemma 1.10 be seen to be of the form (1.10) with

the derivations D

1i

of the form (1.11) and the 
onditions on D

10

;D

1i

;�

i

;�

i

;�

i

as in

Lemma 1.10.

By Lemma 1.11 the result of eliminating the inversion appearing in (1.9) is then

D

0

A! B;A! B;�) A

C

A! B;�) A

D

0

1

B;B;�) C

C

B;�) C

L!

A! B;�) C

(1.16)

where D

0

1

is of the form (1.14) (with subderivations D

0

1i

for i = 1; : : : n as de�ned in

Lemma 1.11). As des
ribed by Lemma 1.11 D

0

1

is the result of dropping subderivations

D

1i0

A! B;�

i

�

i

�

i

) A

(1.17)

fromD

1

and of repla
ing a single passive o

urren
e of A! B in every sequent throughout

D

10

by B.

Due to (1.12) the 
on
lusion of every derivation (1.17) is obviously weaker than the


on
lusion A! B;�) A of the derivation leading to the left premise of L! in (1.16). It

seems therefore justi�able to say that while removing the additional o

uring appli
ation

of inversion in (1.9) leads in e�e
t to the loss of subderivations in the result (1.16) of this

subpro
ess, these lost derivations would 
orrespond only to weaker versions of a sub-proof
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that stays in the transformed derivation (that one that underlies the proof of the left

immediate subderivation of L! in (1.16)).

In other words, although the subderivations D

1i0

in (1.17) of D

1

disappear as a 
on-

sequen
e of the upwards-permutation of 
ontra
tion over L! in (1.8) via the �rst step

(1.9) and the following inversion-redu
tion steps, the pro
ess as a whole may be seen here

as keeping ba
k only one essential 
opy of a derivation for A ! B;� ) A (underly-

ing the further transformed derivation D

0

), while possibly many proofs of \spe
ial 
ases"

A ! B;�

i

�

i

�

i

) A (where �

i

, �

i

satisfy (1.12)) of A ! B;� ) A get \axed out"

from D

1

. The pro
ess of 
ut-elimination in this 
ontra
tion-elimination step 
ould then

be thought of as dropping appli
ations of unne
essary lemmas from the proof underlying

D, that turned out to be spe
ial 
ases of a statement, for whi
h a proof is retained. Or,

as extra
ting from the proof, that is thought to be formalized by D, essential parts for a

derivation of its 
on
lusion, using the distin
tive 
ombinatorial properties of the L!-rule

in an intuitionisti
 or minimal G3[mi℄-system.

1.6 An alternative system !G2

0

mi

e�

It is not apparent from the outset, why Vestergaard 
hose to present his result in the

setting of a typed system, where the ante
edents of sequents are 
onsidered to be multi-

sets of variable-annotated formulas (instead of as respe
tive su
h sets). He only stresses

that he is interested in the \
omputational meaning" of single rules and of derivations

in the (untyped) G3[mi℄-sytems (and whether su
h a pre
isely de�nable \
omputational

meaning" of a derivation is a�e
ted or not during the exe
ution of 
ut-elimination steps),

where the ante
edents of sequents in fa
t are multisets of (not annotated) formulas.

On the other hand the logi
al rules in Vestergaard's system (as in the very similar

system G

+

above) do a
t on their premises by treating multiple o

urren
es [x : A℄ of

annotated a
tive formulas x : A in a set-like way as one obje
t for the rule-appli
ations

(with the obvious unstated motivation of 
onsidering su
h multiple o

urren
es as referring

to the same assumption 
lass in a 
orresponding natural-dedu
tion derivation).

Also J. Zu
ker in his ground-breaking paper [Zu74℄ about the exa
t relationship be-

tween 
ut-elimination in a sequent-
al
ulus and normalization in a related natural-dedu
-

tion system took a sequent-
al
ulus S as the basis for his investigation, in whi
h the an-

te
edents of sequents 
onsist of sets of (pre
isely de�ned:) \indexed" formulas and where

the rules were formed appripriately for this notion of sequents. Zu
ker's system S is (as to

the logi
al shape of its rules, not with respe
t to the spe
ial indexing 
onventions used in

it) 
lose to Gentzen's LJ and 
ould be easily transformed into a typed system, su
h that

his results of a 
lose 
orresponden
e between 
ut-elimination steps in S and normalization

steps in N (his slightly modi�ed system for natural dedu
tion) would 
arry over to the

typed system (if variable annotations and indexes of formulas were 
orresponding to ea
h



CHAPTER 1. VESTERGAARD'S \COMPUTATIONAL ANOMALY" 40

other bije
tively, the typed system therefore then being only the result of rewriting S).

In the 
on
lusion of [Vest99℄ Vestergaard states that the \anomaly" 
ould have been

avoided by using a variant-system instead of (the here 
alled system) G

+

v

with the an-

te
edents of sequents 
onsisting of sets instead of multisets:

\The 
omputational anomaly 
ould [ : : : ℄ have been avoided if we instead

had 
onsidered (a variant) ofG3i in
orporating a notion of assumption 
lasses.

This 
an be a

omplished, e.g. by de�ning ante
edents to be sets of variables

with a proposition annotated. In su
h a setup we 
ould have utilized the

impli
it 
ontra
tion whi
h is expressed in the idempoten
y of set union to take

pla
e of the trouble instigator in G3i: the expli
it 
ontra
tion rule."

It 
ould be argued in more detail, why we think that this is not, at least not dire
tly

possible: (1) In an axiomati
 
ut-elimination step 
omparable to the 
ase 
overed by the

rewrite-rule A.a a lemma for substitution (
omparable to Lemma 1.4 and Lemma 1.6)

has to be relied on also in a new system, but su
h lemmas do not hold any more in the


ase, that the axioms are not restri
ted to su
h that have only atomi
 a
tive formulas

(as in Vestergaard's system G

+

v

); else 
ompletely similar problems as are the 
ause of the

\anomaly" 
ould 
ome in from the seemingly harmless 
ase of an axiomati
 
ut-redu
tion

in an new system 
omparable to the redu
tion A.a on derivation-terms in G

+

. (2) One

en
ounters diÆ
ulties with the treatment of upwards permutation of Cut in the 
ase of

non-prin
ipal 
ut-formulas (redu
tions on derivations similar to those given in list B for

redu
tions on derivation-terms). DiÆ
ulties, that may indeed let Vestergaard's system G

+

v

(and the here de�ned system G

+

) with the ante
edents of sequents 
onsisting of multisets

look as a quite natural 
hoi
e for a typed!G3mi-like 
al
ulus, that relates derivations in

it quite naturally to natural-dedu
tion derivations and at the same time allows to des
ribe


ut-elimination for derivations in it (to be pre
ise, 
ut-elimination done 
lose to the usual

way for a G3[mi℄-system) as a stepwise and lo
al pro
ess.

Vestergaard's suggestion 
ited above 
an be 
arried through for the following typed

system!G2

0

mi

e�

, whi
h has a very!G3mi-like formulation of its L!-rule and is itself

a G3-system (this means, 
ontra
tion is an admissible rule for it), but whi
h perhaps

derives more from the type-annotation of a G2-system !G2

0

mi (in whi
h 
ontra
tion

is not an admissible rule any more|due to the fa
t that the 
ontext in the premises of

L! is not the same any more as in the respe
tive rule for the G3[mi℄-systems). The

expli
it stru
tural rules in !G2

0

mi

e�

have also (as in G

+

v

and G

+

) been de�ned just in

su
h a way so as to make 
ut-elimination possible as a stepwise pro
ess of lo
ally applied

transformations (the role of 
ontra
tion is taken over by a renaming-rule Ren, where two

su

essive renamings always suÆ
e to mimi
k an arbitrary given 
ontra
tion).

De�nition 1.6 (The derivation-term annotated system !G2

0

mi

e�

). The system

!G2

0

mi

e�

is de�ned as follows: The ante
edent of a sequent in this system is a set
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of variables of formula-type (written as variable-annotated formulas), the su

edent 
on-

sists of a (rigidly) typed derivation-term, whose free type-variables o

ur in the ante
edent.

!G2

0

mi

e�

has the following axioms and rules:

Ax x : P ; �) ax

x

P

;�

: P (P atomi
)

x : A; �) t : B

R!

�) �x

A

:t

B

: A! B

x : A! B; �

0

) t

0

: A y : B; �

1

) t

1

: C

L!

x : A! B;�

0

;�

1

) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

u : A; �) t : C

Ren

v : A;�) Ren

u

A

;v

A

(t

C

) : C

�) t : C

mW

�;�)W

�

(t

C

) : C

Here the following notations are used:

� Expressions �

0

;�

1

or �

0

�

1

mean the set �

0

[�

1

, expressions x : A;� denote the set

fx : Ag [ �, and x : A; � is also to be understood as fx : Ag [ �, but thereby x : A

is understood to be no element of �.

� As in De�nition 1.2 typed variables x

A

are also written as x : A (when they o

ur

in the ante
edent and thereby informally refer to marked assumptions of a 
orre-

sponding natural-dedu
tion derivation). Terms t

C

in the su

edent of a sequent are

written in the form t : C (sin
e they are often informally thought of as derivation-

terms des
ribing a natural-dedu
tion derivation with 
on
lusion C).

The term in the su

edent of the end-sequent of a!G2

0

mi

e�

-derivation D will be 
alled

the derivation-term of D.

The systems!G2

0

mi

e�

+Cut are the systems!G2

0

mi

e�

enri
hed with the 
ut-rule

�) t

0

: D x : D; �) t

1

: C

Cut

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

as an additional inferen
e rule. �

Derivation-terms in this system again represent derivations uniquely (due to the rigid

typing in these terms). For 
ut-elimination in this system it is ne
essary that it is possible

to re
onstru
t the ante
edents ant(t) of the 
on
lusion-sequent � ) t : C of a derivation

from the derivation-term t. Like in G

+

this 
an be done indu
tively using the following

de�nition:



CHAPTER 1. VESTERGAARD'S \COMPUTATIONAL ANOMALY" 42

De�nition 1.7. The operation ant on!G2

0

mi

e�

-derivation is de�ned as follows

ant(ax

x

P

;�

) := fx : Pg [ � ;

ant(�x

A

:t

B

) := ant(t

B

) n fx : Ag ;

ant(let

y

B

(t

C

1

; x

A!B

t

A

0

)) := ant(t

A

0

) [ (ant(t

C

1

) n fy : Bg) ;

ant(Ren

u

A

;v

A

(t

C

)) := (ant(t

C

) n fu : Ag) [ fv : Ag ;

ant(W

�

(t

C

)) := ant(t

C

) [� ;

ant(t

C

1

J

J

Jx

D

:= t

D

0

K

K

K) := ant(t

D

0

) [ (ant(t

C

1

) n fx : Dg) :

Again, outermost types of terms on the left sides of the de�nition have been dropped here,

whenever it is possible to re
onstru
t them. �

Then the following lemma holds:

Lemma 1.12. For every (!G2

0

m

e�

+Cut)-derivation-term t

C

there is exa
tly one deriva-

tion D in (!G2

0

m

e�

+Cut) su
h that D is of the form

D

�) t : C

(� a set of formulas); for this derivation D moreover � = ant(t

C

) holds.

Proof. Again (as for Lemma 1.3) by indu
tion on the synta
ti
al depth of t

C

, thereby

inspe
ting all rules of!G2

0

mi

e�

for the indu
tion-step.

Theorem 1.2. Cut-elimination holds for !G2

0

mi

e�

.

More pre
isely, every derivation D in (!G2

0

mi

e�

+Cut) 
an be transformed by a �nite

sequen
e of su

essively applied lo
al redu
tion-steps with the result of a 
ut-free derivation

in !G2

0

mi

e�


ontaining no appli
ations of stru
tural rules mW or Ren.

Furthermore the pro
ess of 
ut-elimination for a derivation D in !G2

0

mi

e�


an be


ompletely simulated on derivation-terms by appli
ations of rules from an appropriate

rewrite-rule system starting at the derivation-term t of D; these rule-appli
ations have

to respe
t a 
ertain order, in whi
h single rewrite-rule steps are su

essively exe
uted.

The Proof of this theorem is very similar to that of Theorem 1.1. The rule Ren

turns out to be eliminable from the bottom of a derivation 
ontaining only logi
al rules

by upwards-permuation over logi
al rules without the need to introdu
e other non-logi
al

rules of !G2

0

mi

e�

. Nearly the same applies for mW, sin
e here appli
ations of Ren are

needed to make upwards-permutation of mW possible

12

. Cut-elimination 
an then be

done as a pro
ess of lo
al transformation-steps referring to the subpro
esses of eliminating

appli
ations of Ren and mW from 
ut-free derivations in!G2

0

mi

e�

.

12

(in some 
ases of upwards-permutation of mW over R!)
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It seems that similar problems as with inversion, that is the obvious dire
t 
ause of

the \
omputational anomalies", in G

+

are 
ompletely avoided in!G2

0

mi

e�

. This is on

the other hand but not so astonishing, sin
e the system!G2

0

mi

e�

is a
tually very near

to Zu
ker's system S and would even 
ompletely

13

mat
h with it, if a variant of it were


onsidered with similar restri
tions on the indi
es as in S (the 
loseness of !G2

0

mi

e�

to S 
an be seen very good from a slight reformulation of S by A.M. Ungar in [Ung92℄,

Appendix A, starting on p. 186); for su
h a variant-system the 
orresponden
e between


ut-elimination and normalization on normal-dedu
tion derivations (with respe
t to an

appropriately de�ned map � as in se
tion 2) holds again as in Zu
ker's system.

13

The G3[mi℄-like formulation of the L!-rule still stands out a bit then, but [I think, C.G.℄ this does

not 
ause similar problems as in G

+

and G

+

v

.



Chapter 2

Strong Cut-Elimination

G. Gentzen devised sequent-
al
uli for 
lassi
al and intuitionisti
 predi
ate logi
 as systems

that are equivalent to related

1

natural dedu
tion 
al
uli and that allowed him to obtain

important formal results about the possible stru
ture of proofs for arbitrary given provable


on
lusions; results that 
ould then be \exported ba
k" to the natural dedu
tion systems

(whi
h were also mainly developed by Gentzen and 
an be 
onsidered as pre
ise formal

proof systems very near to the a
tual mathemati
al pra
ti
e and therefore were and are

of great foundational interest) to gain deep metamathemati
al importan
e.

For establishing the equivalen
e of sequent- and natural dedu
tion 
al
uli formalizing

the same logi
 (equivalen
e in the sense that the same theorems are provable in these

systems) a 
ertain rule in sequent 
al
uli, the 
ut rule, suggested itself as being useful

and ne
essary and was introdu
ed for that purpose by Gentzen. His main formal result

for sequent-
al
uli, the \Hauptsatz", states that appli
ations of the 
ut-rule in derivations

either of his sequent-
al
uli LK for 
lassi
al or LJ for intuitionisti
 predi
ate logi
 
an be

e�e
tively removed and the derivation itself 
an be transformed into a 
ut-free form (i.e.

one in whi
h the 
ut-rule does not o

ur any more). This 
an be 
arried through with

the help of an e�e
tive 
ut-elimination pro
edure that pro
eeds by the stepwise exe
ution

of lo
al simpli�
ations (i.e. redu
tions) to a given derivation 
ontaining appli
ations of


ut and arrives at a 
ut-free proof of the same 
on
lusion after a �nite number of su
h

redu
tion-steps. The proof-redu
tions used in this pro
edure 
an be 
ompletely spe
i�ed

as to the exa
t 
onditions of their appli
ability and to the result produ
ed by them and

they 
an be gathered and listed into a �nite 
atalogue of su
h steps.

Cut-elimination pro
edures su
h as the one impli
it in Gentzen's proof of the \Haupt-

satz" for LJ and LK pres
ribe a 
ertain order (as well as many other similar pro
edures

for related and di�erent sequent 
al
uli do the same) in whi
h these redu
tion-steps have

to be applied to a given derivation 
ontaining 
ut su
h as to then guarantee termination.

1

(this means: formalizing the same logi
s)

44
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Usually �rst topmost o

urren
es of 
ut

2

in a derivation are 
onsidered and treated,

are either removed right away whenever this is possible (e.g. in the 
ase when an axiom

is involved as a premise) or are permuted upwards over logi
al or stru
tural rules or split

into two or more appli
ations of 
ut (of a somehow simpler kind); (\somehow simpler"

means that:) in all 
ases a parameter asso
iated with the number, pla
es and forms of

the appli
ations of 
ut in a derivation D has to be seen to have de
reased stri
tly while

performing su
h a redu
tion-step, so that termination of the whole pro
edure 
an then

be seen dire
tly given the domain of this derivation-asso
iated parameter 
on
erning the

appli
ations of 
ut in D is well-founded.

There is often some indeterminateness left in the pro
ess, but this is mostly narrowed

down 
onsiderably to either the 
hoi
e of an arbitrary topmost 
ut or to the possibility

that at some pla
e in the derivation perhaps two or more redu
tion-steps 
an be 
hosen

and is generally very far from allowing the exe
ution of arbitrary appli
able steps to a

given derivation (at perhaps even arbitrary pla
es therein) from the pro
edure's 
atalogue

of redu
tions. That is, proofs for 
ut-elimination usually do not also show termination of

a related pro
edure P

1

, in whi
h the possible redu
tion-steps impli
it in the pro
edure P


an be applied to a given derivation 
ontaining 
ut in an arbitrary, only by the general


onditions of their appli
ability restri
ted order.

While Gentzen had found himself lead to the introdu
tion of sequent-
al
uli for the

purpose of proving his outstanding foundational results, D. Prawitz ([Pra65℄) dis
overed

a more dire
t possibility of arriving at basi
ally the same metamathemati
al results by


onsidering natural dedu
tion 
al
uli alone and by giving a stru
tural proof-theory of these

systems without (from the outset:) referen
e to sequent-
al
uli. He gave|in some ways|a

similar pro
edure to 
ut-elimination in sequent-
al
uli that allowed to 
onstru
t \dire
t",

then 
alled normal natural dedu
tion derivations (i.e. derivations that 
an roughly be

des
ribed as ones that avoid to go unne
essary \detours") when starting out from given

arbitrary su
h derivations (in one of Gentzen's natural dedu
tion systems NK for 
lassi
al

and NJ for intuitionisti
 logi
). This pro
edure for the normalization of natural dedu
tion

derivations 
an (like a 
ut-elimination pro
edure) also be 
onsidered as 
onsisting of the

exe
utions of atomi
 redu
tion-steps, steps that again 
an be 
ompletely des
ribed as to

their exa
t outlook and the very pre
ise 
ir
umstan
es of their appli
ability; they also


an be gathered to form a short list of di�erent types of redu
tions. Prawitz' original

normalization-pro
edure demanded that these possible redu
tion-steps have to be applied

to a given natural dedu
tion derivation in a 
ompletely spe
i�ed order that is determined

by the pro
edure (namely always treating the rightmost, topmost and longest \detour"

in the given derivation �rst and either removing it 
ompletely or de
reasing it in its

length). { Using the 
lose 
onne
tion between sequent- and natural-dedu
tion-
al
uli

2

(in the 
ase of the pro
edure impli
it in Gentzen's proof a generalization of Cut, the mix-rule Mix,


omes in)
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Prawitz was then also able to give an alternative, though now more indire
t proof for

Gentzen's \Hauptsatz" in the sequent 
al
uli LK and LJ and he did state this result as

a 
orollary to his Normalization Theorem.

Later Prawitz re
ognized that the stepwise exe
ution of arbitrary but appli
able

redu
tion-steps from his �rst found normalization-pro
edure to a given natural-dedu
tion-

derivation ultimately always leads to a normal proof after the exe
ution of �nitely many

of su
h steps; the normal proof thereby 
onstru
ted by the normalization-pro
edure is also

unique (if some additional easy simpli�
ations and transformations are observed). Prawitz

thereby obtained what was then 
alled a Strong Normalization Theorem ([Pra71℄).

Although Prawitz' normalization result for natural dedu
tion 
al
uli had allowed him

to arrive also at an alternative way of performing 
ut-elimination in the related sequent-


al
uli and although there appeared to be \obvious similarities" between normalization

and 
ut-elimination as methods to obtain normal-forms for proofs, the question as to

their exa
t 
onne
tion or 
orresponden
e, whether they \really are the same thing" (all


ited words here are from [Pott77℄), was still unanswered. Cut-elimination had been seen

to admit simulation through normalization by Prawitz, but this did only show that 
ut-

elimination as a whole 
ompleted pro
ess 
ould be done quite di�erently and did not tie

these two 
on
epts for 
onstru
ting normal-forms of proofs together 
losely enough by

giving a pre
ise 
orresponden
e between redu
tion steps in either of these methods with

ea
h other.

A thorough investigation of the exa
t relationship between 
ut-elimination and nor-

malization with respe
t to intuitionisti
 
al
uli was presented in [Zu74℄. J. Zu
ker took a

variant S of Gentzen's LJ , namely a version with the ante
edents of sequents 
onsisting

of indexed formulas, as the starting point of his investigations. He de�ned a many-to-one

map � from his intuitionisti
 sequent-
al
ulus S to Ni and was then able to prove that

there exists a mutual 
orresponden
e under � between \natural" 
ut-elimination steps

(as su
h Zu
ker saw the ones also used by Gentzen) in S

�

, the negative fragment of S,

and normalization steps in Ni

�

, Ni 's negative fragment. { His detailed analysis made it

possible for Zu
ker to show that every 
ut-elimination or strong 
ut-elimination theorem

for S

�

implies a normalization or respe
tively a strong normalization theorem for Ni

�

and vi
e versa.

Zu
ker was also able to extend his results to the full 
al
uli S and Ni, but only at

the expense of having to deviate from some of what he saw are Gentzen's altogether very

natural 
ut-elimination steps (and of having instead to employ somewhat \unnatural"

ones

3

). G. Pottinger in [Pott77℄ gave an alternative approa
h to Zu
ker's results and

also extended these to the full respe
tive proof-systems for intuitionisti
 predi
ate logi


by again giving some new 
ut-elimination steps not previously used (it is meant: not

3

This 
on
erns su
h 
ut-eliminations steps that deal with the permutation of 
ut upwards over

introdu
tion-rules for _ and 9.
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presented) by Gentzen. But he insisted that at least the fa
t that these few alternative 
ut-

elimination steps fa
ilitate a dire
t 
orresponden
e between 
ut-elimination in Zu
ker's S

and normalization inNimakes them appear perhaps even more natural than the respe
tive

ones utilized by Gentzen (for proof-transformation in similar situations).

In 1977 A.G. Dragalin (for an exposition see [Drag79℄) gave a quite di�erent and self-


ontained proof of the fa
t that a strong form of the 
ut-elimination theorem also holds

for Gentzen's 
al
uli LK and LJ , and namely in the interesting sense that this is even

true w.r.t. ex
lusively su
h 
ut-elimination steps as had already been used by Gentzen.

The results of Zu
ker and Pottinger (here stated without proof:) do 
arry over to

the minimal and intuitionisti
 sequent-
al
uli GK3[mi℄ with impli
it stru
tural rules as

originally developed by S.C. Kleene (but here used in the notation as well as in the

presentation of these 
al
uli from [TS96℄) and thereby also allow to establish an analogous


orresponden
e between 
ut-elimination in GK3[mi℄ and normalization in N[mi℄.

But as was explained earlier in Chapter 2, a Zu
ker-type 
orresponden
e does not

exist between the N[mi℄- and the G3[mi℄-systems, again 
al
uli without expli
it stru
-

tural rules and presented in [TS96℄ (these G3-systems

4

in a somewhat di�erent presen-

tation are mainly due to A.G. Dragalin, but were reformulated with only one formula

in the su

edent|as this is a more 
ommon formulation of intuitionisti
 systems than

Dragalin's|by A.S. Troelstra). Hen
e strong normalization for N[mi℄ does not|at least

not in an obvious way|
arry over to yield a strong 
ut-elimination theorem for G3[mi℄.

{ On the other hand Dragalin's proof for strong 
ut-elimination in LJ and LK does not

dire
tly apply to the G3-systems (sin
e it was intentionally spe
i�ed to 
over LJ and

LK|with weakening and 
ontra
tion rules present there|and only 
ut-elimination steps

already used by Gentzen).

2.1 A Strong Cut-Elimination Theorem for !G3mi and

!?G3i

In Gentzen's pro
edure for 
ut-elimination in the sequent-
al
uli LK and LJ the redu
-

tion steps applied to a derivation D 
ontaining Mix

5

w.r.t. a topmost o

urren
e S of

Mix are essentially lo
al; this means they do not involve operations to be applied to whole

subderivations in D (more pre
isely su
h subderivations ending more than one rule appli-


ation above the premise of S) but do only 
ombine immediate subderivations of S and

other su
h subderivations ending not more than one rule appli
ation above S in a new

way (whi
h 
an mean some su
h subderivations are being dropped altogether) and with

some few rule appli
ations being added at the bottom of an appropriate 
ombination of

4

The designation G3 for a Gentzen-system without expli
it stru
tural rules originated with S.C. Kleene's

system of this name in [Kl52℄.

5

Whi
h essentially takes over the role of Cut in his proof.
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subderivations su
h that S 's 
on
lusion-sequent is rea
hed again. In the added rule ap-

pli
ations extensive use is made of LJ and LK 's stru
tural rules (weakening, 
ontra
tion

and|sin
e Gentzen used lists as ante
edents and su

edents of sequents|also ex
hange).

In the notation and formulation of sequent-
al
uli for minimal, intuitionisti
 and 
las-

si
al predi
ate logi
 a

ording to [TS96℄ the stru
tural rules weakening and 
ontra
tion

that appear in the basi
 G1-systems have been 
ompletely absorbed into the 
al
uli in the

G3-systems. This means they are not longer present as expli
it derivation-rules but 
an be

proven to be derived (or \admissible") rules of the 
al
uli, i.e. lemmas about derivability

valid in the systems G3[mi
℄ .

De�nition 2.1 (The Gentzen systems !G3mi

e

, !?G3i

e

). The variant!?G3i

e

of G3i 's absurdity-
ontaining impli
ative fragment!?G3i with expli
it stru
tural and

inversion rules is spe
i�ed by the following axioms and rules:

Ax P;�) P (P atomi
)

L? ?;�) A

A! B;�) A B;�) C

L!

A! B;�) C

A;�) B

R!

�) A! B

�) C

W

A;�) C

A;A;�) C

C

A;�) C

A! B;�) C

Inv

B;�) C

The variants !G3m

e

and !G3i

e

of the impli
ative fragments !G3m and !G3i of

G3m and G3i with expli
it stru
tural and inversion rules are de�ned just as !?G3i

e

,

but with all axioms L? left out. (Sin
e !G3m and !G3i mean the same formal

system, also!G3m

e

and!G3i

e

are identi
al 
al
uli and will be together referred to as

!G3mi

e

.

L! and R! will be 
alled the logi
al rules, weakening W and 
ontra
tion C the

stru
tural rules of the systems de�ned here.

The systems !G3mi

e

and !?G3i

e

will sometimes be enlarged by the adding the


ut-rule

�) D D;�) C

Cut

��) C

.

The resulting systems will be denoted by!G3mi

e

+Cut and!?G3i

e

+Cut. �

When attempting to 
onstru
t a stepwise lo
al 
ut-elimination pro
edure for!?G3i,

whi
h operates in the usual way of always treating a topmost o

urren
e of 
ut �rst, by

either removing it 
ompletely (whenever this is possible if an axiom is involved) or by
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permuting it upwards over logi
al rules, or by splitting it into a few 
uts of \simpler" kind

(if the 
ut-formula is prin
ipal in both inferen
es of the immediate subderivations), one is

for example led to the following 
ut-elimination redu
tions as in the lists A, B and C below.

In the redu
ed derivations essential use is made of!?G3i

e

's stru
tural rules weakening

and 
ontra
tion and therefore these redu
tions take (!?G3i+Cut )-derivations over to

(!?G3i

e

+Cut )-derivations.

Cut-elimination for!G3mi 
an thereby be treated as a spe
ial 
ase, in whi
h fewer

redu
tion-steps for transformations involving rule-appli
ations immediately su

eeding ax-

ioms have to be devised (due to the fa
t that!G3mi has the same rules but less axioms

than!?G3i). For the purpose of motivating the below redu
tions it will therefore only

be spoken of!?G3i and the just slightly more general situations o

uring for derivations

in this system.

A. Redu
tions by elimination or simpli�
ation of 
uts with axioms:

(1) Either of the premises of Cut is an axiom Ax :

a.

P;�

0

) P

D

1

P;�) C

Cut

P;�

0

�) C

>

red

D

1

P;�) C

W

P;�

0

�) C

b.

D

0

�) P P;�) P

Cut

��) P

>

red

D

0

�) P

W

��) P


.

D

0

�) D
P;D;�) P

Cut

P;��) P

>

red

P;��) P

(2) Either of the premises of Cut is an axiom L? :

d.

?;�) D

D

1

D;�) C

Cut

?;��) C

>

red

?;��) C

e.

D

0

�) D ?;D;�

0

) C

Cut

?;��

0

) C

>

red

?;��

0

) C

f.

?;�

0

)? ?;�

0

) C

Cut

?;�

0

�

0

) C

>

red

?;�

0

�

0

) C
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g.

D

00

A! B;�

0

) A

D

01

B;�

0

)?

L!

A! B;�

0

)? ?;�) C

Cut

A! B;�

0

�) C

>

red

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

D

01

B;�

0

)? ?;�) C

Cut

B;�

0

�) C

R!

A! B;�

0

�) C

B. Redu
tions by permuting 
uts upwards over logi
al rules:

a.

D

00

A! B;�

0

) A

D

01

B;�

0

) D

L!

A! B;�

0

) D

D

1

D;�) C

Cut

A! B;�

0

�) C

>

red

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

D

01

B;�

0

) D

D

1

D;�) C

Cut

B;�

0

�) C

L!

A! B;�

0

�) C

b.

D

0

�) D

D

10

A;D;�) B

R!

D;�) A! B

Cut

��) A! B

>

red

D

0

�) D

D

10

D;A;�) B

Cut

A;��) B

R!

��) A! B


.

D

0

�) D

D

10

A! B;D;�

0

) A

D

11

B;D;�

0

) C

L!

D;A! B;�

0

) C

Cut

A! B;��

0

) C

>

red
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D

0

�) D

D

10

A! B;D;�

0

) A

Cut

A! B;��

0

) A

D

0

�) D

D

11

D;B;�

0

) C

Cut

B;��

0

) C

L!

A! B;��

0

) C

C. Fork Cut-Redu
tion

6

:

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

D

11

B;�) C

L!

A! B;�) C

Cut

��) C

>

red

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

Cut

��) A

D

00

A;�) B

Cut

�

2

�) B

D

11

B;�) C

Cut

�

2

�

2

) C

C

��) C

A pro
ess of 
ut-elimination based on the above redu
tions also requires the e�e
tive

removal of the 
ontra
tion and weakening rules, not present in!?G3i. For this purpose

it will suÆ
e to give a list of lo
al transformation steps whi
h allow to build a pro
edure

for eliminating a single weakening or respe
tively a single 
ontra
tion rule as the last rule

appli
ation S from the bottom of a derivation D, where S 's immediate subderivation is

in fa
t a !?G3i-derivation, i.e. does not 
ontain 
ut nor any of !?G3i

e

's stru
tural

rules.

Upwards permutation of weakening turns out to be straightforward, while that of


ontra
tion needs another of!?G3i

e

's stru
tural rules, namely inversion of L! .

D. Weakening Redu
tions:

(1) Involving an Axiom:

a.

P;�) P

W

D;P;�) P

>

red

P;D;�) P

b.

?;�) A

W

D;?;�) A

>

red

?;D;�) A

6

The name \fork-redu
tion" follows Dragalin [Drag79℄.

6

The name \fork-redu
tion" follows Dragalin [Drag79℄.
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(2) Permuting weakening upwards over logi
al rules:


.

D

00

A;�) B

R!

�) A! B

W

D;�) A! B

>

red

D

00

A;�) B

W

A;D;�) B

R!

D;�) A! B

d.

D

00

A! B;�) A

D

01

B;�) C

L!

A! B;�) C

W

D;A! B;�) C

>

red

D

00

A! B;�) A

W

A! B;D;�) A

D

01

B;�) C

W

B;D;�) C

L!

A! B;D;�) C

E. Contra
tion Redu
tions:

(1) Involving an Axiom:

a.

P;D;D;�

0

) P

C

P;D;�

0

) P

>

red

P;D;�

0

) P

b.

P; P;�

0

) P

C

P;�

0

) P

>

red

P;�

0

) P


.

?;D;D;�

0

) A

C

?;D;�

0

) A

>

red

?;D;�

0

) A

d.

?;?;�

0

) A

C

?;�

0

) A

>

red

?;�

0

) A

(2) Permuting 
ontra
tion upwards over logi
al rules:

e.

D

00

A;D;D;�

0

) B

R!

D;D;�

0

) A! B

C

D;�

0

) A! B

>

red

D

00

D;D;A;�

0

) B

C

A;D;�

0

) B

R!

D;�

0

) A! B

f. Contra
ted formula is not prin
ipal in L! :
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D

00

A! B;D;D;�

0

) A

D

01

B;D;D;�

0

) C

L!

D;D;A! B;�

0

) C

C

D;A! B;�

0

) C

>

red

D

00

D;D;A! B;�

0

) A

C

A! B;D;�

0

) A

D

01

D;D;B;�

0

) C

C

B;D;�

0

) C

L!

A! B;D;�

0

) C

g. Contra
ted formula is also prin
ipal in L! :

D

00

A! B;A! B;�) A

D

01

B;A! B;�) C

L!

A! B;A! B;�) C

C

A! B;�) C

>

red

D

00

A! B;A! B;�) A

C

A! B;�) A

D

01

A! B;B;�) C

Inv

B;B;�) C

C

B;�) C

L!

A! B;�) C

Now also redu
tion-steps for the systemati
 removal of inversion are needed to build a


ut-elimination pro
edure for !?G3i. It will again suÆ
e to give su
h redu
tion-steps

that permit the removal of a bottom-most appli
ation of inversion in a derivation that is

otherwise a !?G3i-derivation (i.e. one 
ontaining neither Cut nor one of !?G3i

e

's

stru
tural rules). No other stru
tural rule (let alone a new one) is needed for upwards

permutation of inversion.

F. Inversion Redu
tions:

(1) Involving an Axiom:

a.

P;A! B;�) P

Inv

B;P;�) P

>

red

P;B;�) P

b.

?; A! B;�) C

Inv

?; B;�) C

>

red

?; B;�) C

(2) Permuting inversion upwards over logi
al rules:
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.

D

00

C;A! B;�) D

R!

A! B;�) C ! D

Inv

B;�) C ! D

>

red

D

00

C;A! B;�) D

Inv

C;B;�) D

R!

B;�) C ! D

d. A
tive formula of inversion is not also prin
ipal formula of L! :

D

00

C ! D;A! B;�) C

D

01

D;A! B;�) E

L!

A! B;C ! D;�) E

Inv

B;C ! D;�) E

>

red

D

00

A! B;C ! D;�) C

Inv

C ! D;B;�) C

D

01

A! B;D;�) E

Inv

D;B;�) E

L!

C ! D;B;�) E

e. A
tive formula of inversion is also prin
ipal formula of L! :

D

00

A! B;�

0

) A

D

01

B;�

0

) E

L!

A! B;�

0

) E

Inv

B;�

0

) E

>

red

D

01

B;�

0

) E

It will be possible to show (by following and varying Dragalin's proof of strong 
ut-

elimination for LJ and LK) that the redu
tion-steps from the above lists A{F 
an be

applied to a given (!?G3i+Cut)-derivation D stepwise in an arbitrary order and at

arbitrary pla
es within D or within the meanwhile already transformed derivation (and

where single redu
tions are only subje
t to the restri
tions of their appli
ability as apparent

from their des
ription in A{F), su
h that for every suÆ
iently long sequen
e of redu
tion

appli
ations a 
ut-free form of D is rea
hed. In short, strong 
ut-elimination holds for

!?G3i with respe
t to the set of redu
tions in the lists A{F.

As also indi
ated above the redu
tions in A{F derive from analyzing 
losely the 
ut-

elimination pro
edure impli
it in the Cut-Elimination Theorem for the G3-systems in

[TS96℄ (for the spe
ial 
ase 
onsidered here of G3[mi℄s' absurdity-
ontaining impli
a-

tive fragment !?G3i) and allow to rebuild and at the same time further spe
ify this

pro
edure as a stepwise pro
ess of lo
ally applied transformations.

In order to 
onsider a strong form of a 
ut-elimination theorem for !?G3i and

for !G3mi w.r.t. above listed (types) of redu
tion rules now a 
larifying de�nition is

ne
essary.
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De�nition 2.2 (Redu
tion, normal derivations, strong 
ut-elimination).

Let L be one of the 
al
uli !G3mi

e

or!?G3i

e

.

1. Let D, D

0

be L-derivations.

D L-1-redu
es to D

0

(in signs: D > D

0

) i� there exists a subderivation D

0

of D su
h

that D

0

>

red

D

0

0

by one of the redu
tions of the list A{F, if L is!?G3i

e

, [of A.a{
,

B{C, D.a, D.
, D.d, E.a., E.b, E.e{g, F.a, F.
{e, if L is !G3mi

e

℄, and D

0

is the

result of the repla
ement of D

0

by D

0

0

in D.

2. A derivation is said to be L-normal i� it does not L-1-redu
e to any other derivation,

i.e. if no D

0

exists su
h that D > D

0

.

3. Strong 
ut-elimination holds in L w.r.t. redu
tions of the lists A{F i� for all L-de-

rivations SN

>

(D) holds (this means in the notation

7

of [TS96℄ that D is strongly

normalizing w.r.t. >, i.e. that the redu
tion-tree of D w.r.t. L-1-redu
tion > is

�nite). �

The following theorem is the main result of this se
tion.

Theorem 2.1 (Strong Cut-Elimination for !G3mi and !?G3i).

Strong 
ut-elimination holds for the 
al
uli!G3mi and!?G3i with respe
t to redu
tion

steps in the lists A{F.

The Proof of this theorem is split into several lemmas and will be 
on
luded later in

this se
tion on page 69.

Lemma 2.1. A derivation D in one of the 
al
uli !G3mi

e

or !?G3i

e

is normal i�

it does neither 
ontain weakenings, inversions, 
ontra
tions nor 
uts as rule-appli
ations,

i.e. i� D is a !G3mi-, or respe
tively, a !?G3i-derivation.

Proof. It is 
lear that a derivation D whi
h does not 
ontain weakenings, inversions, 
on-

tra
tions or 
uts as rule-appli
ations is normal (sin
e all redu
tions >

red

of the types

listed in A{F presuppose the existen
e of at least one weakening-, inversion-, 
ontra
tion-

or 
ut-rule in the derivation; therefore D > D

0

for some derivation D

0

is not possible).

On the other hand any derivation D 
ontaining at least one rule appli
ation that is a

weakening, an inversion, a 
ontra
tion or a 
ut 
annot be normal:

To see this 
hoose a top-most su
h rule-appli
ation S and let D

0

be the subderivation

of D with S as its bottom-most rule appli
ation. Then all rule appli
ations in immediate

subderivations of D

0

above S are appli
ations of logi
al rules of L (i.e. of L!- or R!-

rules).

7

(here slightly expanded with the additional used expli
it sign >)
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If S is a weakening it is easy to see from the list D of redu
tions that at least one of the

redu
tions >

red

from this list is appli
able to the immediate subderivation D

00

of S in D

0

(the redu
tions in this list have exa
tly been 
hosen su
h as to exhaust all possible 
ases).

{ The same 
an be 
he
ked for the lists F and E, if S is an inversion or a 
ontra
tion.

Hen
e D

0

>

red

D

0

0

for some D

0

0

in all these 
ases.

If S is an appli
ation of 
ut and D

00

and D

01

are its immediate subderivations in D

then either (1) one of D

00

or D

01

is an axiom, or (2) both of D

00

and D

01

are not axioms

and furthermore are of su
h form that the 
ut-formula of S is not prin
ipal in at least

one of the two bottom-most rule-appli
ations in D

00

and respe
tively in D

01

immediately

above S, or (3) both of D

00

and D

01

are not axioms and the 
ut-formula of S is prin
ipal

in both of the bottom-most rule-appli
ations in D

00

and D

01

. It 
an easily be 
he
ked

that in 
ase (1) one of the \axiomati
"-redu
tions >

red

from list A is appli
able to D

0

,

in 
ase (2) one of the redu
tions from the list B of 
ut-permutation redu
tions (that deal

with upwards permutation of 
ut over logi
al rules), and in 
ase (3) a fork-redu
tion is

appli
able to D

0

. This means that then again D

0

>

red

D

0

0

holds.

Thus whatever rule appli
ation out of W, Inv, C or Cut the inferen
e S happens to

be, always D

0

>

red

D

0

0

holds. Hen
e D > D

0

follows for that derivation D

0

whi
h is the

result of the repla
ement of D

0

by D

0

0

in D. Thus D is not normal.

De�nition 2.3 (Redu
tive Derivations). Let L be either of the 
al
uli !G3mi

e

or

!?G3i

e

.

A derivation D is 
alled L-redu
tive, i� it has a �nite redu
tion-tree with repe
t to the

L-1-redu
tion > (i.e. i� D is strongly normalizing with respe
t to >, whi
h we abbreviate

symboli
ally to SN

>

(D)). The redu
tive 
omplexity red(D) of a L-redu
tive derivation D

is the size of the redu
tion-tree of D with respe
t to >. �

Some simple properties of redu
tive derivations are stated in the following two lemmas.

Lemma 2.2. Let D be a derivation that terminates with a basi
 logi
al rule S, i.e. D is

of the form

D

0

(D

1

)

S

�) C

and suppose D > D

0

.

Then D

0

terminates with the same rule and is of the form

D

0

0

(D

0

1

)

S

�) C

where for exa
tly one of the immediate subderivations D

0

;D

1

of S it holds that D

i

> D

0

i

,

while for the other one (if S is an appli
ation of the two-premise rule L! at all) D

i

� D

0

i

(i = 0; 1) is true.
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Proof. This 
learly follows sin
e no >

red

-redu
tion of the types listed in A{F is appli
able

to D itself (sin
e in all these redu
tions the bottom-most rule has to be di�erent from a

logi
al rule) and su
h redu
tions 
an therefore only be appli
able to proper subderivations

of D, thus to subderivations of D

0

or D

1

.

Lemma 2.3. Suppose a derivation D terminates with a logi
al rule S and has immediate

subderivation(s) D

0

(D

0

or D

1

), where D

0

is (D

0

and D

1

are) redu
tive. Then D is also

redu
tive.

Proof. By indu
tion on the sum of the sizes of the redu
tion-trees of D

0

and of D

1

with

respe
t to >, i.e. on the sum red(D

0

) + red(D

1

) using Lemma 2.2 as well as red(D) >

red(D

0

) for all D

0

su
h that D > D

0

(whi
h is obvious from the de�nition of the redu
tive


omplexity) in the indu
tion step.

De�nition 2.4 (Indu
tive derivations, indu
tive 
omplexity).

Let L be either of the 
al
uli !G3mi

e

or!?G3i

e

.

The 
lass of L-indu
tive derivations in L is given by an indu
tive de�nition with


lauses (1), (2) and (3) below

8

. At the same time a derivation-asso
iated number red(D),

the indu
tive 
omplexity of D is de�ned in parallel.

(1) Every L-derivation D

0


onsisting only of an axiom of L is L-indu
tive. The indu
tive


omplexity of D

0

is then de�ned by ind(D

0

) := 1.

(2) If D

0

terminates with a logi
al rule S of L and has immediate subdedu
tion(s) D

0

0

(D

0

0

and D

0

1

), then D

0

is L-indu
tive i� D

0

0

is (D

0

0

and D

0

1

are) L-indu
tive. The

indu
tive 
omplexity of D

0

is then de�ned by ind(D

0

) := ind(D

0

0

) + 1 (respe
tively

by ind(D

0

) := ind(D

0

0

) + ind(D

0

1

) + 1).

(3) IfD

0

terminates with an appli
ation of W, C, Inv or Cut andD

0

1

; : : : ;D

0

n

is a 
omplete

list of L-derivations su
h that D

0

> D

0

i

(for i = 1; : : : ; n), then D

0

is L-indu
tive i�

all D

0

1

; : : : ;D

0

n

are L-indu
tive. The indu
tive 
omplexity of D

0

in this situation is

de�ned by ind(D

0

) := 1 +

P

n

i=1

ind(D

0

i

). �

Sin
e the further proof of Theorem 2.1 is in essen
e largely the same for !G3mi

and for !?G3i, the expli
it referen
e to either of this systems will be dropped in the

following; this will also apply to notations like \L-redu
tive" (L meaning one of these


al
uli) and it will then be ta
itly assumed that all statements given will be valid in ea
h

of these two 
ases respe
tively and a

ordingly. In 
ases and at pla
es where di�eren
es

o

ur this will be stated 
learly.

8

Dragalin prefers to state a very similar de�nition more exa
tly than above in the form of a formal


al
ulus Ind with indu
tive L-derivations as its \theorems"; it was hoped here that this presentation of

the de�nitions is 
learer to understand.
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Lemma 2.4. Every indu
tive derivation is redu
tive.

Proof. By indu
tion on the size ind(D) of a \proof" of D to be indu
tive.

If ind(D) = 1, then D is an axiom, whi
h is a normal and hen
e also a redu
tive derivation.

If ind(D) > 1 and D terminates with a logi
al rule S, then the indu
tive 
omplexities

ind(D

0

) and ind(D

1

) of the immediate subderivations of S are by de�nition smaller than

ind(D) and D

0

and D

1

are then indu
tive by de�nition as well. By the indu
tion hypothesis

it follows that D

0

and D

1

are redu
tive; Lemma 2.3 now implies that D is redu
tive.

If ind(D) > 1 and D terminates with a stru
tural rule, an inversion or a 
ut and D

1

; : : : ;D

n

is a 
omplete list of all derivations D

0

su
h that D > D

0

, then by De�nition 2.4, (3), all D

i

(i = 1; : : : ; n) are indu
tive and ind(D

1

) < ind(D) (i = 1; : : : ; n). From this by indu
tion

hypothesis it follows that all D

i

are redu
tive, whi
h in turn implies that D is redu
tive

(namely by 
lause (2) of Def. 2.3).

Lemma 2.5. Suppose that D terminates with a logi
al rule and has D

0

and D

1

as its

immediate subderivations. Then D is indu
tive i� D

0

and D

1

are indu
tive; moreover it

holds that ind(D

0

); ind(D

1

) < ind(D).

Proof. This is an immediate 
onsequen
e of 
lause 2 in the de�nition of indu
tiveness in

De�nition 2.4.

Lemma 2.6. If D is indu
tive and D > D

0

, then D

0

is also indu
tive and ind(D

0

) <

ind(D).

Proof. By indu
tion on the depth of the derivation D.

If D is an axiom, then D > D

0

is not possible, hen
e there is nothing to show.

If D is indu
tive and terminates with a logi
al rule S, then it is of the form

D

0

(D

1

)

S

�) C

.

By Def. 2.4, (2), D

0

;D

1

are indu
tive. D > D

0

implies that either D

0

> D

0

0

or D

1

> D

0

1

.

Suppose for on
e that D

1

> D

0

1

holds. Sin
e then by de�nition of the indu
tive 
omplexity

ind(D

1

) < ind(D) holds, now by the indu
tion hypothesis D

0

1

is implied to be indu
tive as

well, and also ind(D

1

) < ind(D

0

1

) follows. Then D

0

is of the form

D

0

D

0

1

S

�) C

,

and is again indu
tive by Def. 2.4, 
lause (2); moreover then

ind(D

0

) = ind(D

0

) + ind(D

0

1

) + 1 < ind(D

0

) + ind(D

1

) = 1 = ind(D)
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holds. { If D

0

> D

0

0

, the argument is similar.

If D is indu
tive and terminates with a stru
tural rule, an inversion or a 
ut, then the

statement of the lemma is dire
tly implied by 
lause (3) of Def. 2.4.

Lemma 2.7. A derivation D is indu
tive i� every D

0

su
h that D > D

0

is indu
tive.

Proof. \)": Is the main statement of Lemma 2.6.

\(": By indu
tion on the depth of a derivation D:

If D is an axiom, then D is indu
tive by 
lause (1) of Def. 2.4.

If D terminates with a logi
al rule S, then it is of the form

D

0

(D

1

)

S

�) C

.

Suppose now that D

0

is indu
tive for all D

0

su
h that D > D

0

.

Then D

0

is indu
tive: Suppose D

0

> D

0

0

. Then also D > D

0

with D

0

being the

derivation

D

0

0

(D

1

)

S

�) C

and by assumption D

0

is indu
tive as well. Thus (sin
e

D

0

0

has here been arbitrary with D

0

> D

0

0

) it has been shown that D

0

0

indu
tive holds

for arbitrary D

0

0

su
h that D

0

> D

0

0

. Sin
e the depth of D

0

is smaller than that of

D, the indu
tion hypothesis is appli
able and gives that D

0

is indu
tive. { In a


ompletely analogous way it 
an be shown that D

1

is also indu
tive.

Now that D

0

and D

1

have been re
ognized as being indu
tive, it follows that D is

indu
tive as well (be
ause D terminates with a logi
al rule, 
f. Def. 2.4, (2)).

If D terminates with a stru
tural rule, an inversion or a 
ut, then the statement \D

is indu
tive" pre
isely amounts to the assumption of \("; hen
e there is nothing

else to show in this 
ase.

Lemma 2.8. Every normal derivation is indu
tive.

Proof. A normal derivation D does not 
ontain weakenings, inversions, 
ontra
tions or


uts by Lemma 2.1. Then indu
tiveness of D follows by an obvious indu
tion using only

the 
lauses (1) and (2) of De�nition 2.4.

Lemma 2.9. Every subderivation of an indu
tive derivation is indu
tive.

Proof. It suÆ
es to show that immediate subderivations of the bottom-most rule appli
a-

tion S in an indu
tive derivation D are indu
tive themselves (the lemma then follows by

stepwise indu
tion). This will be shown by indu
tion on ind(D).

If ind(D) = 1 then D is an axiom and has only itself as a subderivation.
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If ind(D) > 1 for an indu
tive derivation D that terminates with a logi
al rule that has

D

0

as well as possibly also D

1

as immediate subderivations, then the indu
tiveness of D

0

and D

1

follows from 
lause (2) in Def. 2.4 of D to be indu
tive.

If ind(D) > 1 for an indu
tive derivation D that terminates with a rule S that is a

stru
tural rule, an inversion or a 
ut, then D has the form

D

0

(D

1

)

S

�) C

.

To prove that D

0

and D

1

are indu
tive it suÆ
es by Lemma 2.7 to show that all derivations

D

0

i

su
h that D

i

> D

0

i

are indu
tive (i = 0; 1). Both 
ases are dealt with analogously, so we

look for example at D

1

. Suppose D

1

> D

0

1

. Then D > D

0

holds, where D

0

is the derivation

D

0

(D

0

1

)

S

�) C

.

By Lemma 2.6 it 
an be seen that ind(D

0

) < ind(D). From the indu
tion hypothesis

applied to D

0

it then follows that D

0

1

is indu
tive. Thus|D

0

1

was arbitrary su
h that

D

1

> D

0

1

, and in view of Lemma 2.7 as mentioned above|D

1

is then re
ognized as being

indu
tive. { Similarly D

0


an be seen to be indu
tive.

The following 4 lemmas are the \heart" of the proof of Theorem 2.1 and together will

state that the indu
tiveness of derivations is preserved under appli
ations of weakening,

inversion, 
ontra
tion or 
ut, whi
h take pla
e at the bottom of indu
tive derivations. That

is, a derivation terminating with one of these 4 rules, that has an indu
tive subderivation

(in the 
ase of Cut: : : : that has indu
tive subderivations), is again indu
tive. (In the 
ase

of the logi
al rules R! and L! this is part of De�nition 2.4.)

Lemma 2.10. Every derivation D obtained by adding an appli
ation of weakening at the

bottom of an indu
tive derivation D

0

is indu
tive.

Proof. It has to be shown that every derivation D of the form

D

0

�) C

W

A;�) C

,

(2.1)

where D

0

is indu
tive, is indu
tive.

In view of Lemma 2.7 it suÆ
es to show for any su
h D that

9

8D

0

�

D > D

0

) D

0

is indu
tive

�

. (2.2)

This will be shown by indu
tion on ind(D

0

).

9

The notation in this and similar statements to 
ome is to be understood as part of an informal meta-

language dealing with properties of and relations between derivations.
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Let D be of the form (2.1), with D

0

indu
tive. Assume the indu
tion hypothesis for

D.

Let D

0

be arbitrary su
h that D > D

0

. To prove (2.2) it needs to be shown that D

0

is

indu
tive.

Case 1: D > D

0

is due to a redu
tion >

red

that takes pla
e within D

0

, i.e. whi
h does not

involve nor 
hange the weakening at the bottom of D:

Then D

0

is of the form

D

0

0

�) C

W

A;�) C

with D

0

> D

0

0

. By Lemma 2.6 it follows from D

0

> D

0

0

that ind(D

0

0

) < ind(D

0

)

holds; hen
e the indu
tion hypothesis is appli
able to D

0

, whi
h gives that D

0

is

indu
tive.

Case 2: D > D

0

is true be
ause of D >

red

D

0

, i.e. the redu
tion step D > D

0

takes pla
e

at the last rule appli
ation of D and thus involves the bottom-most weakening in D:

The redu
tion D >

red

D

0

must then be a weakening redu
tion from the list D of

types of su
h redu
tions, sin
e none of the other redu
tions of the lists A{F has a

weakening at the bottom of the derivation to be redu
ed.

If ind(D

0

) = 1, then D

0


onsists only of an axiom and hen
e the redu
tion D >

red

D

0

must be one of the types D.a or D.b . But then D

0

is again an axiom, whi
h is a

normal and hen
e an indu
tive derivation; thus D

0

is indu
tive in these 
ases.

If ind(D

0

) = 1 and D >

red

D

0

holds be
ause of and via a redu
tion of one of the types

D.
 or D.d, then the indu
tiveness of D

0

follows easily from the indu
tion hypothesis:

For example in the 
ase of a redu
tion of type D.d the derivation D has the form

D

00

B ! D;�

0

) B

D

01

D;�

0

) C

L!

B ! D;�

0

) C

W

A;B ! D;�

0

) C

.

(2.3)

Sin
e D

0

(here the subderivation of D terminating with the appli
ation of L! above

W) is indu
tive and ends with a logi
al rule, both D

00

and D

01

are indu
tive and

ind(D

00

); ind(D

01

) < ind(D

0

) by Lemma 2.5. Then by the indu
tion hypothesis the

derivations
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D

00

B ! D;�

0

) B

W

A;B ! D;�

0

) B

as well as

D

01

D;�

0

) C

W

A;D;�

0

) C

are indu
tive; from this by De�nition 2.4, (2), it now follows that the derivation D

0

,

whi
h|sin
e D > D

0

via a redu
tion of type D.d and D is of form (2.3)|must be

of the form

D

00

B ! D;�

0

) B

W

B ! D;A;�

0

) B

D

01

D;�

0

) C

W

D;A;�

0

) C

L!

B ! D;A;�

0

) C

,

is indu
tive. { The proof for the remaining 
ase, in whi
h D >

red

D

0

is due to a

redu
tion of type D.
, is easier still.

Sin
e for arbitrary D

0

su
h that D > D

0

the indu
tiveness of D

0

has now been shown, (2.2)

has been proved. As already said, from this the lemma follows.

Lemma 2.11. Every derivation D terminating with an appli
ation of inversion to the

end-sequent of an indu
tive derivation D

0

is itself indu
tive.

Proof. It has to be established, that every derivation D of the form

D

0

A! B;�) C

Inv

B;�) C

,

(2.4)

where D

0

is indu
tive, is itself indu
tive. As before, on the basis of Lemma 2.7 only a

proof of

8D

0

�

D > D

0

) D

0

is indu
tive

�

for all D as above needs to be given.

This again 
an be shown by indu
tion on ind(D

0

). The proof pro
eeds analogously to

that of (2.2) in Lemma 2.10; ex
ept that in 
ase 2, when D > D

0

is due to D >

red

D

0

, a

redu
tion of type F.e and of the form

D

00

A! B;�

0

) A

D

01

B;�

0

) E

L!

A! B;�

0

) E

Inv

B;�

0

) E

>

red

D

01

B;�

0

) E

(2.5)
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has to be 
onsidered additionally, for it has no 
ounterpart in the list D of types of

weakening redu
tions. The indu
tiveness of D

0

here follows dire
tly: Firstly, D

0

� D

01

holds (as 
an be seen from (2.4), (2.5)), and|on the other hand|D

01

is indu
tive as

a 
onsequen
e of Lemma 2.5, be
ause it is a subderivation of the indu
tive derivation

D

0

(the immediate subderivation of the bottom-most inversion in D), whi
h ends with a

logi
al rule (namely with L!).

Lemma 2.12. Every derivation D obtained from an indu
tive derivation D

0

by a single

su

eeding appli
ation of 
ontra
tion is indu
tive.

Proof. It has to be shown, that every derivation D of the form

D

0

A;A;�) C

C

A;�) C
,

(2.6)

where D

0

is indu
tive, is indu
tive. By Lemma 2.7 again only

8D

0

�

D > D

0

) D

0

is indu
tive

�

(2.7)

has to be proved for all D 
onsidered here.

This will be shown by indu
tion on

�

jAj+1; ind(D

0

)

�

with respe
t to the lexi
ographi


order on N � N , that is to say by indu
tion on the depth of the formula 
ontra
ted at the

bottom of D together with a subindu
tion on the indu
tive 
omplexity ind(D

0

) of D

0

.

Let D be of the form (2.6), with D

0

indu
tive. Assume the indu
tion and subindu
tion

hypothesis for D.

Let D

0

be arbitrary su
h that D > D

0

. The aim now is to re
ognize D

0

as an indu
tive

derivation.

Case 1: D > D

0

is due to a redu
tion >

red

, that takes pla
e within D

0

, i.e. one, whi
h

does not involve the 
ontra
tion at the bottom of D.

Then D

0

is of the form

D

0

0

A;A;�) C

C

A;�) C

with D

0

0

su
h that D

0

> D

0

0

. Sin
e ind(D

0

0

) < ind(D

0

) (by Lemma 2.6) and the


ontra
tion at the bottom of D was un
hanged by the redu
tion, the subindu
tion

hypothesis is appli
able to D

0

and implies that D

0

is indu
tive.
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Case 2: D > D

0

is due to D >

red

D

0

, i.e. the redu
tion step D > D

0

takes pla
e at the

bottom of D.

The redu
tion must then be of the type of a 
ontra
tion redu
tion from the list E,

sin
e all other >

red

-redu
tions in the lists A{F do not apply to derivations ending

with a 
ontra
tion rule.

If D

0


onsists only of an axiom, then the redu
tion D >

red

D

0

must be of one of the

types E.a{d, whi
h all redu
e to axioms, hen
e to normal and as su
h also indu
tive

derivations. Thus D

0

is indu
tive in these 
ases.

If D

0

is not an axiom and D >

red

D

0

takes pla
e via a redu
tion of one of the types E.e

or E.f, then the indu
tiveness of D

0

easily follows from the subindu
tion hypothesis

(and in part analogously to the more spe
ial 
ase treated expli
ity below), noti
ing

that the formula(s) 
ontra
ted one step above the bottom of D

0

is (are) again A

and that therefore the (synta
ti
al) depth of the 
ontra
ted formula(s) in the newly

introdu
ed 
ontra
tions has (have) not in
reased (whi
h is a ne
essary 
ondition for

applying the subindu
tion hypothesis).

If D

0

is not an axiom and D >

red

D

0

is a redu
tion of the type E.g, then D >

red

D

0

has the form

D

00

B ! D;B ! D;�) B

D

01

D;B ! D;�) C

L!

B ! D;B ! D;�) C

C

B ! D;�) C

>

red

(2.8)

D

00

B ! D;B ! D;�) B

C

B ! D;�) B

D

01

B ! D;D;�) C

Inv

D;D;�) C

C

D;�) C

L!

B ! D;�) C

,

where|to make the 
orresponden
e to (2.6) 
lear|it holds that A � B ! D and

that D

0

is the immediate subderivation of the bottom-most 
ontra
tion in the re-

du
tion to be redu
ed. Here by Lemma 2.5 D

00

and D

01

are indu
tive (as immedi-

ate subderivations of the derivation D

0

ending with the logi
al rule L!) and with

ind(D

00

); ind(D

01

) < ind(D

0

).

Then by the subindu
tion hypothesis the derivation

~

D

0

of the form

D

00

B ! D;B ! D;�) B

C

B ! D;�) B
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is indu
tive (as a pre
ondition for using the subindu
tion hypothesis the 
ontra
tion

formula B ! D herein is the same as the original one A at the bottom of D).

By Lemma 2.11 now the derivation

~

D

01

D

01

B ! D;D;�) C

Inv

D;D;�) C

is also indu
tive (be
ause D

01

is indu
tive); sin
e jDj = 1 < jB ! Dj+ 1 = jAj+ 1,

the indu
tion hypothesis is appli
able for a 
ontra
tion at the bottom of

~

D

01

and

shows that the derivation

~

D

1

of the form

D

01

B ! D;D;�) C

Inv

D;D;�) C

C

D;�) C

is indu
tive as well.

Then 
learly the indu
tiveness of D

0

, the derivation at the right side of the redu
tion

in (2.8), follows from Def. 2.4, (2), sin
e it is of the form

~

D

0

~

D

1

L!

B ! D;�) C

and

~

D

0

,

~

D

1

have already been re
ognized as indu
tive derivations.

Sin
e for arbitrary D

0

with D > D

0

it has been shown that D

0

is indu
tive, (2.7) has been

proved. This 
ompleted the proof of the lemma.

Lemma 2.13. Every derivation D, whi
h ends with an appli
ation of 
ut, that has indu
-

tive immediate subderivations in D, is indu
tive itself.

Proof. The lemma states that every derivation D of the form

D

0

�) D

D

1

D;�) C

Cut

��) C

,

(2.9)

where D

0

and D

1

are indu
tive derivations, is indu
tive.

The proof will use indu
tion on

�

jDj ; ind(D

0

) + ind(D

1

)

�

with respe
t to the lexi
o-

graphi
 order on N

0

� N ; phrased di�erently, this says that the proof will pro
eed by

indu
tion on the (synta
ti
al) depth jDj of the 
ut-formula together with a subindu
tion
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on the sum of the indu
tive 
omplexities of the immediate subderivations D

0

and D

1

of

the 
ut.

Let D be a derivation of the form (2.9) with D

0

, D

1

indu
tive subderivations. In view

of Lemma 2.7 it suÆ
es to show for arbitrary given D, that is of the form (2.9) and for

whi
h the indu
tion hypothesis is assumed to be true, that

8D

0

�

D > D

0

) D

0

is indu
tive

�

(2.10)

holds.

Thus we assume the indu
tion hypothesis for D and we let D

0

be su
h that D > D

0

.

It will be shown that D

0

is indu
tive.

Case 1: The redu
tion >

red

underlying D > D

0

takes pla
e in either D

0

or D

1

.

Suppose for example D

1

> D

0

1

and D

0

is the result

D

0

�) D

D

0

1

D;�) C

Cut

�;�) C

of repla
ing D

1

in D by D

0

1

. Then by Lemma 2.6 ind(D

0

1

) < ind(D

1

); hen
e ind(D

0

)+

ind(D

0

1

) < ind(D

0

) + ind(D

1

). By appeal to the subindu
tion hypothesis it then

follows that D

0

is indu
tive.

The same argument 
an be 
arried out analogously, if D

0

is the result of a >

red

-re-

du
tion that takes pla
e within D

0

.

Case 2: The redu
tion D > D

0

is due to a redu
tion involving the 
ut at the bottom of

D; this means that D > D

0

is a 
onsequen
e of D >

red

D

0

.

The redu
tion D >

red

D

0

must then be one of the types A{C, sin
e >

red

-redu
tions

of the types D{F are not appli
able to a derivation that has a 
ut as its bottom-most

rule appli
ation.

The derivation D

0

is dire
tly re
ognizable to be indu
tive in the 
ases, where D >

red

D

0

holds be
ause of an axiomati
 
ut-redu
tion of type A.
{f, sin
e then D

0


onsists

only of an axiom (whi
h|as a normal derivation|is indu
tive by De�nition 2.4,

(1)).

In 
ase D >

red

D

0

holds be
ause of an axiomati
 
ut-redu
tion of one of the types A.a

or A.b, D

0

is formed from D by appli
ation of one or more weakenings at the bottom

of either one of the immediate indu
tive subderivations of D; sin
e by Lemma 2.10

the additional appli
ation of weakening at the bottom of an indu
tive derivation

again leads to an indu
tive derivation, D

0


an be seen to be indu
tive by one or
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more appeals (just as many as there are weakenings at the bottom of D

0

below D

0

or D

1

respe
tively) to Lemma 2.10.

The 
ase of an axiomati
 redu
tion D >

red

D

0

of type A.g is treated similarly to

the 
ase of a redu
tion of type B.a: In this latter 
ase one noti
es �rstly, that|with

the notations of formulas as in the list B.b above|the subderivations D

00

and D

01

of D are indu
tive (sin
e D

0

is indu
tive and therefore De�nition 2.4, (2) 
an be

used); furthermore ind(D

01

) < ind(D

0

) (again by De�nition De�nition 2.4). Thus

the subindu
tion hypothesis 
an be applied to the derivation

D

01

B;�

0

) D

D

1

D;�) C

Cut

B;�

0

�) C
,

(2.11)

sin
e D is again the 
ut-formula of the original 
ut at the bottom of D, but|be
ause

of ind(D

01

) + ind(D

1

) < ind(D

0

) + ind(D

1

)|the sum of the indu
tive 
omplexities

of this 
ut is now lower than that in the original 
ut at the bottom of D.

Sin
e D

00

is indu
tive, so is

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

(by a (�nite) number of appeals to Lemma 2.10). Thus it then follows from this and

the indu
tiveness of the derivation in (2.11) that D

0

, whi
h here has the form

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

D

01

B;�

0

) D

D

1

D;�) C

Cut

B;�

0

�) C

L!

A! B;�

0

�) C

,

is indu
tive.

The 
ases, in whi
h D >

red

D

0

is due to a redu
tion of one of the types B.b or B.
,


an be treated quite analogously and even easier.

In the 
ase, where D >

red

D

0

is due to a fork 
ut-redu
tion of the type in list C

above, D is of the form

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

D

11

B;�) C

L!

A! B;�) C

Cut

��) C

.



CHAPTER 2. STRONG CUT-ELIMINATION 68

By appeals to De�nition 2.4, (2), D

00

, D

01

and D

11

are seen to be indu
tive; fur-

thermore ind(D

10

) < ind(D

1

) holds. Thus ind(D

0

) + ind(D

10

) < ind(D

0

) + ind(D

1

)

holds, and hen
e the subindu
tion hypothesis 
an be applied to the derivation

~

D,

whi
h is of the form

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

Cut

��) A

,

to see that this derivation is indu
tive. Then two 
onse
utive uses of the indu
tion

hypothesis make 
lear that also the derivation

~

~

D

~

D

��) A

D

00

A;�) B

Cut

�

2

�) B

D

11

B;�) C

Cut

�

2

�

2

) C

is indu
tive (sin
e jAj ; jBj < jA! Bj holds, the depths of the 
ut-formulas in the

two 
uts displayed within

~

~

D above are both smaller than the depth of the 
ut-

formula A! B at the bottom of D, whi
h justi�es the appli
ability of the indu
tion

hypothesis in both 
ases). A number of 
onse
utive appli
ations of Lemma 2.12 (as

many as there are formulas in the multisets � and �) then give that the derivation

D

0

�

~

~

D

�

2

;�

2

) C

W

��) C

, whi
h is also identi
al to

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

Cut

��) A

D

00

A;�) B

Cut

�

2

�) B

D

11

B;�) C

Cut

�

2

�

2

) C

C

��) C

,

is indu
tive.

Thus in all 
ases of redu
tions D >

red

D

0

the indu
tiveness of D implies that one of

D

0

.

Now (2.10) has been show, whi
h 
on
ludes the proof of the lemma.
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The Lemmas 2.10{2.13 now allow to 
on
lude the Proof of Theorem 2.1.

Theorem 2.2. Every derivation is redu
tive.

Proof. It follows by an immediate indu
tion on the depth of a derivation with the help of

Lemma 2.5 and the Lemmas 2.10{2.13, that every derivation is indu
tive. Lemma 3.2.4

then implies the theorem.

Proof. [Proof of Theorem 2.1℄ This is now immediate from Theorem 2.2 and the de�nition

of \strong 
ut-elimination holds w.r.t. 
ut-elimination steps in the lists A{F" (appropriate

for either of!G3mi or!?G3i).

2.2 A more general version of a Strong Cut-Elimination

Theorem for !G3mi and !?G3i

It has been pointed out before that the redu
tion rules in A{F 
ome from a nearer analysis

of the Cut-Elimination Theorem for the G3-systems in [TS96℄ and of the pro
ess impli
it

in the proof of this theorem. A proof for 
ut-elimination in G3[mi
℄, whi
h pro
eeds by


onsidering topmost o

urren
es of 
uts with maximal 
utrank

10

and by repla
ing sub-

derivations ending with su
h 
uts by derivations of either lower 
utrank or by derivations


ontaining 
uts of lower 
utrank together with one 
ut of again maximal 
utrank, but now

of smaller level

11

(all repla
ements involved in this pro
ess are lo
ally applied transforma-

tions, if for on
e the ne
essary use of weakening- and 
ontra
tion-operations is put aside,

operations, that in the G3-
al
uli have global e�e
ts on the subderivations to whi
h they

are applied.)

Considering this basis for the 
ut-elimination redu
tions for !?G3i as presented

above, it 
ould be argued that the strong 
ut-elimination result Theorem 2.1, whi
h refers

to the redu
tion-rules in the lists A{F is not really a very strong statement, be
ause these

redu
tion rules are a
tually too 
losely 
onne
ted to the usual top-down 
ut-elimination

pro
edure and do permit to little freedom in 
hoosing appropriate next redu
tion steps

for a possibly more eÆ
ient deterministi
 or non-deterministi
 alternative pro
edure. The

redu
tions in A{F do not allow permutations of stru
tural rules and 
uts with ea
h other,

and so any 
ut-elimination pro
edure for!?G3i that operates a

ording to these rules


annot really gain mu
h eÆ
ien
y over the usual pro
edure: This is due to the fa
t that e.g.

most work towards the 
ompletion of the elimination of a 
ertain 
ut somewhere deeper

down in a derivation D (in the sense that su
h an elimination|often 
onsisting of the

appli
ation of lemmas transforming whole subderivations|is treated as a single step in

10

In [TS96℄ the 
utrank of an appli
ation of 
ut is de�ned as the depth of the 
ut-formula plus one.

11

The level of an appli
ation S of 
ut is in [TS96℄ de�ned as the sum of the depths of the two immediate

subderivations of S.
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the 
ut-elimination proof for G3[mi
℄ in [TS96℄) is likely to be often blo
ked from getting

done in an upwards dire
tion by unredu
ed 
uts or by \residuals" of previous redu
tions

higher up in D (by \residuals" still unremoved newly introdu
ed 
uts or stru
tural rules of

!?G3i

e

are meant); this is so be
ause redu
tions A{F do not allow shifts or movements

of stru
tural rules or of 
ut over ea
h other at all.

Under these 
ir
umstan
es it 
an be thought that the appli
ation of redu
tions to a

given derivation D in an arbitrary and not top-down restri
ted order does not really make

too mu
h sense as a
tual progress with the elimination of 
uts or stru
tural rules deeper

down in D more often than not will depend on the one with eliminations above it in D

(so that a sequential top-down treatment of redu
tions might not be too mu
h worse in

its 
omputational 
omplexity).

But sin
e some redu
tions in A{F lead to the removal of whole subderivations (A
.,

Ad. and notably Fe.) there might nevertheless be some substantial gain thinkable w.r.t.

the 
omplexity-behaviour of a more general 
ut-elimination pro
edure operating on the

basis of the redu
tions A{F. Still, this gain is possibly limited and more 
ould be a
hieved

by the introdu
tion of redu
tions for the (limited) permutation of stru
tural rules and 
ut.

In the following additional rules, listed in G below, for restri
ted permutation of

!?G3i

e

's stru
tural rules and 
ut are adopted as the basis for the formulation of a

strong 
ut-elimination-theorem for !G3mi and for !?G3i. Underlying the 
hoi
e of

these rules is the stipulation that upwards permutation

12

of weakening shall possess high-

est priority, to be followed in priority by upwards permutation of inversion, 
ontra
tion

and 
ut (in this order); this stipulation seems to be suggested by the way usual 
ut-

elimination, using the rules A{F, is a
tually formulated as a deterministi
 pro
edure, yet

some variations of it (with perhaps even better behavior) are still 
on
eivable. It follows

that permutations of weakening and inversion upwards over 
ontra
tion and 
ut will be

permitted, but not vi
e versa (as otherwise in�nite redu
tion sequen
es 
learly are possi-

ble); 
ontra
tion will be allowed to permute upwards over 
ut in some 
ases and whenever

this is possible, but this permutation is not possible in general.

G. Permutation-Redu
tions for Stru
tural Rules:

(1) Weakening over inversion, 
ontra
tion and 
ut:

a.

D

00

A! B;�) C

Inv

B;�) C

W

D;B;�) C

>

red

D

00

A! B;�) C

W

A! B;D;�) C

Inv

B;D;�) C

12

([Vest99℄ uses the very visual expression \upwards propagation" in this respe
t)
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b.

D

00

A;A;�) C

C

A;�) C

W

B;A;�) C

>

red

D

00

A;A;�) C

W

A;A;B;�) C

C

A;B;�) C


.

D

00

�) D

D

01

D;�) C

Cut

��) C

W

A;��) C

>

red

D

00

�) D

W

A;�) D

D

1

D;�) C

Cut

A;��) C

(2) Inversion over 
ontra
tion and 
ut:

d.

D

00

D;D;A! B;�) C

C

A! B;D;�) C

Inv

B;��) C

>

red

D

00

A! B;D;D;�) C

Inv

D;D;B;�) C

C

D;B;�) C

e.

D

00

A! B;A! B;�) C

C

A! B;�) C

Inv

B;�) C

>

red

D

00

A! B;A! B;�) C

Inv

B;A! B;�) C

Inv

B;B;�) C

C

B;�) C

f.

D

00

A! B;�

0

) D

D

01

D;�) C

Cut

A! B;�

0

�) C

Inv

B;�

0

�) C

>

red

D

00

A! B;�

0

) D

Inv

B;�

0

) D

D

01

D;�) C

Cut

B;�

0

�) C

g. Similarly and symmetri
ally to 
ase f, if A ! B o

urs in � in the 
on
lusion

of D

01

in the derivation to be redu
ed in 
ase f (but not in the ante
edent

� � A! B;�

0

of the 
on
lusion of D

00

there).

(3) Contra
tion over 
ut:
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h.

D

00

A;A;�

0

) D

D

01

D;�) C

Cut

A;A;�

0

) C

C

A;A;�

1

) C

C

.

.

.

C

A;A;�

n

) C

C

A;�

n

) C

>

red

D

00

A;A;�

0

) D

C

A;�

0

) D

D

01

D;�) C

Cut

A;�

0

) C

C

A;�

1

) C

C

.

.

.

C

A;�

n

) C

where �

0

� �

0

� and the �rst n 
ontra
tions below 
ut 
annot be permuted

upwards over 
ut, i.e. their respe
tive prin
ipal formulas o

ur just on
e in �

0

and � respe
tively.

i. Similarly and symmetri
ally on the right as in 
ase h, if A o

urs twi
e in � in

the derivation to be redu
ed in 
ase h.

Theorem 2.3. (Strong Cut-Elimination for!G3mi and!?G3i, more general

version)

Strong 
ut-elimination holds for the 
al
uli !G3mi and !?G3i with respe
t to the

redu
tion steps in the lists A{G.

The proof of this theorem resisted our [my, C.G.℄ attempts to give it in the framework

of Dragalin's 
on
epts and notations in his proof for strong 
ut-elimination for LK and

LJ (these 
on
epts and notations have been used above in the proof of Theorem 2.1). We


an therefore at present give only a sket
h of a very ad ho
 version of the proof.

Proof. [Sket
h of the Proof℄ The use of the notation D > D

0

for two (!G3mi

e

+Cut)- or

(!?G3i

e

+Cut)-derivations D and D

0

will here be understood as extending the meaning

of \D redu
es to D

0

" as de�ned in De�nition 2.2, (1), by in
luding also the new redu
tion

rules of the list G.

(1) Strong normalization holds for every derivation D in the systems (!G3mi

e

+Cut)

or in (!?G3i

e

+Cut) with respe
t to the redu
tions D{G (i.e. w.r.t. all rules in
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A{G but the 
ut-redu
tions A{C): This 
an be proved in a straightforward way by

using and slightly adapting the 
on
epts of the proof for Theorem 2.1.

Furthermore it 
an be easily 
he
ked, that appli
ations of one of the redu
tions D{G

do not in
rease the logi
al size (= the number of appli
ations of logi
al rules) of a

derivation D, nor the logi
al depth, the logi
al level and the rank of a parti
ular

appli
ation S of a 
ut in D (the logi
al depth kD

0

k of a derivation D

0

is de�ned

similarly to the (usual) depth of D

0

, but by 
ounting only rule-appli
ations of logi
al

rules are; the logi
al level ll(S) of an appli
ation S of 
ut in a derivation D

0

is de�ned

as the sum of the logi
al depths of the two immediate subderivations of S in D

0

).

(2) The maximum number of 
ut-redu
tion steps from A{C for 
ompletely eliminating

a 
ut S at the same time with all its residuals o

uring during a redu
tion-sequen
e

� � D > D

1

> D

2

> D

3

> : : : starting from a derivation D, whi
h does only 
ontain

the 
ut S, 
an be 
al
ulated from the logi
al level ll(S) and the rank rank(S) of S

(= the depth of the 
ut-formula of S plus 1) alone. Let this maximum number of


ut-redu
tion steps be bounded by a fun
tion 


1

(ll(S); rank(S)). The logi
al depth of

every resulting 
ut-free derivation D

0

may|in 
omparison with D|have in
reased

(due to appli
ations of 
ut-redu
tions of the type B.
), but it 
an still be bounded

by a fun
tion l

1

(kDk; ll(S); rank(S)).

(3) Considering a (!G3mi

e

+Cut)- or (!?G3i

e

+Cut)-derivation D 
ontaining ex-

a
tly two 
uts S

1

and S

2

, it is possible|sin
e the redu
tions A{G do not permit the

permutation of two appli
ations of the 
ut rule over the other|to �nd a bound for

the maximal number of steps 
aused by 
ut-redu
tions in every redu
tion sequen
e

� � D > D

1

> D

2

> D

3

> : : : starting from D. This 
an be a
hieved by �rst looking

at the steps ne
essary for the removal of S

1

and S

2

separately, if (a) S

1

and S

2

o

ur

in subderivations of D apart from ea
h other, or su

essively, if (b) an immediate

subderivation of S

1


ontains S

2

or (
) the opposite is true.

But for example in situation (b) it has to be taken into a

ount, that (i) the 
om-

plete removal of S

1

�rst, together with all its possible residuals, before dealing

with S

2

may in
rease in
rease the logi
al level of S

2

in the resulting derivation

to d+ l

1

(d; ll(S

1

); rank(S

1

)), where d is the logi
al depth of S

2

in D; and furthermore

that (ii) the redu
tion of S

2

and or of any residual of S

2

may|if the redu
tion hap-

pens to be a fork 
ut-redu
tion|almost double the the amount of steps that have

previously been ne
essary for the 
omplete elimination of S

1

alone.

Still, and over all, the amount of 
ut-elimination steps in � stays �nite and 
an be

bounded by a fun
tion 


2

(ll(S

2

);max(rank(S

1

) + rank(S

2

))), where S

2

is here taken

to be the bottom-most of the 
uts S

1

and S

2

. The logi
al depth of every resulting
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ut-free derivation D

0

may then also be bounded by a fun
tion

l

2

(kDk; ll(S

2

);max(rank(S

1

) + rank(S

2

))) .

(4) Carrying on in this way step by step it is then possible to �nd a bound 


n

(kDk; r)

for the maximum number of steps due to 
ut-elimination redu
tions of A{C in an

arbitrary redu
tion sequen
e � � D > D

1

> D

2

> D

3

> : : : starting with D, where

n is the number of appli
ations of 
ut in D, and r is the 
utrank of D, i.e the maximal

rank of all appli
ations of 
ut in D.

At the same time a bound l

n

(kDk; l; r)), where l means the maximum logi
al level

of all 
uts in D, for the logi
al depth of every resulting 
ut-free derivation D

0


an be

given as well.

(5) Strong normalization for a (!G3mi

e

+Cut)- or (!?G3i

e

+Cut)-derivation D with

respe
t to the rules A{G then follows from (1) and (4). This is true, sin
e in an

arbitrarily 
hosen redu
tion sequen
e � � D > D

1

> D

2

> D

3

> : : : the number

of 
onse
utive steps 
aused by redu
tions of type E{G always has to be �nite (due

to (1)) and therefore after every suÆ
iently long subpart of � 
onsisting only of

redu
tions of type D{G a 
ut-redu
tion has to follow. But then by (5) also the

number of redu
tions in �, that are due to 
ut-redu
tions of A{C, is bounded as

well. As a 
onsequen
e � must be of �nite length.
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Appendix A: Handout at the

defense on 15th O
tober 1999

Example underlying a \Computational Anomaly" of distin
t

derivations D

n

in!G3mi, that all redu
e to the same deriva-

tion D

0

by 
ut-elimination

13

Let for n 2 N the derivation D

n

be

D

00

A;B;C;C ! C ) B

R!

B;C;C ! C ) A! B

A! B;A;C;C ! C ) A

D

(n)

11

B;A;C;C ! C ) C

L!

A! B;A;C;C ! C ) C

Cut

A;B;C;C ! C ) C

,

where A;B and C are atomi
 formulas and D

00

is the derivation

C ! C;C;A;B ) C C;C;A;B ) B

L!

C ! C;C;A;B ) B

and

14

D

(n)

11

� D

(n)

[A;B℄ with D

(n)

the derivation

15

13

Here (1) 
ut-elimination is performed similar as in [TS96℄ for the systems G3[mi℄, but as a stepwise

pro
ess of lo
ally applied transformations, and (2) a multiple-
ontra
tion rule is used for doing this.

14

(

~

D[E

1

; : : : ; E

n

℄ for formulas E

1

; : : : ; E

n

and a derivation

~

D means the derivation that results from the

addition of the formulas E

1

; : : : ; E

n

to the ante
edent of every sequent in

~

D.)

15

The derivations D

(n)

, if P were read for C, 
orrespond (in the 
ase of the untyped system !G3mi

here it is better to say: relate) to the derivation-term {

n

used by Vestergaard, whi
h in the setting of the

system G

+

is de�ned on p. 28; more pre
isely, �

0

(D

{

n

) equals D

(n)

, if P in �

0

(D

{

n

) is ex
hanged by C

and D

{

n

is the G

+

0

-derivation 
orresponding to {

n

.

77
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C ! C;C ) C C;C ) C

L!

C ! C;C ) C C;C ) C

L!

.

.

.

C ! C;C ) C C;C ) C

L!

C ! C;C ) C

(with n appli
ations of L!). The �rst 
ut-elimination step in D

n

is a fork-redu
tion step:

D

00

A;B;C;C ! C ) B

R!

B;C;C ! C ) A! B A! B;A;C;C ! C ) A

Cut

A;B;C

2

; (C ! C)

2

) A

D

00

A;B;C;C ! C ) B

Cut

A;B

2

; C

3

; (C ! C)

3

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C

.

Then an axiomati
 
ut-redu
tion step follows:

A;B;C

2

; (C ! C)

2

) A

C ! C;C;A;B ) C C;C;A;B ) B

L!

C ! C;C;A;B ) B

Cut

A;B

2

; C

3

; (C ! C)

3

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C

.

Next a permutation-redu
tion step of the topmost 
ut over L!, followed by two axiomati



ut-redu
tions yield:

C ! C; (C ! C)

2

; C

3

; A;B

2

) C C;C

3

; (C ! C)

2

; A;B

2

) B

L!

A;B

2

; C

3

; (C ! C)

3

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C
.

The following derivation is the result of a permutation-step of Cut over L!:

C ! C; (C ! C)

2

; C

3

; A;B

2

) C

W

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

C;C

3

; (C ! C)

2

; A;B

2

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

C;C

4

; (C ! C)

3

; A

2

; B

2

) C

L!

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C
.



APPENDIX A: HANDOUT AT THE DEFENSE 79

We then rea
h the following 
ut-free derivation through the appli
ation of an axiomati



ut-redu
tion (and by an axiomati
 multiple-weakening redu
tion):

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

D

(n)

[A

2

; B

2

; C

4

; (C ! C)

2

℄

C;C ! C;C

4

; (C ! C)

2

; A

2

; B

2

) C

L!

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

fA;B;C

2

;(C!C)

2

g

A;B;C

2

; (C ! C)

2

) C

.

If now all 
ontra
tions are permuted upwards over L! simultaneously (in the analogous

sense as on derivation-terms multiple-
ontra
tion is permuted upwards in a G

+

-derivation

a

ording to the 
ontra
tion rewrite-rule E.
, se
ond 
ase), inversion has to be used for

the treatment of the left premise. This leads to:

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

C

fA;B;C

2

;(C!C)

2

g

C ! C;C ! C;C

2

; A;B ) C

D

(n)

[A

2

; B

2

; C

4

; (C ! C)

2

℄

C ! C;C;C

4

; (C ! C)

2

; A

2

; B

2

) C

Inv

C!C;C

C

6

; (C ! C)

2

; A

2

; B

2

) C

C

fA;B;C

3

;C!Cg

C;C ! C;C

2

; A;B ) C

L!

(C ! C)

2

; C

2

; A;B ) C

If now inversion is permuted upwards, almost all of D

(n)

[A

2

; B

2

; C

4

; (C ! C)

2

℄ gets lost

(with the ex
eption of the axiom in the bottom-most appli
ation of L! in it):

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

C

fA;B;C

2

;(C!C)

2

g

C ! C;C ! C;C

2

; A;B ) C

C;C

5

; (C ! C)

2

; A

2

; B

2

) C

C

fA;B;C

3

;C!Cg

C;C ! C;C

2

; A;B ) C

L!

(C ! C)

2

; C

2

; A;B ) C

Two axiomati
 multiple-
ontra
tion redu
tions lead to:

C ! C;C ! C;C

2

; A;B ) C C;C ! C;C

2

; A;B ) C

L!

(C ! C)

2

; C

2

; A;B ) C

.

This result D

0

of the 
ut-elimination pro
edure performed at D

n

is now 
learly independent

of n.

For all n 2 N derivations

�

D

n

(given on page 32 in the form of 
orresponding G

+

-

derivation-terms

�

t

n

) paralleling D

n

in the typed system G

+

,

�

D

n


orrespond to the natural-
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dedu
tion derivation �

0

(

�

D

n

)

(C ! C)

s

(C ! C)

s

(C ! C)

s

C

z

!E

C

!E

C

.

.

.

C

!E

C

(with n appli
ations of !E), whereas the result

�

D

0

(relating to D

0

) of the (usual) 
ut-

elimination-pro
edure applied to

�

D

n

(largely paralleling in G

+

the above redu
tions in

untyped!G3mi) 
orresponds just to the natural-dedu
tion image �

0

(

�

D

0

) of trivial shape

C

z

:

This is what 
onstitutes an \anomaly" here.

The drawba
k at this my example is, that if 
ontra
tions were not permuted upwards in

the gathered form of a multiple-
ontra
tion but as single 
ontra
tions, the example would

not result in an \anomaly". Although it a

ounts for an a bit more 
areful formulation of

one redu
tion-rule (for redu
tions on derivation-terms this is the 
ontra
tion rewrite-rule

E.
), the example does not 
over the most general possible situation.

I do think that with a bit more e�ort an \anomaly" 
ould also be 
onstru
ted if the

typed system allowed only single-
ontra
tions (the proof of 
ut-elimination is then still

possible in the way I gave it). But I have no example for this most general situation, yet.
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