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Chapter 1

A \Computational Anomaly"

disovered by Vestergaard

in a typed !G3[mi℄-System

1

In [TS96℄ the Gentzen-systems G3[mi℄ (for minimal, intuitionisti and lassial logi)

are presented as a formulation of sequent-aluli (proof-systems that were developed by

G. Gentzen) with the andeedents and suedents of sequents onsisting of multisets of

formulas, where the strutural rules weakening and ontration do not appear as expliit

rules of the systems. In relation to the G3-systems these rules our only as derived rules,

that is, as lemmas about derivability. This ontrasts with the basi Gentzen-systems

G1[mi℄ and partly also with the systems G2[mi℄ de�ned in [TS96℄: Whereas in the

G1-systems (that remain losest to Gentzen's original sequent-aluli LK and LJ) expliit

weakening and ontration rules are part of the systems, weakening does not longer appear

as a derivation rule in the G2-systems (it has instead been absorbed into the other rules

and beome a derived rule), but ontration is still present there as a formal rule.

The designation G3 for Gentzen-systems without expliit weakening and ontration

rules originated with S.C. Kleene, who in [Kl52℄ presented a sequent-alulus under this

name. The formulation of the G3-systems in [TS96℄ owes muh|at least in the intuition-

isti ase|to a Gentzen-system GHPC for intuitionisti logi given by A.G. Dragalin in

[Drag79℄, in whih also the suedents of sequents are permitted to onsist of mulitsets of

1

I do want to thank Prof. A.S. Troelstra for his suggestion to investigate the two di�erent, but related

topis in proof-theory treated in this thesis, for his areful reading of my drafts and for many ideas about

how to improve both the mathematial preision and then also the style of expression and exposition; I

do think that I have learned muh through this from him. Prof. Troelstra has also found many errors and

mistypes for me, for whih I feel very thankful. (If other misprints or more severe errors have nevertheless

slipped through or there appear shortomings in preision and the exposition-style, this only shows that I

have been negligent in wathing my responsibilities. I do want to learn to do better in the future.)
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CHAPTER 1. VESTERGAARD'S \COMPUTATIONAL ANOMALY" 3

formulas. In GHPC more than one formula may our in the suedent of a sequent (but

subjet to restritions impliit in the spei� formulation of the rules). This has ertain

advantages for the exposition of a proof for ut-elimination in GHPC, but on the other

hand it is an unommon formulation of a sequent-alulus for intuitionisti logi. For this

reason the system was reformulated in the G3[mi℄-systems with exatly one formula in

the suedent of every sequent (as in Gentzen's LJ and Kleene's G3) by A.S. Troelstra in

[TS96℄.

The fat that theG3-systems do not ontain strutural derivation rules has noteworthy

e�ets on the struture of possible ut-elimination proedures in these systems. In proofs

of ut-elimination for the G1-systems and in Gentzen's original proof for ut-elimination

in LK and LJ the loal transformation steps applied to a derivation, that are needed for

removing a ut or for reduing the depth of at least one subderivation of a urrently treated

ut, depend heavily on the use of the strutural rules weakening and ontration

2

. This

is no longer in the same way possible in proofs for ut-elimination for the G3-systems.

Here two ways of arrying out suh a proof are pratiable: Either (1) in situations, where

a weakening or a ontration is neessary to link a derivation D to other derivations by

rules of the system or by ut, ertain lemmas have to be relied on, that state, given

D is a utfree derivation, another derivation D

0

an e�etively be found, in whih the

orresponding weakening or ontration has (in relation to D) already taken plae. Or

(2), expliit weakening and ontration rules are again permitted to our temporarily

during the ourse of performing ut-elimination in a derivation for the purpose of making

some of the involved loal transformation steps possible, but have to be removed later

separately (and also regularly as part of the entire proedure at many oasions).

To refer to these matters more preisely, the de�nition of the G3[mi℄-systems in the

speial ase of their impliative fragments will be repeated here as well as the most im-

portant properties of these aluli (that they still admit weakening and ontration to be

derived rules). In the ase of the impliative fragments the most important partiularity

of the G3-systems is the asymmetri formulation of the L!-rule.

De�nition 1.1 (G3[mi℄ 's impliative fragments !G3m and !G3i). The formal

system !G3i , the impliative fragment of the system G3i in [TS96℄, is de�ned by the

following axioms and rules:

Ax P;�) P (P atomi)

A;�) B

R!

�) A! B

A! B;�) A B;�) C

L!

A! B;�) C

2

In the ase of LK and LJ also \exhange" is neessary, sine Gentzen onsidered the anteedents (as

well as the suedents in the lassial ase) to be lists of formulas instead of sets or mulitsets.
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The impliative fragment !G3m of G3m is the same system as !G3i; !G3m and

!G3i will here together be referred to as!G3mi.

The ut-rule Cut relative to these systems for minimal and intuitionisti logi takes

on the shape

�) D D;�) C

Cut

��) C

.

Whenever !G3mi will be onsidered to be enrihed by the additional presene of Cut,

the extended system will be denoted as either of!G3mi+Cut, respetively. �

The system!G3mi does not ontain weakening and ontration rules

�) C

W

A;�) C

and

A;A;�) C

C

A;�) C

,

but has instead been formulated in suh a manner, that these rules are derived or admis-

sible rules of the systems. This is the ontent of the following lemma.

Lemma 1.1. Suppose that the notation `

n

symbolially designates the notion of deriv-

ability in !G3mi by a dedution of depth � n. Then for all A;C;�;� it holds:

(i) If `

n

�) C , then `

n

��) C.

(ii) If `

n

A;A;�) C , then `

n

A;�) C.

The proof of (i) an be done by an immediate indution on n; (ii) an also be shown in

this way, but there is one non-obvious ase: This ours, if the formula to be ontrated

happens to be also the prinipal formula of an appliation of L! in the last step, i.e. in

the following situation:

D

0

`

n

B ! D;B ! D;�) B

D

1

`

n

D;B ! D;�) C

L!

`

n+1

B ! D;B ! D;�) C

.

(1.1)

The indution hypothesis is appliable to `

n

B ! D;B ! D;�) B (and gives `

n

B !

D;� ) B), but not diretly to `

n

D;B ! D;� ) C. For the purpose of treating this

premise of L! in (1.1) aordingly an additional lemma (right-sided inversion with respet

to L!) is usually applied �rst.

Lemma 1.2 (Inversion lemma with respet to the rule L!). For !G3mi the fol-

lowing holds for all A;B;C;� in the notation of the preeding lemma:

If `

n

A! B;�) C, then also `

n

B;�) C.

Proof. By a straightforward indution on n.
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The argument in the ase (1.1) for the indution-step in the proof of (ii) in Lemma 1.1

an now be arried through: By an appliation of Lemma 1.2 to the right premise of L!

in (1.1) `

n

D;B ! D;� ) C also `

n

D;D;� ) C follows. The indution hypothesis

an then be applied to this latter statement and implies `

n

D;�) C. Together with the

already established statement `

n

B ! D;�) C the desired result

`

n

B ! D;�) B `

n

D;�) C

L!

`

n+1

B ! D;�) C

for the ompletion of the indution step follows.

Lemma 1.2 an also be interpreted as stating that the rule

A! B;�) C

Inv

B;�) C

,

alled inversion of L! (with respet to its right premise), is an admissible rule in the

system G3[mi℄.

The proof of ut-elimination for the G3-systems in [TS96℄ (there Theorem 4.1.2, p.77)

relies in some ases of loal transformation-steps on the possibility to perform ontrations

in a given derivation e�etively; that is, a form of Lemma 1.1 is applied in some situations

3

.

Thereby for the G3[mi℄-systems also an inversion-lemma with respet to the rule L!, a

version for the system onsidered omparable to its speial ase Lemma 1.2 for!G3mi,

omes in impliitly, sine the proof of the fat that ontration is a derived rule in!G3mi,

depends on suh an inversion-lemma (as desribed above). The proof of a ut-elimination

theorem for!G3mi is atually a speial ase of the proof of ut-elimination for G3[mi℄

in [TS96℄, in whih Lemma 1.1 (whih relies on Lemma 1.2 impliitly) an be used to

perform weakenings and ontrations to given derivations.

There is a very natural (many-to-one, but surjetive) map from derivations in an

intuitionisti (or minimal) sequent alulus to natural-dedution derivations, whih was

�rst desribed and utilized in the ontext of his disovery of \normalization" for natural-

dedution derivations by D. Prawitz in [Pra65℄. The relation between sequent- and natural-

dedution aluli under suh a map and the exat onnetion between the onepts of ut-

elimination and normalization in these systems was �rst deeply investigated in a paper

[Zu74℄ of J. Zuker.

He found out, that for a suitable LJ-near sequent-alulus S and relative to a surjetive

map � from S-derivations to natural-dedution derivations (essentially a map like the

one used by Prawitz) ut-elimination steps in a S-derivation D and normalization-steps

on �(D) an simulate eah other (with respet to the onnetion between these formal

systems as given by �), that is, (1) if for a S-derivation D a derivation D

0

is the result of

3

(A form of this lemma that is true for the onsidered G3-system (and not just for the impliative

fragments!G3i,!G3m of the systems G3[mi℄ as Lemma 1.1).)
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a ut-elimination step applied to D, then �(D

0

) an be the result of a �nite sequene of

normalization-steps performed in �(D), and (2) if for a S-derivation D a derivation

~

D

0

is

the result of a normalization-step performed in �(D), then there exists a S-derivation D

0

suh that D

0

is the result of a �nite number of ut-elimination steps arried out starting

from D and �(D

0

) =

~

D

0

. (Zuker showed this result relative to a ompletely spei�ed

list of ut-elimination steps (the normalization-steps instead had already been given in

the form of a|almost entirely|�xed list by Prawitz), but for the negative fragment S

�

of his sequent-alulus S only. By work of G. Pottinger in [Pott77℄ this result ould be

generalized to over a Gentzen-system for full intuitionisti logi (and even Zuker's system

S) by an appropriate hoie of the possible ut-elimination steps.)

R. Vestergaard in [Vest99℄ is interested in whether the exeution of ut-elimination

steps to a derivation D in the system!G3mi (aording to a usually applied proedure

in these systems) an interfere with the \omputational meaning" of D in an irregular

manner. In a typed !G3mi-like alulus he gives an example of a sequene fD

n

g

n2N

of pairwisely di�erent derivations, suh that every D

n

(for n 2 N ) is taken to the same

derivation D

0

by a ut-elimination proedure very near to the usual one for the untyped

system!G3mi, but where all derivations D

n

have di�erent \meanings". If these \ompu-

tational meanings" were interpreted as the natural-dedution images �(D

n

) of D

n

under

a map � similar to the one impliitly given by Prawitz, this result would suggest that

the very smooth relationship between normalization on natural-dedution derivations and

ut-elimination on Gentzen-system derivations|as it exists in the above skethed form

with respet to Zuker's LJ-near system S|ould be seriously disturbed for the G3[mi℄-

systems.

1.1 A typed !G3m-system G

+

R. Vestergaard in [Vest99℄ onsiders a typed system of the impliative fragment!G3m

of G3m, a system, that will be referred to here as G

+

v

(in notational similarity to the

system G

+

, that will here be presented and used instead), where (1) the type-expressions

t assigned to a formula C in the suedent of a onlusion-sequent x

1

: A

1

; : : : ; x

n

: A

n

)

t : C (n 2 N ) of a derivation D desribe a orresponding natural-dedution derivation D

�

with the onlusion C from the marked assumption-lasses [A

1

℄

x

1

; : : : ; [A

n

℄

x

n

very diretly,

and (2) ut-elimination in this typed system an still be done as suggested by the proof

of the ut-elimination theorem for the untyped G3[mi℄-systems in [TS96℄. Vestergaard

is interested in the \omputational meaning" of derivations in the G3[mi℄-systems (one

ould understand the related natural-dedution derivation here as this \meaning") and in

how the usual ut-elimination proedure for these systems interferes with this meaning.

His system is therefore tailor-made for the purpose of desribing ut-elimination on a

given derivation as a stepwise proess of loally applied transformations (a proess that
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Vestergaard later desribes as one that an be exeuted aording to rules of an appropriate

rewrite-rule system). Sine|as indiated earlier|the neessity of performing weakenings,

ontrations and appliations of an inversion-lemma often arises during the ourse of a ut-

elimination proess for a derivation in a!G3mi-system, expliit rules for suh operations

had to be devised and taken into the system. These are expliit additional rules that on

the one hand will allow to represent ut-elimination as a sequene of loal transition-steps,

but that on the other hand must be treated separately and ultimately have to be removed

ompletely to arrive at a ut-free derivation.

Vestergaard's system G

+

v

is very lose to the following system G

+

, that will be used

here instead.

De�nition 1.2 (The derivation-term annotated systems G

+

,G

+

0

). The formal sys-

tem G

+

, a typed version of G3m 's or G3i 's impliative fragment!G3mi is de�ned as

follows: The anteedent of a sequent in this system is a multiset of variables of formula-

type (written as variable-annoted formulas), the suedent onsists of a (rigidly) typed

derivation-term, whose free type-variables our in the anteedent. G

+

has the axioms

and rules as listed below:

Ax x : P;�) ax

x

P

;�

: P (P atomi)

[x : A℄;�) t : B

R!

�) �x

A

:t

B

: A! B

x : A! B;�) t

0

: A [y : B℄;�) t

1

: C

L!

x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

�) t : C

mW

x

1

: A; : : : ; x

n

: A

n

;�)W

L

n

i=1

fx

A

i

i

g

(t

C

) : C

(x

1

: A

1

)

2

; : : : ; (x

n

: A

n

)

2

;�) t : C

mC

x

1

: A

1

; : : : ; x

n

: A

n

;�) C

L

n

i=1

fx

A

i

i

g

(t

C

) : C

x : A! B;�) t : C

Inv

y : B;�) I

x

A!B

;y

B

(t

C

) : C

Here the following abbreviations and onventions were used:

� The operator

L

(:)

i=(:)

denotes the union of multisets.

� Typed variables and terms are used in both the notations x

A

, t

B

and x : A, t : B,

whih are onsidered to be syntatially the same, but the longer versions x : A

and t : B informally refer to an assumption A labelled by x (in a orresponding

natural-dedution derivation, f. setion 1.2) or a proof-term t of a G

+

-derivation

with B in the anteedent of its onlusion-sequent.
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� The notation with a typed variable in brakets [ : : : ℄ is here always to be understood

as in the following example: [x : A℄;� refers to one of the multisets ��

L

n

i=1

fx : Ag

(with n 2 N ), where x : A is assumed not to be an element of the multiset � (n = 0

is exluded here, i.e. x : A ours at least one in [x : A℄;�).

The system G

+

0

has the same axioms as G

+

, but ontains only the logial rules R!

and L! of G

+

, not also inversion Inv and the strutural rules mW and mC of this system.

The suedents of the sequents appearing in a G

+

-derivation will be alled derivation-

terms of G

+

.

Any of the two systems S de�ned above an be enrihed by the additional presene of

the ut-rule

�) t

0

: D [x : D℄;�) t

1

: C

Cut

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

to the system S+Cut. �

The multiple-weakening rule mW ould have been written more onisely in the form

�) t : C

mW

��)W

�

(t

C

) : C

,

but was formulated more expliitly in the above de�nition so as to allow omparison with

the more restritive (with respet to the form of its ative formulas) multiple-ontration

rule mC.

There are some noteworthy aspets, in whih the systems G

+

de�ned above di�er

formally and oneptionally from the system (here abbreviated with:) G

+

v

onsidered in

[Vest99℄:

(i) In Vestergaard's system G

+

v

also axioms x : A;� ) x : A are permitted, where

the prinipal formula A does not need to be atomi. For G

+

the stronger ondi-

tion on axioms Ax as in the G3-systems from [TS96℄ (to refer to atomi prinipal

formulas only) was taken over. (This has no immediate onsequene with respet

to Vestergaard's result in the ase of a typed system with anteedents onsisting of

multisets.)

(ii) Although Vestergaard's system also ontains a weakening rule, the derivation-terms

do not aount for its presene in a derivation. This is beause it looks as if the

phenomenon treated in [Vest99℄ has nothing to do with the fat that weakening

is not a formal rule in the G3-systems. Instead derivations are treated there as

\equivalene lasses" up to appliations of weakening, whih|although this ould

perhaps be made more preise|seems a bit unlear [to me, C.G.℄. For this reason

(and beause expliit treatment of weakening does not ause too muh additional
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work and notation) the term notation in G

+

has been designed to reet also the

e�ets of weakening by the introdution of a multiple-weakening rule (in a form that

will be useful for the desription of the ut-elimination proedure impliit in [TS96℄

(there Theorem 4.1.2 on p. 72) in the speial ase for the systems G

+

).

(iii) To make it possible that a derivation-term desribes a G

+

-derivation ompletely,

also the variable-annotated formulas in the ontexts of axioms Ax had to be formally

taken into the term-notation.

(iv) With the exeption of the multiple-weakening onstrut W

(:)

basially the same

term-expressions are used in [Vest99℄ to designate appliations of rules (only slightly

di�erent expressions let x := yt

0

in t

1

are used there instead of let

x

(t

1

; yt

0

), the

notation used in [TS96℄ to desribe the appliation of a L!-rule).

(v) Vestergaard does not onsider the suedent of a sequent in his system to be a rigidly

typed derivation-term. In his system a suedent onsists of a single formula that is

annotated by a term t, that is not a type-expression, although it an also desribe a

derivation in his system preisely (up to ourrenes and e�ets of weakenings, whih

are negleted). Derivation-(desribing-)terms in Vestergaard's system G

+

v

are only

looked upon as expressions that desribe a derivation in his system onstruted from

assumption variables x; y; z (and also of f; g; h, whih he uses exlusively for non-

atomi formulas) with the use of term-onstrutors referring to appliations of rules.

(This di�erene has some onsequenes, that will be explained below. However,

these onsequenes have no bearing on the phenomenon presented in [Vest99℄.)

A few more things have to be said about the last item: The sequents in Vestergaard's

system all have the form

x

1

: A

1

; x

2

: A

2

; : : : ; x

n

: A

n

) t : C ; (1.2)

where n 2 N , x

1

; : : : ; x

n

are untyped variables, A

1

; : : : ; A

n

; C are formulas, and t is a

derivation-term formed from untyped variables and derivation-terms by the use of term-

onstrutors indutively as expressions

�x:t

0

; let y := xt

0

in t

1

; C

�

(t

0

) ; I

x;y

(t

0

) or t

1

J

J

Jx := t

0

K

K

K (1.3)

(where x; y are variables, t

0

; t

1

are terms (by the indution-hypothesis of the de�nition)).

If the formula in the suedent of (1.2) is regarded as the type of the derivation-term C,

it ould be said, that in this sequent all displayed variables and terms in (1.2) arry types,

but subterms of the typed term t

C

do not.

Sequents (1.2) of his system are furthermore assumed to be of the speial kind that no

variable annotates two di�erent formulas in the anteedent (a restrition that is taken into
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the de�nition of the axioms and rules of his system in the form of a tait side-ondition);

but an annotated formula x : A may our there several times (the anteedents therefore

really may be proper multisets).

Vestergaard's motivation for this side-ondition in his system is that he intends to

abstrat away from the derivations as far as possible and that he wants to onsider them

only in the form of term-representations instead (and for this aim the side-ondition really

makes sense); in Appendix A of [Vest99℄ he gives a proof for a statement that every

term (indutively de�nable from variables by the onstrutors �, let, C, I and �J

J

J� := �K

K

K

in the above skethed way) really represents|under some mild restritions on the use

of bound variables|a derivation in his system (here alled:) G

+

v

. Although Vestergaard

apparently uses a tait onvention on the use of variables with the letters f; g exlusively

for the annotation of non-atomi formulas (ontrary to his use of variables like x; y; z)

some serious doubts about this statement Lemma 17 on p.8 of [Vest99℄ seem justi�ed,

where [to me, C.G.℄ it looks as if the proof referring to Lemma 14 runs into troubles in the

ase of the two-premise rules L! and Cut. { This laim for an inverse map from terms (in

Vestergaard's notion as desribed shortly in (1.3)) to derivations in G

+

v

is not essential for

his main argument, sine by the de�nition of the axioms and rules in his system G

+

v

every

derivation is nevertheless represented by some derivation-term (whih is obvious from the

de�nition of the rules in this system).

These doubts about whether terms of Vestergaard's system G

+

v

really always represent

derivations led to the formulation of the systems G

+

in De�nition 1.2. In these systems

every derivation D really is uniquely determined by the derivation-term in the onlusion-

sequent. It an be heked on the basis of an inspetion of the term-notation given together

with the rules of G

+

in De�nition 1.2, that every derivation

D

�) t : C

in G

+

an be

reonstruted from the suedent term t

C

(whih in the rules is written as t : C) in the

onlusion of D indutively. Thereby the term t

C

also allows to rebuild the anteedent �

of the onlusion-sequent �) t : C of D indutively.

De�nition 1.3. The operation ant on G

+

+Cut-derivation-terms is de�ned indutively as

follows (where derivation-terms, typed variables and multisets of typed variables ouring

below are assumed to be arbitrary suh objets appearing within a G

+

-derivation aording

to De�nition 1.2):

ant(ax

x

A

;�

) := fx : Ag � � ;

ant(�x

A

:t

B

) := ant(t

B

)	 [x : A℄ ;

ant(let

y

B

(t

C

1

; x

A!B

t

A

0

)) := ant(t

B

0

) ;

ant(W

�

(t

C

)) := ant(t

C

)�� ;

ant(C

�

(t

C

)) := ant(t

C

)	� ;

ant(I

x

A!B

;y

B

(t

C

)) := (ant(t

C

)	 fx : A! Bg)� fy : Bg ;
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ant(t

C

1

J

J

Jx

D

:= t

D

0

K

K

K)) := ant(t

D

0

)� (ant(t

C

1

)	 [x : D℄) :

(Here �;	 denote multiset-union and multiset-subtration

4

respetively. An expression

like � 	 [x : A℄ means the deletion of all ourrenes of x : A from the multiset �. The

outermost types of the terms (whih an be reonstruted in an obvious way) on the right

side of the de�nition have been dropped for legibility.) �

Lemma 1.3. For every (G

+

+Cut)-derivation-term t

C

there is exatly one derivation D

in (G

+

+Cut) suh that D is of the form

D

�) t : C

(� a multiset of formulas); for this derivation D moreover � = ant(t

C

) holds

Proof. By indution on the syntatial depth of t

C

, thereby examining all rules of G

+

+Cut

for the indution-step.

1.2 A map � from G

+

0

+Cut-derivations to derivations a

typed!N[mi℄-system

Derivations in intuitionisti and minimal sequent-aluli an be assoiated with a orre-

sponding natural-dedution derivation in a very immediate and straightforward way as

was �rst desribed preisely by D. Prawitz in [Pra65℄:

\A proof in a alulus of sequents an be looked upon as an instrution

on how to onstrut a orresponding natural dedution. This is partiularly

evident in the ase of intuitionisti or minimal logi. A top-sequent then orre-

sponds to a natural dedution onsisting of just the formula that our both in

the anteedent and the suedent. As we go downwards in the proof in the al-

ulus of sequents, we suessively enlarge in two diretions the orresponding

natural dedutions at the bottom, applying the orresponding I-rules; when we

ome to appliations of anteedent rules, we usually enlarge the orresponding

natural dedutions at the top, applying the orresponding E-rules." [ : : : ℄

\The proof in the alulus of sequents an in this way be said to presribe

(to some extent) a ertain order in whih a orresponding natural dedution an

be onstruted. This order is often irrelevant and is only partially mirrored

in the orresponding natural dedution that results from the onstrution.

Di�erent proofs in the alulus of sequents may therefore orrespond (in the

way indiated) to the same natural dedution."

4

A	 B means the result of a deletion proess, where from the multiset A all elements of the multiset

B are removed as often as they our in B (an element of B an but naturally only be removed from A if

it ours in (is element of) A at all).
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In the ase of the system G

+

a derivation-term t

C

in an end-sequent of a derivation D

does not only allow us to desribe D ompletely, but gives also|in most ases|lear in-

strutions about how a natural-dedution derivation D

0

orresponding to D under Prawitz'

map an be built. This is possible for all G

+

-derivations, that do not ontain applia-

tions of inversion Inv; in the more speial ase of G

+

0

-derivations this is the ontent of the

de�nition below.

De�nition 1.4 (The maps �; �;�

0

between G

+

0

+Cut and !N[mi℄

�

). The map �

is an operation that takes derivations of the systems G

+

0

+Cut (that is, derivations in

G

+

+Cut ontaining only appliations of logial rules and Cut) to natural-dedution deriva-

tions �(D) in a term-alulus !N[mi℄

�

for !N[mi℄ (f. [TS96℄, Def. 2.2.2, p. 37 for a

term alulus for the full systems N[mi℄, whose speial ase for N[mi℄ is here referred

to as !N[mi℄

�

). The derivation �

0

(D) in !N[mi℄ will denote the dedution �(D) in

!N[mi℄

�

without the ourrenes of term-labels for formulas.

� will be de�ned in parallel with a map � that maps an arbitrary G

+

0

+Cut-derivations

D to the term-representation �(D) of the !N[mi℄-derivation �

0

(D) underlying �(D).

Both � and � will be given by an indutive de�nition on the depth of D by transitions of

the following struture:

D

�) t : C

goes to

[A

1

℄

x

1

: : : [A

n

℄

x

n

�(D)

�(D) : C

,

where fx

1

: A

1

; : : : ; x

n

: A

n

g � set(�), i.e. set(�) is the set resulting from the multiset �

by dropping multiple ourrenes of elements in �.

If D onsists of an axiom only, then � and � are de�ned by the transition

x : A;�) ax

x

A

;�

: A

goes to

x : A (as marked assumption: A

x

) .

If D ends with an appliation of R!, then �(D) and �(D) are de�ned by the transition

D

0

[x : A℄;�) t

0

: B

R!

�) �x

A

:t

B

0

: A! B

goes to

[A℄

x

�(D

0

)

�(D

0

) : B

!I,x

�x

A

:�(D

0

)

B

: A! B

.

In the ase of D ending with an appliation of L!, �(D) and �(D) are de�ned by the

transition
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D

0

x : A! B;�) t

0

: A

D

1

[y : B℄;�) t

1

: C

L!

x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

goes to

(A! B)

x

hA! Bi

x

�(D

0

)

�(D

0

) : A

!E

[x

A!B

�(D

0

)

A

: B℄

(�(D

1

))

�

[y

B

=(x

A!B

�(D

0

)

A

)

B

℄

(�(D

1

))

�

[y

B

=(x

A!B

�(D

0

)

A

)

B

℄ : C

,

where the stars

�

indiate that a renaming in the bound variables ourring in the terms

within �(D

1

) and in the term �(D

1

) has to be performed to make the substitution of

x

A!B

�(D

0

)

B

for y

B

in �(D

1

) possible. Furthermore, the angle-notation hA ! Bi

x

in

�(D) above is intended to refer to only a part of the assumption-lass [A! B℄

x

, namely to

that part, whih onsists just of all ourrenes of marked assumptions (A! B)

x

in �(D)

originating from the assumption-lass [A ! B℄

x

in �(D

0

) (whereas the full assumption-

lass [A ! B℄

x

in �(D) ontains all ourrenes of (A ! B)

x

in �(D) originating from

�(D

0

) and from �(D

1

) as well as the single additional assumption (A! B)

x

in the major

premise of the expliitly shown appliation of !E). (This notation will be used in similar

meaning also for omparable situations.)

If D ends with a ut, �(D) and �(D) are de�ned aording to:

D

0

�) t

0

: D

D

1

[x : D℄;�) t

1

: C

Cut

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

goes to

�(D

0

)

[�(D

0

) : D℄

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄ : C

.

Again, the stars indiate a neessary renaming proess in the bound variables, arried out

simultaneously in �(D

1

) and �(D

1

) to make the substitution of �(D

0

)

D

for x

D

possible.

The derivation �

0

(D) in!N[mi℄ is de�ned from �(D) by dropping the term-express-

ions in all formulas, that do not our in a leaf at the top of the derivation �(D) (there

the terms are retained as assumption-markers). �

It would also have been possible to extend the maps � and � to over derivations D

in the systems G

+

, if D ontains appliations of weakening mW and ontration mC, too,

but no inversion Inv. This ould be done by taking the transitions

D

0

�) t

0

: C

mW

�)W

�

(t

0

) : C

and

D

0

�) t

0

: C

mC

�) C

�

(t

0

) : C

go to

�(D

0

)

�(D

0

) : C

into De�nition 1.4.
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Vestergaard does not refer to suh a map � from derivations in his system G

+

v

to

natural-dedution derivations expliitly, he but bases his argument merely on formal ob-

servations about terms, whih|with the onepts and the terminology used here|an

be looked upon as derivation-terms �(D) desribing natural-dedution derivations �

0

(D)

assoiated with derivations D in the system G

+

(for Vestergaard these derivations are

derivations in the system G

+

v

, whih here was only taken as the basis for the formula-

tion of G

+

in De�nition 1.2 above). He takes these derivation-terms �(D) of natural-

dedution derivations �

0

(D) to be the \omputational meaning" of derivations D in the

typed sequent-alulus. { De�nition 1.4 was set up with the intention of following Vester-

gaard's paper as losely as possible, but also with the aim of looking at the phenomenon

he desribes from a slightly di�erent (namely a proof-theoreti) angle.

There is one notieable feature of the map � as de�ned above (also by way of following

the argument of Vestergaard) above, whih distinguishes it from an analogous map used

by J. Zuker in [Zu74℄: In the ase of a derivation D ending with the ut-rule, having

D

0

and D

1

as immediate subderivations, the transition in De�nition 1.4 neessitates the

amalgamation in �(D) of open assumption-lasses [A℄

x

with A

x

6� D

x

, that our both in

the derivations �(D

0

) and �(D

1

) (given by the indution-hypothesis of the de�nition of

�). In �(D), whih then an be written in the form

hAi

x

�(D

0

)

[�(D

0

) : D℄ hAi

x

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄

((�(D

1

))

�

[x

D

=�(D

0

)

D

℄ : C

,

a new assumption-lass [A℄

x

is formed, that now onsists of all ourrenes of A

x

at plaes

hAi

x

(whih here in �(D) stand for the ourrenes of marked assumptions A

x

in the

subderivation �(D

0

) and in the part originating from �(D

1

).)

In the ase of Zuker's sequent-alulus S suh an amalgamation of assumption-lasses

by his (rather similar) map � does not happen, whih is due to a very speial|indeed

areful|way of the formulation of the logial rules and the ut-rule in S based on a speial

indexing system for anteedent-formulas. An identi�ation of di�erent assumption-lasses

is in this system only possible in the image under � of a S-derivation ending with an

appliation of (an unrestrited version of) the ontration-rule.

A situation, similar to a G

+

-derivation ending with Cut, arises for a derivation D end-

ing with L!, that has immediate subderivations D

0

and D

1

. There, too, identi�ations of

assumption-lasses from �(D

0

) and �(D

1

) take plae impliitly in the respetive transition

of De�nition 1.4, that is, all ourrenes of marked assumptions C

z

(if C

z

6� (A! B)

x

) in

�(D), that originate from open assumptions C

z

in �(D

0

) or �(D

1

), are taken to form the

new open assumption-lass [C℄

z

of �(D). The open assumption lass [A ! B℄

x

of �(D)
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ontains all open assumptions of the form [A ! B℄

x

, that originate from open assump-

tions in �(D

0

) or �(D

1

) and one additional ourrene of (A ! B)

x

(as apparent from

the de�nition of �(D)).

While in the ase of Zuker's sequent-alulus S eah two-premise-rule R (inluding

Cut) was formulated in suh a way that in the image �(D) of a S-derivation D ending

with R identi�ations of assumption-lasses originating from �(D

0

) and �(D

1

) (D

0

and D

1

,

the immediate subderivations of D) never take plae (during the formation of �(D) from

�(D

0

) and �(D

1

)), this is not in the same way possible for a typed alulus of a!G3mi-

system: The formulation of the L!-rule with a multiset � appearing simultaneously in

the anteedents of both premises and in the onlusion of the rule leads to the neessity

of amalgamating assumption-lasses from D

0

and D

1

in the image �(D) of a derivation

ending with L! (D

0

and D

1

are here again the immediate subderivations of D).

1.3 Cut-elimination for G

+

A proedure for ut-elimination in the system G

+

relies for some steps on the possibility

of renaming variables in the anteedents of a sequent and throughout the immediate

subderivations appropriately. This ould be done as a loal proess by the introdution

of a new renaming-onstrut in addition to the rules of G

+

just like mW, mC and Inv,

and by a separate treatment of appliations of this new onstrut for the purpose of ut-

elimination in a derivation.

Sine Vestergaard desribes ut-elimination in his system as a proess of suessive

appliations of rewrite-rules on derivation-terms, and beause substitution is a familiar

notion for terms, he refers for this matter on substitution-lemmas like the below ones

instead:

Lemma 1.4. Let D be a derivation of the form

D

[(x : A)

n

℄;�) t : C

(where n 2 N ) in G

+

, that ontains rule-appliations of logial rules of G

+

only. Then

for all type-variables y

A

, that are distint from all bound variables in t

C

D[x

A

=y

A

℄

(y : A)

n

;�) t[x

A

=y

A

℄ : C

holds.

Proof. By an indution on the depth jDj of D.

One key ase for the validity of this lemma (a ase involving the prinipal formula

of an appliation of L!, that is the root of trouble in many similar situations) shall be
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shown here. If x : A is the prinipal annotated formula x : B ! D (i.e. if A � B ! D) of

a bottom-most appliation of L! in D and if n = l + 1, then D is of the form

D

0

[x : B ! D; (x : B ! D)

l

℄;�) t

0

: B

D

1

[z : D℄; [(x : B ! D)

l

℄;�) t

1

: C

L!

[(x : B ! D)

n

℄;�) let

z

D

(t

C

1

; x

B!D

t

B

0

) : C

,

where l 2 N

0

. If l > 0, then the indution-hypothesis an be applied to both D

0

and D

1

,

and due to z

D

6� y

B!D

the results D

0

[x

B!D

=y

B!D

℄ and D

1

[x

B!D

=y

B!D

℄ an be linked

together again by L! with the derivation

D

0

[x

B!D

=y

B!D

℄

y : B ! D; (y : B ! D)

l

;�) t

0

[x=y℄ : B

D

1

[x

B!D

=y

B!D

℄

[z : D℄; (y : B ! D)

l

;�) t

1

[x=y℄ : C

L!

(y : B ! D)

n

;�)

�

let

z

D

(t

C

1

; x

B!D

t

B

0

)

�

[x

B!D

=y

B!D

℄ : C)

as outome. If l = 0 the indution-hypothesis has to be applied only to D

0

and the

resulting derivation D

0

[x

B!D

=y

B!D

℄ an then be linked together again with D

1

by L!

to reah a derivation of the desired form.

Lemma 1.5. For all G

+

-derivations

D

�) t : C

and all typed variables x

A

a G

+

-

derivation D

(x

A

)

and thus also a derivation-term t

(x

A

)

an e�etively be found (by renaming

annotated variables in the anteedents and in derivation-terms only) suh that

D

(x

A

)

�) t

(x

A

)

: C

and x

A

does not our among the bound variables of t

(x

A

)

and in D

(x

A

)

.

Proof. By indution on the depth of D, arrying out a renaming of x

A

to another variable

(x

0

)

A

not previously ouring in the derivation (whih an be done by an appropriate use

of Lemma 1.4) in the indution-step, whenever x

A

appears as a bound variable.

Lemma 1.6. Let D be a derivation of the form

D

[(x : A)

n

℄;�) t : C

(where n 2 N )

in G

+

, that only ontains rule-appliations of logial rules. Then for all variables y

D

(y

A

)

[x

A

=y

A

℄

(y : A)

n

;�) t

(y

A

)

[x

A

=y

A

℄ : C

holds, where D

(y

A

)

and t

(y

A

)

are in relation to D; t and y

A

de�ned (and impliitly on-

struted in the proof of) Lemma 1.5.

Proof. This is immediate from Lemma 1.4 and Lemma 1.5.
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Theorem 1.1. Cut-elimination holds for G

+

.

More preisely, every derivation D in (G

+

+Cut) an be transformed by a �nite se-

quene of suessively applied loal redution-steps with a ut-free derivation in G

+

0

as

result, i.e. a derivation D

0

, that ontains neither appliations of the ut-rule nor of the

rules multiple-weakening mW, multiple ontration mC or inversion Inv.

Furthermore the proess of ut-elimination for a derivation D in G

+

an be ompletely

simulated on derivation-terms by appliations of rules from an appropriate rewrite-rule

system starting at the derivation-term t of D; these rule-appliations have to respet a

ertain order, in whih single rewrite-rule steps are suessively exeuted.

Proof. The proof of this theorem relies on two lemmas below, that together deal with the

ase of a G

+

-derivation D, i.e. a derivation not ontaining Cut but arbitrary many appli-

ations of weakening mW, ontration mC and inversion Inv (Lemma 1.7 and Lemma 1.8

below give|with the help of an immediate indution on the number of appliations of

mW, mC and Inv in D|that every suh derivation D an e�etively be transformed in

the desired manner to a derivation D

0

in G

+

0

, thus to a derivation D

0

, that possesses only

appliations of logial rules). It suÆes therefore here to show that every derivation D

terminating with an appliation of Cut, suh that the immediate subderivations D

0

and

D

1

of D ontain only logial rules, an be transformed by stepwise and loal transforma-

tions to a ut-free derivation D

0

in G

+

0

, i.e. a derivation having only appliations of logial

rules. (The theorem then follows by indution on the number of appliations mW, mC,

Inv or Cut in D

0

, an indution, in whih always topmost ourrenes of these rules are

treated and removed.)

This an be shown by an indution on one plus the logial depth of the formula A

within the annotated ut-formula x : A in the ut at the bottom of D, whih is alled the

rank of the ut, together with a subindution on the level jD

0

j+ jD

1

j of this ut, where

D

0

and D

1

are its immediate subderivations.

The proof is very similar to that of the ut-elimination theorem for the G3-systems

(f. Theorem 4.1.2 on p. 77 in [TS96℄), more preisely, it is analogous to the proof of a

ut-elimination theorem for the impliative fragments!G3mi of G3[mi℄.

For a derivation D in G

+

+Cut of the form

D

0

�) t

0

: D

D

1

[x : D℄;�) t

1

: C

Cut S

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

with D

0

;D

1

G

+

0

-derivations (thus ontaining only appliations of logial rules) three ases

are distinguished and treated separately: (1) If one of the premises of the ut S onsists

of an axiom, then a redution whih removes the ut in one step an be performed. (2) If

both premises are not axioms, and the ut-formula is not prinipal in at least one of the

rule-appliations S

0

; S

1

immediately preeding S, then the ut an be permuted upwards
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over the logial rule S

i

(i = 0; 1)) in that respetive premise, thereby reduing the level

of the resulting ut(s) by at least one; in the ase of a two-premise rule two new uts

of lower level may appear. The indution-hypothesis an then be applied to show that

the new ut(s) is (are) transformable to a ut-free form. The resulting derivation(s) an

then be linked together again (either with eah other, in the ase of two new uts, or

otherwise with a weakened subderivation of D) by a logial rule of the same type as S

i

to build the result of ut-elimination for D. (3) If both of the premises of the ut at the

bottom of D are not axioms, and the ut-formula is prinipal in both premises, then a

\fork-redution" (a term from [Drag79℄ for a similar redution) an take plae. In the

perhaps most frequent ase (the ut-formula does our just one in the anteedent of the

left premise of the ut at the bottom of D) a redution an be performed by splitting the

ut S in one ut S

0

1

of the same rank, but lower level, and two sueeding uts S

0

2

and S

0

3

of lower rank than that of S, uts, whih are then followed by a number of ontrations.

Th subindution-hypothesis an be applied to the derivation

~

D

0

1

terminating with S

0

1

for

showing that

~

D

0

1

an be transformed to a ut-free derivation in G

+

0

in the desired way.

Then the indution-hypothesis an be used twie and suessively to show that S

0

2

and S

0

3

an also be removed in this way. The sueeding ontrations an then be done away with

by an appeal to Lemma 1.8 to arrive ultimately at a derivation in G

+

0

. { In the seond

ase of a fork-redution for a (G

+

0

+Cut)-derivation D, that ours if the ut-formula of the

ut S at the bottom of D appears more than one in the anteedent of its left premise, a

similar redution is performed: Now S is split into two uts S

00

1

and S

00

2

of the same rank as

S, but of lower level, that are linked together by a ut S

00

3

and followed by a ut S

00

4

, both of

lower level than S, the latter of whih is then sueeded by a number of ontrations in the

resulting derivation D

00

. The subindution-hypothesis and the indution-hypothesis an

then be applied similar as before to show that D

00

is transformable to a ut-free derivation

in G

+

in the desired way.

All these redution-steps are rather straightforward to perform and|exept for one

ase, that will be shown here below|analogous

5

to the ones for an untyped !G3mi

e

-

system (de�ned preisely in De�nition 2.1). For this system the redution-steps are dis-

played in the lists A{C in hapter 2, following De�nition 2.1, where they were gathered

for the formulation of a strong ut-elimination theorem.

Sine derivation-terms in G

+

uniquely represent derivations in these systems, the

redution-steps referred to in this proof an be given in the form of rewrite-rules on

derivation-terms. These respetive rules will be given at the end of this proof.

In ase (1) the situation of a derivation D of the form

5

(with the sole exeption of the seond ase of a \fork-redution"-step just desribed, whih is an

analogue to a ut-elimination-step neessary for dealing with a similar situation in the Kleene-System

!GK3mi)
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x : P;�) ax

x

P

;�

: P

D

1

[(y : P )

n

℄;�) t

1

: C

Cut

x : P;��) t

C

1

J

J

Jy

P

:= ax

x

P

;�

K

K

K : C

an our. D an be then be transformed to a ut-free derivation D

0

(D

1

)

(x

P

)

[y

P

=x

P

℄

(x : P )

n

;�) (t

1

)

(x

P

)

[y

P

=x

P

℄ : C

mC

(x : P )

n�1

;�) C

fx

P

g

�

(t

1

)

(x

P

)

[y

P

=x

P

℄

�

: C

mC

.

.

.

mC

x : P;�) C

fx

P

g

�

: : :C

fx

P

g

| {z }

n�1

�

(t

1

)

(x

P

)

[y

P

=x

P

℄

�

: : :

�

: C

mW

x : P;��)W

�

�

C

fx

P

g

�

: : :C

fx

P

g

�

(t

1

)

(x

P

)

[y

P

=x

P

℄

�

: : :

��

: C

with the help of an appliation of Lemma 1.6. D

0

an then be seen to be transformable to a

derivation, whih only ontains appliations of logial rules (or onsists of a single axiom)

by n � 1 suessive appeals to Lemma 1.8 (for the ontrations) and one to Lemma 1.7

(for the weakening).

The rewrite-rules originating from ut-elimination steps in this proof are gathered in

the lists A{C below

6

:

A. Axiomati Cut-Redution Rewrite-Rules

a. t

C

1

J

J

Jy

P

:= ax

x

P

;�

K

K

K �!

(Cut)

W

�

�

C

fx

P

g

�

: : :C

fx

P

g

| {z }

n�1

((t

C

1

)

(x

P

)

[y

P

=x

P

℄) : : :

��

,

where

7

n := mult(y

P

; ant(t

C

1

)),

and (t

C

1

)

(x

P

)

is de�ned in relation to t

C

1

and x

P

by an appliation of Lemma 1.5.

b. ax

y

P

;�

J

J

Jy

P

:= t

P

0

K

K

K �!

(Cut)

W

�

(t

P

0

)

. ax

x

P

;y

D

;�

0

J

J

Jy

D

:= t

D

0

K

K

K �!

(Cut)

ax

x

P

;ant(t

D

0

)�

0

.

B. Rewrite-Rules for Upwards-Permutation of Cut

a. t

C

1

J

J

Jy

D

:= let

z

B

(t

D

01

; x

A!B

t

A

00

)K

K

K �!

(Cut)

let

(z

0

)

B

�

t

C

1

J

J

Jy

D

:= t

D

01

[z

B

=(z

0

)

B

℄K

K

K; x

A!B

W

ant(t

C

1

)	[y:D℄

(t

A

00

)

�

for z

0

suh that

�

(z

0

)

B

=2 ant(t

C

1

)	 [y : D℄ ^

^

�

z � z

0

_ (z

0

)

B

does not our in t

D

01

��

.

6

The symbols used here are essentially meta-language symbols (as \by default" throughout the thesis),

whih has the onsequene that variables x and y, formulas A and B or typed variables x

A

, y

B

need

not stand for di�erent variables or formulas in general expressions, exept this is expliitly stated using

formulations like for instane x 6� y, A 6� B or x

A

6� y

B

.

7

Where for every multiset � and every objet a the expression mult(a;�) means the multipliity of a

in �, i.e. the number of ourrenes of a in �.
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b. (�x

A

:t

B

10

)J

J

Jy

D

:= t

D

0

K

K

K �!

(Cut)

�(x

0

)

A

:((t

B

10

[x

A

=(x

0

)

A

℄)J

J

Jy

D

:= t

D

0

K

K

K)

for x

0

suh that

�

(x

0

)

A

=2 ant(t

D

0

) ^

^

�

x � x

0

_ (x

0

)

A

does not our in t

B

10

��

.

. Whenever y

D

6� x

A!B

:

�

let

z

B

(t

C

11

; x

A!B

t

A

10

)J

J

Jy

D

:= t

D

0

K

K

K

�

�!

(Cut)

let

(z

0

)

B

�

(t

C

11

[z

B

=(z

0

)

B

℄)J

J

Jy

D

:= t

D

0

K

K

K; x

A!B

t

A

10

J

J

Jy

D

:= t

D

0

K

K

K

�

for z

0

suh that

�

(z

0

)

B

=2 ant(t

D

0

) ^

^

�

z � z

0

_ (z

0

)

B

does not our in t

C

11

��

.

C. Fork Redution Rewrite-Rule

let

(z

B

)

(t

C

11

; y

A!B

t

A

10

)J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

K �!

(Cut)

8

>

>

>

>

>

<

>

>

>

>

>

:

C

��

�

t

C

11

J

J

Jz

B

:= t

B

00

J

J

Jx

A

:= t

A

10

J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

KK

K

KK

K

K

�

: : : if � = �

0

(or equivalently if: mult(y

A!B

; t

A

10

) = 1)

C

�

�

C

��

0

�

(t

C

11

J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

K)J

J

Jz

B

:= t

B

00

J

J

Jx

A

:= t

A

10

J

J

Jy

A!B

:= �x

A

:t

B

00

K

K

KK

K

KK

K

K

��

: : : if � ) �

0

(or equivalently if: mult(y

A!B

; t

A

10

) > 1)

,

where � := ant(t

B

00

)	 [x : A℄,

� := ant(t

A

10

)	 fy : A! Bg and

�

0

:= ant(t

A

10

)	 [y : A! B℄.

(It is immaterial to understand the reason for the partiular form of the subsript-notation

used in derivation-terms in the above rewrite-rules for their appliation. Yet, this notation

omes from one for subderivations of a given derivation D, where for n 2 N the derivation

D

i

1

;::: ;i

n

(i

1

; : : : ; i

n

2 N

0

) is indutively de�ned as the subderivation of D leading to the

(i

n

+ 1)-th premise from the left of the bottom-most rule appliation in D

i

1

;::: ;i

n�1

, if

n > 1, or in D, if n = 1; if D for example terminates with a one-premise rule, then

only the immediate subderivation D

0

of D is de�ned in this way, not also D

1

;D

2

; : : : , and

similar for more-premise rules. This notation was extended here to derivation-terms for

devising and heking the above rewrite-rules and it was thought that this origin should

not get onealed in the result.)

It is apparent from the above rewrite-rules, that during the proess of ut-elimination

in a derivation aording to the stepweise and loal proedure used here impliitly new

appliations of weakening or of ontration or of both appear in a derivation, that pre-

viously may only have ontained appliations of logial rules and of ut. Therefore these
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rewrite-rules for ut-elimination on derivation-terms will have to be supplemented by fur-

ther rules for the redution of derivation-terms ontaining subterms W

�

t for weakening-

and C

�

t for ontration-appliations. These additional rules orrespond to the plaes in

this proof, where Lemma 1.7 and Lemma 1.8 are used (so to say as subroutines) and will

be given together with the proofs for these statements.

Cut-elimination on a G

+

-derivation-term t an then be seen as a �nite sequene of

redutions aording to the system of rewrite-rules partly given here and being om-

pleted below: A redution-proess, in whih always an innermost ourrene of a ut-

term t

1

J

J

Jx := t

0

K

K

K in t is onsidered, where (a) �rst t

0

and t

1

are transformed by a �nite

subsequene of redutions (involving appliations of rewrite-rules for the treatment of

weakening-, ontration- and inversion-subterms) to terms

~

t

0

and

~

t

1

, that only ontain ap-

pliations of logial rules (or that are axioms), suh that then (b) the ut

~

t

1

J

J

Jx :=

~

t

0

K

K

K an

get redued by one of the above ut-redution rules to a term

~

t (by arguments used above

it is lear that one of these rules is then always appliable). The proof guarantees the

termination of this proess for every given G

+

-derivation-term, provided the termination

of the subproesses, whih will be justi�ed separately in Lemma 1.7 and Lemma 1.8.

Lemma 1.7. Every derivation D in G

+

, that ontains only appliations of weakenings

mW and logial rules, an be transformed by a �nite number of loal transformation-steps

to a derivation D

0

in G

+

0

(i.e. D

0

ontains no appliation of mW any more, nor suh of

mC or Inv); this elimination proess of weakenings an take plae on the orresponding

derivation-terms as the suessive appliation of appropriate rewrite-rules.

Proof. It suÆes to show that weakening an be e�etively eliminated from a derivation D

in G

+

terminating with an appliation of mW, that for the rest ontains only appliations

of logial rules (the lemma then follows by indution on the number of weakenings in a

given derivation). This in turn an be shown by indution on the depth jDj of D:

If jDj = 1 and mW therefore is applied diretly to an axiom in D, then an easy

redution of D to a new axiom, whih now inorporates the weakening, an take plae.

If jDj > 1, then the rule mW is permuted upwards one step over a rule R! or L! and

then the indution hypothesis is appliable. In the ase of R! the following redution is

possible:

D

0

[x : A℄;�) t

0

: B

R!

�) �x

A

:t

B

0

: A! B

mW

��)W

�

(�x

A

:t

B

0

)

A!B

: A! B

redues to
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D

0

[x

A

=(x

0

)

A

℄

[x

0

: A℄;�) t

0

[x

A

=(x

0

)

A

℄ : B

mW

[x

0

: A℄;��)W

�

�

t

B

0

[x

A

=(x

0

)

A

℄

�

: B

R!

��) �(x

0

)

A

:W

�

�

t

B

0

[x

A

=(x

0

)

A

℄

�

: A! B

.

The substitution of (x

0

)

A

for x

A

in D

0

is possible by Lemma 1.4, if (x

0

)

A

does not our as

a bound variable in t

B

0

; to keep x

0

: A distint from elements of � furthermore the stronger

ondition, that (x

0

)

A

does not our in t

B

0

at all, is neessary. The appliation of R! after

mW in the displayed way in the redued derivation is possible, if (x

0

)

A

62 �. { The ase

with mW following an appliation of L! at the bottom of D is more ostly to write down,

but quite analogously to treat.

Sine the derivation-term t for a G

+

-derivation D allow to represent (and to reon-

strut) D ompletely, the redutions referred to (and in the ase of R! expliitly given) in

this proof an be gathered for the following list D of rewrite-rules for weakening-redutions:

D. Weakening Rewrite-Rules

a. W

�

(ax

x

P

;�

) �!

(Weak)

ax

x

P

;��

.

b. W

�

(�x

A

:t

B

) �!

(Weak)

�(x

0

)

A

:W

�

�

(t[x

A

=(x

0

)

A

℄)

B

�

,

where x

0

is suh that (x

0

)

A

does not o-

ur in � nor in the term t

B

.

. W

�

(let

(y

0

)

B

(t

C

1

; x

A!B

t

A

0

)) �!

(Weak)

let

(y

0

)

B

�

W

�

�

(t

1

[y

B

=(y

0

)

B

℄)

C

�

; x

A!B

W

�

(t

A

0

)

�

,

where y

0

is suh that (y

0

)

B

does neither our in �

nor in t

C

1

.

Weakening-elimination on derivation-terms takes the form of suessive redutions of in-

nermost ourrenes of weakening in a term t aording to the above rewrite-rules, i.e.

of ourrenes W

�

(t

0

) in t, suh that t

0

does not ontain further subterms of the form

W

�

0

(t

00

).

Lemma 1.8. Every derivation D in G

+

, that ontains only appliations of the rules mul-

tiple-ontration mC, inversion Inv and logial rules, an be transformed e�etively by a

�nite number of transformation-steps to a derivation D

0

in G

+

0

(i.e. one, that possesses

only appliations of logial rules). This elimination proess an furthermore be arried

through ompletely on the derivation-terms orresponding to G

+

0

-derivations in the form

of appliations of rules of a rewrite-rule system.

Proof. It again suÆes to show that an appliation of inversion or multiple-ontration

an e�etively be removed from a G

+

-derivation D terminating with either Inv or mC,
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but otherwise ontaining only appliations of logial rules (the lemma then follows by

indution on the number of appliations of inversion and multiple-ontration in D). This

in turn an be shown by an indution on either the logial omplexity jA ! Bj of the

annotated inversion-formula x : A! B in an appliation I

x

A!B

;y

B

(:::) of inversion

8

, if the

bottom-most rule in D is an inversion, or on the sum of the logial omplexities of the

ontration-formulas in � of an appliation C

�

(: : : ) of mC at the bottom of D, together

with|in both ases|a subindution on the depth jDj of D.

Appliations of mC or Inv, that follow axioms in D, an be diretly redued to other

axioms. Appliations of these rules following logial rules an be permuted upwards over

L! and R! in most ases, muh in the same way as in the ase for mW in Lemma 1.7;

the subindution hypothesis an then always be applied.

There are two less obvious ases:

(1) If D terminates with the inversion of the prinipal formula of an immediately preeding

appliation of L!, then D is of the form

D

0

x : A! B;�) t

0

: A

D

1

[(z : B)

n

℄;�) t

1

: C

L!

x : A! B;�) let

z

B

(t

C

1

; x

A!B

t

A

0

) : C

Inv

y : B;�) I

x

A!B

;y

B

�

(let

z

B

(t

C

1

; x

A!B

t

A

0

))

C

�

: C
,

where n 2 N .

The inversion an here be removed by taking the right subdedutionD

1

of L!, arrying

out a renaming y

B

for z

B

with the help of Lemma 1.6 and by then using a number of

ontrations for the annotated formulas y : B. The indution hypothesis an then be

applied to all of these ontrations, sine the logial omplexity jBj of B is smaller than

that of A! B. The redued derivation then has the form

(D

1

)

(y

P

)

[z

P

=y

P

℄

(y : B)

n

;�) (t

C

1

)

(y

P

)

[z

P

=y

P

℄ : C

mC

(y : B)

n

;�) C

fy

P

g

�

(t

C

1

)

(y

P

)

[z

P

=y

P

℄

�

: C

mC

.

.

.

mC

y : B;�) C

fy

P

g

�

: : :C

fy

P

g

�

| {z }

n�1

(t

C

1

)

(y

P

)

[z

P

=y

P

℄

�

: : :

�

: C
.

(2) If D terminates with a ontration mC, that involves the prinipal annotated formula

x : A! B of an appliation of L! immediately preeding the inversion, then D is of the

8

Suh an appliation was here indiated as an operation on derivation-terms.
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form

D

0

x : A! B; x : A! B;�) t

0

: A

D

1

[y : B℄; x : A! B;�) t

1

: C

L!

x : A! B; x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

mC

x : A! B;�	 (�	 fx : A! Bg)) C

�

(: : : ) : C

.

D an here be transformed to the derivation

D

0

x : A! B; x : A! B;�) t

0

: A

mC

x : A! B;�) C

�

(t

0

) : C

D

1

[y : B℄; x : A! B;�) t

1

: C

Inv

[y : B℄;�) I

x

A!B

;y

B

(t

1

) : C

mC

[y : B℄;�) C

�	fx

A!B

g

�

I

x

:

;y

:

(t

1

)

�

: C

L!

x : A! B;�) let

y

B

�

C

�	fx

A!B

g

�

I

x

A!B

;y

B

(t

1

)

�

; x

A!B

C

�

(t

0

)

�

: C

,

where � :� �	 (�	 fx : A! Bg).

Here, sine jD

0

j; jD

1

j < jDj holds, the subindution-hypothesis an be applied to see

that the inversion immediately below D

1

and the ontration sueeding the end-sequent

of D

0

an be eliminated (by a required stepwise loal proess) with the results D

0

0

and

~

D

0

1

, that only ontain logial rules. The indution hypothesis an then be applied to

~

D

0

1

to see that a ontration C

�	fx

A!B

g

immediately sueeding

~

D

0

1

an be eliminated as a

desired stepwise loal proess with result D

0

1

in G

+

0

. Linking together D

0

0

and D

0

1

by L!

then leads to an inversion- and ontration-free derivation D

0

in G

+

0

.

On derivation-terms the redutions needed in the proof of this lemma an be presented

as rewrite-rules of the following lists E and F.

E. Contration Rewrite-Rules

a. C

�

(ax

x

P

;�

) �!

(Cont)

ax

x

P

;�	�

.

b. C

�

(�x

A

:t

B

) �!

(Cont)

�x

A

:C

�

(t

B

) .

. C

�

�

let

y

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Cont)

(

let

(y

B

)

�

C

�

(t

C

1

); x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

=2 �

let

(y

B

)

�

C

�	fx

A!B

g

�

(I

x

A!B

;y

B

(t

C

1

)

�

; x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

2 �

.

F. Inversion Rewrite-Rules

a. I

x

A!B

;y

B

(ax

z

P

;x

A!B

;�

) �!

(Inv)

ax

z

P

;y

B

;�

.

b. I

x

A!B

;y

B

(�z

C

:t

D

) �!

(Inv)

�(z

0

)

C

:I

x

A!B

;y

B

(t

D

[z

C

=(z

0

)

C

℄) ,

where z

0

is suh that (z

0

)

C

6� y

B

and (z

0

)

C

does not our in t

D

.
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. I

x

A!B

;y

B

�

let

w

D

(t

E

1

; z

C!D

t

C

0

)

�

�!

(Inv)

let

(w

0

)

D

�

I

x

A!B

;y

B

�

(t

1

[w

D

=(w

0

)

D

℄)

E

�

; z

C!D

I

x

A!B

;y

B

(t

C

0

)

�

,

where w

0

is suh that (w

0

)

D

6� y

B

and (w

0

)

D

does not

our in the term t

E

1

.

d. I

x

A!B

;y

B

�

let

z

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Inv)

C

fy

B

g

�

: : :C

fy

B

g

�

| {z }

n�1

(t

C

1

)

(y

B

)

[z

B

=y

B

℄

�

: : :

�

,

where n := mult(z : B; ant(t

C

1

)) and

9

(t

C

1

)

(y

B

)

is de�ned aording to Lemma 1.5.

Contration- and inversion-elimination on a G

+

0

-derivation-term t, that ontains no wea-

kening-subterms, an then be looked upon as a proess onsisting of suessive redutions

of innermost ourrenes of ontration- or inversion-subterms in t aording to the above

rewrite-rules in the lists E and F; the termination of this proess is guaranteed by the

arguments above (that apply also for derivation-terms, sine by Lemma 1.3 G

+

-derivations

and G

+

-derivation-terms orrespond to eah other uniquely).

1.4 Vestergaard's \Anomaly"

In introdutory remarks at the begin of setion 5 in [Vest99℄, where the \omputational

anomaly" in his system is presented, Vestergaard starts from the observation, that with

respet to his system G

+

v

there are two inversion-redution rewrite-rules, for whih it is

apparent from their shape, that they do not preserve the identity of derivation-terms.

That is, syntatially di�erent derivation-terms t

1

and t

2

an get redued to the same

derivation-term t. Only one of these two rules orresponds to a respetive rewrite-rule

for inversion-redution in the setting of the system G

+

onsidered here instead; the other

would orrespond to the redution of a derivation, whih onsists of the appliation of an

inversion I

x

A!B

;y

B

(: : : ) (here indiated as an operation on derivation-terms) to an axiom

ax

x

A!B

;�

with a non-atomi annotated prinipal formula A ! B (suh axioms have but

been exluded in the formulation of G

+

similar as in the systems G3[mi℄ in [TS96℄).

The one remaining inversion-redution rewrite-rule with this notieable property is the

rewrite-rule F.d given in the proof of Lemma 1.8:

I

x

A!B

;y

B

�

let

z

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Inv)

C

fy

B

g

�

: : :C

fy

B

g

�

| {z }

n�1

(t

C

1

)

(y

B

)

[z

B

=y

B

℄

�

: : :

�

;

(where n := mult(z : B; ant(t

C

1

)) and (t

C

1

)

(y

B

)

is de�ned aording to Lemma 1.5). Here

the subterm t

A

0

ouring in the derivation-term on the left side of the redution is obviously

9

See footnote 7 for an explanation of multipliities mult.
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lost in the redution, sine it does not appear in the redued term. Therefore di�erent

terms an get redued to the same result by appliations of this rule.

Vestergaard then asks whether it is possible that during the proess of ut-elimination

(represented as a �nite redution-sequene on derivation-terms) appliations of the two

rewrite-rules appearing with respet to his system, that do not preserve identity of terms,

an atually hange the \omputational meaning" of derivation-terms in an unexpeted

way. Or whether an \unfortunate use of the inversion-priniple" does never happen during

a ut-elimination proess|perhaps due to some very speial features of this proess as a

whole. Unstated though (and only hinted at other plaes in the artile), he seems to ask

here, whether it is possible that the \omputational meaning" of a derivation-term an be

hanged during the exeution of the usual ut-elimination proedure substantially di�erent

from the way, how the \meaning" of a derivation is a�eted by normalization (whih in

the ase of derivation-terms for derivations of an intuitionisti of minimal alulus simply

orresponds to �-redution).

He then immediately proeeds by giving his example of a \omputational anomaly",

whih is intended to provide an answer insofar, as it shows that the omputational mean-

ing of a derivation ontaining ut in his system an indeed be hanged during the ut-

elimination proess in an unexpeted way, that is, in a way not orresponding to normal-

ization (�-ontration) on derivation-terms.

Before looking loser at the \anomaly", let us briey note this: Vestergaard does not

mention the parallel ase of a rewrite-rule among those neessary for dealing with axiomati

ut-redutions, whih does obviously also not preserve the identity of derivation-terms and

whih appears in his system as well as in G

+

: Here it is the rule A.,

ax

x

P

;y

D

;�

0

J

J

Jy

D

:= t

D

0

K

K

K �!

(Cut)

ax

x

P

;ant(t

D

0

)�

0

; (1.4)

given in the proof of Theorem 1.1. Apparently the term t

D

0

disappears during this redution

(only the annotated formulas in the anteedent of the derivation D

0

represented by t

0

remain as side formulas of the resulting axiom, whih but do not tell anything about

the derivation D

0

that leads to the onlusion ant(t

0

) ) t

0

: D). { Were it then also

possible that the \meaning" of a derivation-term ould be (unexpetedly) hanged due

to an appliation of this rule during a proess of ut-elimination exeuted on derivation-

terms?

If G

+

0

+Cut -derivation terms t are given the \meaning" of their natural-dedution

derivation image �(D) of the derivation D represented by t, this is not possible, as an

be seen in the following way: On the related G

+

0

+Cut-derivations the redution (1.4)

orresponds to:

D

0

ant(t

D

0

)) t

0

: D [y : D℄; x : P;�

0

) ax

x

P

;y

D

;�

0

: P

Cut

x : P; ant(t

D

0

);�

0

) ax

x

P

;y

D

;�

0

J

J

Jy

D

:= t

D

0

K

K

K : P
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redues to

x : P; ant(t

D

0

);�

0

) ax

x

P

;ant(t

D

0

);�

0

: P :

If now the images under the map � from setion 2 are formed from the derivations on the

left and on the right side of this axiomati ut-redution, it easily turns out, that both

natural-dedution derivation images are equal to P

x

. Thus this \meaning" of derivation-

terms is ertainly not hanged by appliations of the rule A. .

It is therefore possible, that the \omputational meaning" of a derivation-term (if this

is interpreted as the natural-dedution image of the orresponding G

+

0

+Cut-derivation) is

not a�eted by appliations of rewrite-rules with the seemingly very bad property that the

identity of the terms, on whih they at, is not preserved. On the other hand it an easily

be heked for the rewrite-rules for upwards-permutation of Cut of the list B in the proof of

Theorem 1.1, that while \identity of terms" is preserved under appliations of these rules,

they do nevertheless atually hange the natural-dedution images of the orresponding

G

+

-derivations (if only in a way that orresponds to the exeution of normalization steps

on these natural-dedution derivations). Zuker in [Zu74℄ alls ut-elimination steps of

these kind in list B permutative onversions and they play a vital rule for his result of a

lose orrespondene between ut-elimination in his intuitionisti sequent-alulus S and

normalization on N , his intuitionisti system of natural-dedution.

For the eÆient treatment of weakening in the exposition of Vestergaard's \anomaly"

the following de�nition, whih introdues an abbreviation for weakened derivation-terms,

and a lemma about the relation between this new notation and weakening-redution

�!

�

(Weak)

on derivation-terms will be used.

De�nition 1.5. Let t be a derivation-term of a derivation D in G

+

0

.

Then for typed variables x

A

1

1

; : : : ; x

A

n

n

the term tfx

A

1

1

; : : : ; x

A

n

n

g denotes the derivation-

term of that derivation, whih results from D by adding x

1

: A

1

; : : : ; x

n

: A

n

in the

anteedent of every sequent in D as well as to the side-formulas � in every axiom-subterm

ax

y

P

;�

(for arbitrary y

P

) of a derivation-term ouring in D. �

Lemma 1.9. Every derivation D in G

+

of the form

D

0

�) t : C

mW

x

1

: A

1

; : : : ; x

n

: A

n

;�) t : C

,

where D

0

is a derivation in G

+

0

(hene it is an axiom or ontains only appliations of

logial rules) and the typed variables x

A

1

1

; : : : ; x

A

n

n

do not our as bound variables in t

C

,

an be e�etively transformed to a derivation D

0

in G

+

0

of the form

D

0

0

x

1

: A

1

; : : : ; x

n

: A

n

;�) tfx

A

1

1

; : : : ; x

A

n

n

g : C

.
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Moreover, with respet to the weakening-redution rewrite-rules in the list D given in the

proof of Lemma 1.7 for every derivation-term t of a G

+

0

-derivation D and arbitrary typed

variables x

A

1

1

; : : : ; x

A

n

n

, that do not our as bound variables in t,

W

L

n

i=1

fx

A

i

i

g

(t) �!

�

(Weak)

tfx

A

1

1

; : : : ; x

A

n

n

g

holds.

Proof. Can be seen to be impliit in the proof of Lemma 1.7.

The example of a \omputational anomaly" given by Vestergaard uses the following

derivation-terms {

n

and |

n

(for n 2 N

0

):

{

n

:�

(

ax

z

P

;s

P!P

: : : n = 0

let

(x

n

)

P

�

ax

x

P

n

;z

P

; s

P!P

{

P

n�1

�

: : : n > 0

(1.5)

and

|

n

:�

(

ax

z

P

;(s

P!P

)

2

: : : n = 0

let

y

P

�

{

n

fy

P

g; s

P!P

{

P

1

fs

P!P

g

�

: : : n > 0

.

(Here the same designations of these terms and of the involved variables in the type-

expressions (more preisely, the names of the typed variables here, if the formula-types

were dropped) have been kept to make omparisons with the redution-sequene in [Vest99℄

easier.)

Vestergaard's example of a \omputational anomaly" in his system G

+

v

an now be

rewritten as sequenes �

n

of redutions (n 2 N refers to the subterm |

n

in the �rst term t

n

in all of these sequenes) by appliations of rewrite-rules from the lists A{F in setion 1.3

for a ut-elimination proess aording to Theorem 1.1. For all n 2 N the following holds:

let

(y

0

)

P

�

|

n

f(y

0

)

P

g; g

P!P

{

1

fg

P!P

; s

P!P

g

�

J

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K

�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

|

n

f(y

0

)

P

gJ

J

J(y

0

)

P

:= ax

(z

0

)

P

;z

P

J

J

Jz

P

:= {

1

fg

P!P

; s

P!P

gJ

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

KK

K

KK

K

K

�

�!

(Cut)

C

f::: g

�

: : : J

J

J : : : J

J

Jz

P

:= let

x

P

1

�

ax

x

P

1

;z

P

;s

P!P

;g

P!P

J

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K;

s

P!P

({

0

fg

P!P

; s

P!P

gJ

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K)

�

K

K

KK

K

K

�

�!

(Cut)

C

f::: g

�

: : : : : : J

J

J : : : J

J

Jz

P

:= let

x

P

1

�

ax

x

P

1

;z

P

;(z

0

)

P

;s

P!P

;

s

P!P

({

0

fg

P!P

; s

P!P

gJ

J

Jg

P!P

:= �z

P

:ax

(z

0

)

P

;z

P

K

K

K)

�

K

K

KK

K

K

�
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�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

|

n

f(y

0

)

P

gJ

J

J(y

0

)

P

:= ax

(z

0

)

P

;z

P

J

J

Jz

P

:= let

x

P

1

�

ax

x

P

1

;(z

0

)

P

;z

P

;s

P!P

; s

P!P

ax

z

P

;(s

P!P

)

2

;(z

0

)

P

�

K

K

KK

K

K

�

�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

|

n

f(y

0

)

P

gJ

J

J(y

0

)

P

:= ax

(z

0

)

P

;(z

0

)

P

;(s

P!P

)

2

;z

P

K

K

K

�

�!

(Cut)

C

f(z

0

)

P

;z

P

;s

P!P

g

�

W

f((z

0

)

P

)

2

;z

P

;(s

P!P

)

2

g

(|

n

)

�

�!

�

(Weak)

C

f(z

0

)

P

;z

P

;s

P!P

g

(|

n

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g)

� C

f(z

0

)

P

;z

P

;s

P!P

g

�

let

y

P

�

{

n

fy

P

g; s

P!P

{

P

1

fs

P!P

g

�

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

� C

f(z

0

)

P

;z

P

;s

P!P

g

�

let

y

P

�

{

n

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g;

s

P!P

{

P

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g

��

�!

(Cont)

let

y

P

�

C

fz

P

;(z

0

)

P

g

I

s

P!P

;y

P

({

n

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g);

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

({

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g)

�

�!

(Inv)

let

y

P

�

C

fz

P

;(z

0

)

P

g

�

ax

y

P

;z

P

f((z

0

)

P

)

2

; z

P

; s

P!P

g

�

;

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

({

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g)

�

�!

(Cont)

let

y

P

�

ax

y

P

;z

P

f(z

0

)

P

; s

P!P

g

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

({

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g)

�

�!

(3)

(Cont)

let

y

P

�

ax

y

P

;z

P

f(z

0

)

P

; (s

P!P

)g; s

P!P

(({

1

fs

P!P

g)f(z

0

)

P

; z

P

; s

P!P

g)

�

� let

y

P

(ax

y

P

;z

P

; s

P!P

{

1

fs

P!P

g)f(z

0

)

P

; s

P!P

g .

(The �!

�

(Weak)

-redution step above has its justi�ation in Lemma 1.9, in the step

�!

(3)

(Cont)

three appliations of ontration-redution rewrite-rules have been gathered.)

Let for n 2 N the term t

n

be the �rst derivation-term in the above redution-sequene

�

n

and let t

0

denote the resulting derivation-term (n 2 N refers to the free ourrene of n in

|

n

in the derivation-term at the beginning). If one looks at the natural-dedution derivation

images �(D

n

) and �(D

0

) for the (G

+

+Cut)-derivations D

n

and D

0

orresponding to the

derivation-terms t

n

and t

0

, it an easily be seen, that �(D

n

) is the typed natural-dedution

derivation

(P ! P )

s

(P ! P )

s

(P ! P )

s

P

z

!E

sz : P

!E

s(sz) : P

.

.

.

s

n�1

z : P

!E

s

n

z : P

,

(1.6)
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whereas �(D

0

) is just

(P ! P )

s

(P ! P )

s

P

z

!E

sz : P

!E

s(sz) : P

.

(1.7)

Sine for n > 2 the derivations �

0

(D

n

) do not redue to �

0

(D

0

) by normalization (�

0

(D

n

)

and �

0

(D

0

) being the derivations �(D

n

) and �(D

0

) after dropping the term-labels in all

onlusions of rule-appliations), this means that \something more" than what would

have orresponded to normalization must have happened during ut-elimination here. It

is straightforward to hek that the \jump" for n > 2 of �(D

(i)

n

) (with D

(i)

n

being the

derivation orresponding to the i-th derivation-term in �

n

) from (1.6) to (1.7) ours just

in the single inversion-redution step in �

n

.

Informally it is lear, that an unneessarily ompliated proof, the natural-dedution

derivation in (1.6), has obviously been redued to a more ompat form, the derivation

in (1.7). But this redution on proofs (as informal objets that are thought to underly

formal derivations (f. for example G. Kreisel in [Kr71℄, p. 111)) is not reeted by the

way how normalization on natural-dedution simpli�es proofs. (It also has to be noted

that the \proof-redution" between (1.6) and (1.7) is ertainly not optimal and therefore

seemingly indeed of a speial kind.)

It is interesting, that in the setting of a system G

+

omparable to Vestergaard's (in

the notation here:) G

+

v

, but ontaining an expliit weakening-rule, Vestergaard's example

does not look onvining any more: This is beause the ontration-redution rewrite-rule

E. in the proof of Lemma 1.8 an ertainly be modi�ed to the following more areful

form:

C

�

�

let

y

B

(t

C

1

; x

A!B

t

A

0

)

�

�!

(Cont)

8

>

>

>

>

>

<

>

>

>

>

>

:

let

(y

B

)

�

C

�

(t

C

1

); x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

=2 � or

�

x

A!B

2 � and 2:mult(x

A!B

;�) < mult(x

A!B

; ant(t

0

))

�

let

(y

B

)

�

C

�	fx

A!B

g

�

(I

x

A!B

;y

B

(t

C

1

)

�

; x

A!B

C

�

(t

A

0

)

�

: : : x

A!B

2 � and 2:mult(x

A!B

;�) = mult(x

A!B

; ant(t

0

)))

On the orresponding G

+

0

-derivations this means: Multiple ontration is always allowed

to permute upwards over L! diretly (without the use of inversion) also in ase that the

prinipal formula of L! is ative in the sueeding ontration, whenever it is possible to

do this. That is, whenever there are enough ourrenes of the prinipal formula of L!

also in the right premise of the involved appliation of this rule to arry out the required

multiple ontration also there: If x : A! B 2 �, then
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D

0

x : A! B; x : A! B;�) t

0

: A

D

1

[y : B℄; x : A! B;�) t

1

: C

L!

x : A! B; x : A! B;�) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

mC

x : A! B;�	 (�	 fx : A! Bg)) C

�

((let

y

B

(t

C

1

; x

A!B

t

A

0

))

C

) : C

is now allowed to redue (as in the �rst ase of the rule E.) to

D

0

x : A! B; x : A! B;�) t

0

: A

mC

x : A! B;�) C

�

(t

A

0

) : A

D

1

[y : B℄; x : A! B;�) t

1

: C

mC

[y : B℄;�) C

�

(t

C

1

) : C

L!

x : A! B;�) let

y

B

�

C

�

(t

C

1

); x

A!B

C

�

(t

A

0

)

�

: C

,

(where � :� �	 (�	fx : A! Bg)) whenever (A! B)

2:mult(A!B;�)

� ��fA! Bg, or

equivalently (A! B)

2:mult(A!B;�)

( �� fA! B;A! Bg = ant(t

0

) holds.

Given this formulation of the inversion-redution rewrite-rule E., the redution-se-

quene for a ut-elimination proess in Vestergaard's example would then ontinue after

the weakening redution-steps sueeding the six ut-elimination redutions as follows:

: : : �!

�

(Weak)

C

f(z

0

)

P

;z

P

;s

P!P

g

(|

n

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g)

� C

f(z

0

)

P

;z

P

;s

P!P

g

�

let

y

P

�

{

n

fy

P

g; s

P!P

{

P

1

fs

P!P

g

�

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

�!

(Cont)

let

y

P

�

C

f(z

0

)

P

;z

P

;s

P!P

g

�

{

n

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

;

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

�

{

P

1

f((z

0

)

P

)

2

; z

P

; (s

P!P

)

3

g

�

�

�!

(3)

(Cont)

let

y

P

�

let

y

P

�

: : :

�

; s

P!P

{

1

f(z

0

)

P

; (s

P!P

)

2

g

�

�!

(Cont)

let

y

P

�

let

x

P

n

�

C

f(z

0

)

P

;z

P

;s

P!P

g

�

ax

x

P

n

;z

P

fy

P

; ((z

0

)

P

)

2

; (z

0

)

P

; (s

P!P

)

2

g

�

;

s

P!P

C

f(z

0

)

P

;z

P

;s

P!P

g

�

{

n�1

fy

P

; ((z

0

)

P

)

2

; z

P

; (s

P!P

)

2

g

�

; : : :

�

�!

�

(Cont)

let

y

P

�

let

x

P

n

�

ax

x

P

n

;z

P

fy

P

; (z

0

)

P

; s

P!P

g; s

P!P

{

n�1

fy

P

; (z

0

)

P

; s

P!P

g

�

; : : :

�

� let

y

P

�

{

n

fy

D

; (z

0

)

P

; s

P!P

g; s

P!P

(({

1

fs

P!P

g)f(z

0

)

P

; s

P!P

g)

�

� |

n

f(z

0

)

P

; s

P!P

g.

(The �!

�

(Weak)

-redution-step in this redution-sequene is again justi�ed by Lemma 1.9,

in the redution-step�!

(3)

(Cont)

means three suessive appliations of ontration-redution

rewrite-rules. In the last redution-step, that onsists of a gathered number of single

ontration-redution steps, it was used that the ontration involved on the left an then
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be permuted upwards indutively over all of the n�1 appliations of L! in {

n�1

similarly

as in the previous step over the bottom-most appliation L! in {

n

.)

Here an inversion-redution step is no longer needed during this proess and the form of

the resulting term

~

t

0

n

is not independent of n any more. This means, that if the redution-

sequenes ~�

n

for n 2 N of this kind were onsidered as appliations of an operation f (to

make terms ut-free) on derivation-terms t

n

(the left-most terms in the sequenes), then

the identity of derivation-terms from the family ft

n

g

n2N

would be preserved under this

operation f . Moreover, if the natural-dedution image �(

~

D

0

n

) under � of the derivation

~

D

n

in G

+

0

, whih orresponds to

~

t

0

n

, is looked at, the derivation �(D

n

) in (1.6) is enoun-

tered again. The \meanings" of the terms t

n

and

~

t

0

n

at the start and at the end of ~�

n

are

therefore idential.

Closer inspetion shows that the whole proess of ut-elimination for D

n

is here|under

the just slightly modi�ed onditions of a variant of the ontration-redution rewrite-rule

E. used here instead|undetetable from the natural-dedution images of the derivation-

terms (there are also no hanges in this natural-dedution images during the ourse of the

derivation, as is easy to hek). { The \anomaly" has disappeared here.

Yet, it is possible to give another example of a \omputational anomaly" also in the

system G

+

with an expliit weakening rule. Here essentially the idea behind the example of

Vestergaard is used, but in a slightly di�erent way. The example below was initially found

by onsidering ut-elimination in a rather easy derivation of the untyped G3[mi℄-system

(f. this example in Appendix A on p. 77), for whih the �rst step in the ut-elimination

proedure neessitates the appliation of a fork-redution of list C in setion 1.3.

The derivation-terms {

n

(for n 2 N ) in (1.5) from Vestergaard's example will be used

again in the new example. Furthermore let t

B

00

be the derivation-term

t

B

00

:= let

(z

0

)

P

�

ax

y

B

;x

A

;z

P

;(z

0

)

P

; s

P!P

ax

z

P

;x

A

;y

B

;s

P!P

�

.

Then for all n 2 N the following redution-sequene ��

n

on derivation-terms represents a

proess of ut-elimination aording to Theorem 1.1:

let

y

B

�

{

n

fx

A

; y

B

g; w

A!B

ax

x

A

;w

A!B

;z

P

;s

P!P

�

J

J

Jw

A!B

:= �x

A

:t

B

00

K

K

K

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:= t

B

00

J

J

Jz

P

:= ax

x

A

;w

A!B

;z

P

;s

P!P

J

J

Jw

A!B

:= �x

A

:t

B

00

K

K

KK

K

KK

K

K

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:= t

B

00

J

J

Jz

P

:= ax

x

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

K

K

KK

K

K

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:=W

fy

B

;(z

P

)

2

;(s

P!P

)

2

g

(t

B

00

)K

K

K

�!

�

(Weak)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

{

n

fx

A

; y

B

gJ

J

Jy

B

:= t

B

00

fy

B

; (z

P

)

2

; (s

P!P

)

2

gK

K

K
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�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

let

(z

0

)

P

�

{

n

fx

A

; y

B

g

J

J

Jy

B

:= ax

y

B

;x

A

;y

B

;(z

P

)

3

;(z

0

)

P

;(s

P!P

)

2

K

K

K;

s

P!P

W

fx

A

;z

P

;s

P!P

g

(ax

z

P

;x

A

;(y

B

)

2

;(z

P

)

2

;(s

P!P

)

3

)

�

�!

(Cut)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

�

let

(z

0

)

P

�

W

fx

A

;y

B

;(z

P

)

3

;(z

0

)

P

;(s

P!P

)

2

g

({

n

fx

A

; y

B

g);

s

P!P

W

fx

A

;z

P

;s

P!P

g

(ax

z

P

;x

A

;(y

B

)

2

;(z

P

)

2

;(s

P!P

)

3

)

�

�

�!

�

(Weak)

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

�

let

(z

0

)

P

�

{

n

f(x

A

)

2

; (y

B

)

2

; (z

P

)

3

; (z

0

)

P

; (s

P!P

)

2

g;

s

P!P

(ax

z

P

;(x

A

)

2

;(y

B

)

2

;(z

P

)

3

;(s

P!P

)

4

)

�

�

�!

(Cont)

let

(z

0

)

P

�

C

fx

A

;y

B

;(z

P

)

2

;s

P!P

g

�

I

s

P!P

;z

P

({

n

f(x

A

)

2

; (y

B

)

2

; (z

P

)

3

; (z

0

)

P

; (s

P!P

)

2

g)

�

;

s

P!P

C

fx

A

;y

B

;(z

P

)

2

;(s

P!P

)

2

g

(ax

z

P

;(x

A

)

2

;(y

B

)

2

;(z

P

)

3

;(s

P!P

)

4

)

�

�!

(Cont)

let

(z

0

)

P

�

: : : ; s

P!P

ax

z

P

;x

A

;y

B

;z

P

;(s

P!P

)

2

�

�!

(Inv)

let

(z

0

)

P

�

C

fx

A

;y

B

;(z

P

)

2

;s

P!P

g

�

ax

z

P

;z

P

f(x

A

)

2

; (y

B

)

2

; (z

P

)

3

; (z

0

)

P

; (s

P!P

)

2

g

�

; : : :

�

�!

(Cont)

let

(z

0

)

P

�

ax

z

P

;(z

P

)

2

;s

P!P

;(z

0

)

P

; s

P!P

ax

z

P

;(z

P

)

2

;(s

P!P

)

2

�

fx

A

; y

B

g .

(The �!

�

(Weak)

-steps here are again justi�ed as appliations of Lemma 1.9.)

Let

�

t

n

and

�

t

0

denote the topmost and bottom-most derivation-terms in the above

derivation-sequene ��

n

respetively. It is straightforward to hek that for the G

+

0

+Cut-

derivation

�

D

n

orresponding to

�

t

n

the image �(

�

D

n

) under � is equal to �(D

{

n

) (D

{

n

the G

+

0

-derivation orresponding to {

n

), whih for n � 1 in turn equals (1.6). But the

derivation

�

D

0

orresponding to

�

t

0

has simply P

z

as its natural-dedution image �(

�

D

0

).

This means that for n > 1 something speial has happened here again to the natural-

dedution images of derivation-terms in a redution-sequene ��

n

of the above kind, some-

thing, that is not explainable by normalization-steps on the natural-dedution images of

the derivation-terms ouring in �

n

. { Closer inspetion shows that the one and only jump

takes plae|as in Vestergaard's example|in the single inversion-redution step ourring

in the redution-sequene.
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1.5 Closer analysis of the \problemati" ut-elimination

step in G

+

In the introdution to [Vest99℄ R. Vestergaard refers to an artile by G. Kreisel in [Kr71℄ of

1971, whih was intended by the author to supplement an earlier artile with aspets and

thoughts springing up from the onsequenes of the then reent disovery of normalization

for natural-dedution derivations by D. Prawitz in the early and mid-1960ies. Kreisel was

interested in what exatly the new onept ould tell about properties of and relations

between proofs (as informal objets that mathematiians are familiar with):

\Here I wish to emphasize formal results and and problems onerning rela-

tions between proofs, for example the identity relation between proofs desribed

by formal derivations of a given system."

With respet to \normal derivations and onversions" Kreisel lists the following desirable

properties of normal derivations (in a not diretly spei�ed formal system, that for example

an be both a sequent- or a natural-dedution alulus) suh that they an \serve as

anonial representations of all proofs represented in the system onsidered, the way the

numerals are anonial notations for the natural numbers":

\A minimum requirement is then that any derivation an be normalized ,

that is transformed into a unique normal form by a series of steps, so-alled

\onversions", eah of whih preserves the proof desribed by the derivation.

This requirement has a formal and an informal part:

(�) The formal problem of establishing that the onversions terminate in a

unique normal form (independent of the order in whih they are applied).

(�i) The informal reognition (by inspetion) that the onversion steps on-

sidered preserve identity, and the informal problem of showing that

(�ii) distint, that is inongruent normal derivations represent di�erent proofs

(in order to have unique, anonial, representations)."

Vestergaard draws from this a onnetion to his �ndings and spei�ally stresses the above

requirement (�i) for this. He goes on to interpret the proof thought to be underlying a

derivation D in his typed !G3mi-like system G

+

v

as just the natural-dedution image

�(D) of D (to be preise, only for a derivation D in G

+

0

not ontaining an appliation of

inversion). If this is done, his example of a \omputational anomaly" really shows that

the ut-elimination proedure he uses similar to the one for the G3[mi℄-systems given

impliitly in [TS96℄ indeed hanges \proofs", in Kreisel's use of this word, it thus does not

preserve the identity of proofs.
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But it has to be remembered at the same time that|as Zuker's result from 1974

shows|also the ut-elimination steps in the seemingly muh better behaved LJ-near sys-

tem S do not preserve the so-understood identity of proofs, insofar as the steps for upwards

permutation of ut (Zuker alls these steps permutative onversions) hange the natural-

dedution images of derivations; again, if only in a way that an be simulated on the

images by a �nite sequene of normalization-steps

10

.

It seems doubtful, that Kreisel had really wanted to have the meaning of the word

\proof" in the quoted passages understood as just a natural-dedution derivation (sine

this is again a derivation in a strit formal system that an only model the mathematial

pratie of proving and therefore does not really ontain the proofs mathematiians deal

with and have in their minds). Nevertheless, in the absene of better suited andidates

natural-dedution surely an serve as a very good approximation to the informal notion

of proof.

Zuker in [Zu74℄ takes this as a starting point and provides arguments for the follow-

ing: If one aepts the view that the performane of normalization-steps on a natural-

dedution derivation does not hange the underlying (informal) proof (a onjeture by

D. Prawitz in [Pra71℄), that is, that synonymity of derivations is equivalent to interre-

duibility by normalization-redutions, then the results in [Zu74℄ an be seen as a jus-

ti�ation to interpret|at least for the negative fragment S

�

of Zuker's sequent-system

S|the synonymity of derivations in the sequent-system S as the property of their interre-

duibility by (appropriately spei�ed) ut-elimination steps in S. (Pottinger in [Pott77℄

later indiated a way how to generalize Zuker's result to a full intuitionisti alulus.)

Vestergaard's result shows that \synonymity" of derivations in his typed!G3mi-like

system G

+

v

annot be interpreted just as the interreduibility of their natural-dedution

images by normalization, if this so-understood \meaning" of derivations shall be preserved

by a ut-elimination proedure near to that for G3[mi℄ given impliitly in [TS96℄ (this

result was transferred here to a system omparable to Vestergaard's but with an additional

expliit weakening rule).

Prawitz above mentioned onjeture \Two [natural-dedution℄ derivations represent

the same proof if and only if they are equivalent [i.e. interreduible by normalization-steps℄"

in [Pra71℄ was hallenged by S. Feferman in [Fef75℄, partiularly for the 8-ontration step

of normalization. He suggested instead:

\Even if it does not settle the relation of identity between proofs, the work

desribed by Prawitz may give simple syntati explanations of other familiar

relations and operations, for example, for the idea of one proof speializing

to another or of extrating from a proof just what is needed for its partiular

onlusion."

10

It is easy to hek that the same is true in the here onsidered system G

+

for the derivation-redutions

orresponding to the rewrite-rules of list B in setion 3 for upwards-permutation of Cut.
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Following Feferman's above words here an argument shall be given, why it an be thought,

that even the problemati step during a ut-elimination proess in the system G

+

as well as

in G

+

v

, namely upwards-permutation of ontration that needs an additional appliation of

inversion (f. the ontration-redution rewrite-rule E., seond ase, that is the immediate

ause of the anomaly), does in fat lead to the extration from a given derivation D in

G

+

0

+Cont just what is needed to prove its onlusion. In the more preise sense that

only suh unneessary subderivations are getting \axed out" as a onsequene of this

step during ontration-elimination, for whih another subderivation leading to a stronger

onlusion stays in the transformed derivation.

For simpliity let us onsider the \problemati" step in the ut-elimination proedure

for G

+

in the ase of an analogous step that ours during the ut-elimination proe-

dure impliit in [TS96℄ for the untyped !G3mi-system. There during a subproess of

ontration-elimination the following situation of a derivation D

D

0

A! B;A! B;�) A

D

1

B;A! B;�) C

L!

A! B;A! B;�) C

C

A! B;�) C

(1.8)

an our. Here the ontration at the bottom of D annot be diretly permuted upwards

over L!, at least not in the ase, when A ! B 62 �. Here D gets transformed by the

proedure in a �rst step to

D

0

A! B;A! B;�) A

C

A! B;�) A

D

1

A! B;B;�) C

Inv

B;B;�) C

C

B;�) C

L!

A! B;�) C

(1.9)

by the use of an additional appliation of inversion. The removal of the inversion at the bot-

tom of D

1

is then responsible for the unwanted e�ets desribed by Vestergaard's anomaly,

sine during this operation of inversion-elimination some sub-derivations of D

1

an disap-

pear ompletely (in the setting of the typed alulus G

+

in an analogous situation some

subderivations an equally get lost when going over to the respetive natural-dedution

images, an e�et, whih ultimately leads to the \anomalies"). It shall be tried to argue

here, that while in a proof thought to be underlying (1.8) as an informal objet indeed

some sub-proofs, orresponding to subderivations of D

1

, an be lost as a onsequene of

inversion-redution steps in D

1

following after the situation (1.9), suh lost subproofs lead

only to weaker versions of the sequent A ! B;� ) A, a proof of whih must then still

underly the transformed derivation D

0

after the elimination of the sueeding ontration

in (1.9) there.
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To be able to demostrate this, two lemmas are neessary, the �rst analyzes the struture

of D

1

in (1.9) and the seond desribes the result of eliminating the newly appearing

inversion there ompletely from the left immediate subderivation of L!.

Lemma 1.10. Every derivation D

1

in !G3mi with the onlusion B;A ! B;� ) C

has the struture

D

11

(A! B;�

1

�

1

�

1

) C

1

) : : :

D

1n

(A! B;�

n

�

n

�

n

) C

1

)

D

10

B;A! B;�) C

(1.10)

(here a sequent in brakets (: : : ) means exatly one ourrene of this sequent as a leaf in

the derivation-tree of the \partial derivation" D

10

), where

(i) eah derivation D

1i

(i = 1; : : : ; n) is either an axiom or terminates with an applia-

tion of L! and is hene of the form

D

1i0

A! B;�

i

�

i

�

i

) A

D

1i1

B;�

i

�

i

�

i

) C

i

L!

A! B;�

i

�

i

�

i

) C

i

,

(1.11)

where furthermore for all i 2 f1; : : : ; ng

�

i

� � and (1.12)

8D 2 � [ fBg

�

D 2 �

i

_

�

9D

0

stritly positive subformula of D

�

(D

0

2 �

i

)

i

(but no property of the formulas in �

i

is singled out here).

(ii) D

10

is a partial derivation (i.e. it ontains sequents A! B;�

i

�

i

�

i

) C

i

as top-leafs,

that are not neessarily axioms), whih ontains no axioms exept ones that our

among the D

11

; : : : ;D

1n

and no L!-appliation with prinipal formula A! B.

Lemma 1.11. The result D

0

1

of eliminating a bottom-most appliation of inversion a-

ording to the ut-elimination proedure impliit in [TS96℄

11

in the !G3mi-derivation

~

D

1

of the form

D

11

(A! B;�

1

�

1

�

1

) C

1

) : : :

D

1n

(A! B;�

n

�

n

�

n

) C

n

)

D

10

B;A! B;�) C

Inv

B;B;�) C

,

(1.13)

11

Cf. the item (vii) of the inversion-lemma in the Proposition on p. 66, 67 and its proof in [TS96℄, on

whih the proof of the ut-elimination theorem for the G3[mi℄-systems relies for the treatment of suh a

subproblem.
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where the immediate subderivation D

1

of the bottom-most inversion in

~

D

1

is of the form

(1.10) with the onditions on D

10

;D

1i

;�

i

;�

i

;�

i

as in Lemma 1.10, is

D

0

11

(B;�

1

�

1

�

1

) C

1

) : : :

D

0

1n

(B;�

n

�

n

�

n

) C

n

)

D

10

fA! B=Bg

B;B;�) C

(1.14)

(where D

10

fA! B=Bg means the result of replaing exatly one ourrene of A! B in

the anteedent of every sequent by B) and where for all i = 1; : : : ; n

D

0

1i

:=

(

D

1i1

: : : if D

1i

is not an axiom

(the axiom:) B;�

i

�

i

�

i

) C : : : if D

1i

is an axiom

(1.15)

(D

1i0

and D

1i1

mean the subderivations of D

1

with these denotations from Lemma 1.10).

The Proofs of these two lemmas onsist just of|appropriately formulated|indutions

on the depth of the derivation D

1

.

The derivation D

1

in (1.9) an by Lemma 1.10 be seen to be of the form (1.10) with

the derivations D

1i

of the form (1.11) and the onditions on D

10

;D

1i

;�

i

;�

i

;�

i

as in

Lemma 1.10.

By Lemma 1.11 the result of eliminating the inversion appearing in (1.9) is then

D

0

A! B;A! B;�) A

C

A! B;�) A

D

0

1

B;B;�) C

C

B;�) C

L!

A! B;�) C

(1.16)

where D

0

1

is of the form (1.14) (with subderivations D

0

1i

for i = 1; : : : n as de�ned in

Lemma 1.11). As desribed by Lemma 1.11 D

0

1

is the result of dropping subderivations

D

1i0

A! B;�

i

�

i

�

i

) A

(1.17)

fromD

1

and of replaing a single passive ourrene of A! B in every sequent throughout

D

10

by B.

Due to (1.12) the onlusion of every derivation (1.17) is obviously weaker than the

onlusion A! B;�) A of the derivation leading to the left premise of L! in (1.16). It

seems therefore justi�able to say that while removing the additional ouring appliation

of inversion in (1.9) leads in e�et to the loss of subderivations in the result (1.16) of this

subproess, these lost derivations would orrespond only to weaker versions of a sub-proof
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that stays in the transformed derivation (that one that underlies the proof of the left

immediate subderivation of L! in (1.16)).

In other words, although the subderivations D

1i0

in (1.17) of D

1

disappear as a on-

sequene of the upwards-permutation of ontration over L! in (1.8) via the �rst step

(1.9) and the following inversion-redution steps, the proess as a whole may be seen here

as keeping bak only one essential opy of a derivation for A ! B;� ) A (underly-

ing the further transformed derivation D

0

), while possibly many proofs of \speial ases"

A ! B;�

i

�

i

�

i

) A (where �

i

, �

i

satisfy (1.12)) of A ! B;� ) A get \axed out"

from D

1

. The proess of ut-elimination in this ontration-elimination step ould then

be thought of as dropping appliations of unneessary lemmas from the proof underlying

D, that turned out to be speial ases of a statement, for whih a proof is retained. Or,

as extrating from the proof, that is thought to be formalized by D, essential parts for a

derivation of its onlusion, using the distintive ombinatorial properties of the L!-rule

in an intuitionisti or minimal G3[mi℄-system.

1.6 An alternative system !G2

0

mi

e�

It is not apparent from the outset, why Vestergaard hose to present his result in the

setting of a typed system, where the anteedents of sequents are onsidered to be multi-

sets of variable-annotated formulas (instead of as respetive suh sets). He only stresses

that he is interested in the \omputational meaning" of single rules and of derivations

in the (untyped) G3[mi℄-sytems (and whether suh a preisely de�nable \omputational

meaning" of a derivation is a�eted or not during the exeution of ut-elimination steps),

where the anteedents of sequents in fat are multisets of (not annotated) formulas.

On the other hand the logial rules in Vestergaard's system (as in the very similar

system G

+

above) do at on their premises by treating multiple ourrenes [x : A℄ of

annotated ative formulas x : A in a set-like way as one objet for the rule-appliations

(with the obvious unstated motivation of onsidering suh multiple ourrenes as referring

to the same assumption lass in a orresponding natural-dedution derivation).

Also J. Zuker in his ground-breaking paper [Zu74℄ about the exat relationship be-

tween ut-elimination in a sequent-alulus and normalization in a related natural-dedu-

tion system took a sequent-alulus S as the basis for his investigation, in whih the an-

teedents of sequents onsist of sets of (preisely de�ned:) \indexed" formulas and where

the rules were formed appripriately for this notion of sequents. Zuker's system S is (as to

the logial shape of its rules, not with respet to the speial indexing onventions used in

it) lose to Gentzen's LJ and ould be easily transformed into a typed system, suh that

his results of a lose orrespondene between ut-elimination steps in S and normalization

steps in N (his slightly modi�ed system for natural dedution) would arry over to the

typed system (if variable annotations and indexes of formulas were orresponding to eah
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other bijetively, the typed system therefore then being only the result of rewriting S).

In the onlusion of [Vest99℄ Vestergaard states that the \anomaly" ould have been

avoided by using a variant-system instead of (the here alled system) G

+

v

with the an-

teedents of sequents onsisting of sets instead of multisets:

\The omputational anomaly ould [ : : : ℄ have been avoided if we instead

had onsidered (a variant) ofG3i inorporating a notion of assumption lasses.

This an be aomplished, e.g. by de�ning anteedents to be sets of variables

with a proposition annotated. In suh a setup we ould have utilized the

impliit ontration whih is expressed in the idempoteny of set union to take

plae of the trouble instigator in G3i: the expliit ontration rule."

It ould be argued in more detail, why we think that this is not, at least not diretly

possible: (1) In an axiomati ut-elimination step omparable to the ase overed by the

rewrite-rule A.a a lemma for substitution (omparable to Lemma 1.4 and Lemma 1.6)

has to be relied on also in a new system, but suh lemmas do not hold any more in the

ase, that the axioms are not restrited to suh that have only atomi ative formulas

(as in Vestergaard's system G

+

v

); else ompletely similar problems as are the ause of the

\anomaly" ould ome in from the seemingly harmless ase of an axiomati ut-redution

in an new system omparable to the redution A.a on derivation-terms in G

+

. (2) One

enounters diÆulties with the treatment of upwards permutation of Cut in the ase of

non-prinipal ut-formulas (redutions on derivations similar to those given in list B for

redutions on derivation-terms). DiÆulties, that may indeed let Vestergaard's system G

+

v

(and the here de�ned system G

+

) with the anteedents of sequents onsisting of multisets

look as a quite natural hoie for a typed!G3mi-like alulus, that relates derivations in

it quite naturally to natural-dedution derivations and at the same time allows to desribe

ut-elimination for derivations in it (to be preise, ut-elimination done lose to the usual

way for a G3[mi℄-system) as a stepwise and loal proess.

Vestergaard's suggestion ited above an be arried through for the following typed

system!G2

0

mi

e�

, whih has a very!G3mi-like formulation of its L!-rule and is itself

a G3-system (this means, ontration is an admissible rule for it), but whih perhaps

derives more from the type-annotation of a G2-system !G2

0

mi (in whih ontration

is not an admissible rule any more|due to the fat that the ontext in the premises of

L! is not the same any more as in the respetive rule for the G3[mi℄-systems). The

expliit strutural rules in !G2

0

mi

e�

have also (as in G

+

v

and G

+

) been de�ned just in

suh a way so as to make ut-elimination possible as a stepwise proess of loally applied

transformations (the role of ontration is taken over by a renaming-rule Ren, where two

suessive renamings always suÆe to mimik an arbitrary given ontration).

De�nition 1.6 (The derivation-term annotated system !G2

0

mi

e�

). The system

!G2

0

mi

e�

is de�ned as follows: The anteedent of a sequent in this system is a set
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of variables of formula-type (written as variable-annotated formulas), the suedent on-

sists of a (rigidly) typed derivation-term, whose free type-variables our in the anteedent.

!G2

0

mi

e�

has the following axioms and rules:

Ax x : P ; �) ax

x

P

;�

: P (P atomi)

x : A; �) t : B

R!

�) �x

A

:t

B

: A! B

x : A! B; �

0

) t

0

: A y : B; �

1

) t

1

: C

L!

x : A! B;�

0

;�

1

) let

y

B

(t

C

1

; x

A!B

t

A

0

) : C

u : A; �) t : C

Ren

v : A;�) Ren

u

A

;v

A

(t

C

) : C

�) t : C

mW

�;�)W

�

(t

C

) : C

Here the following notations are used:

� Expressions �

0

;�

1

or �

0

�

1

mean the set �

0

[�

1

, expressions x : A;� denote the set

fx : Ag [ �, and x : A; � is also to be understood as fx : Ag [ �, but thereby x : A

is understood to be no element of �.

� As in De�nition 1.2 typed variables x

A

are also written as x : A (when they our

in the anteedent and thereby informally refer to marked assumptions of a orre-

sponding natural-dedution derivation). Terms t

C

in the suedent of a sequent are

written in the form t : C (sine they are often informally thought of as derivation-

terms desribing a natural-dedution derivation with onlusion C).

The term in the suedent of the end-sequent of a!G2

0

mi

e�

-derivation D will be alled

the derivation-term of D.

The systems!G2

0

mi

e�

+Cut are the systems!G2

0

mi

e�

enrihed with the ut-rule

�) t

0

: D x : D; �) t

1

: C

Cut

��) t

C

1

J

J

Jx

D

:= t

D

0

K

K

K : C

as an additional inferene rule. �

Derivation-terms in this system again represent derivations uniquely (due to the rigid

typing in these terms). For ut-elimination in this system it is neessary that it is possible

to reonstrut the anteedents ant(t) of the onlusion-sequent � ) t : C of a derivation

from the derivation-term t. Like in G

+

this an be done indutively using the following

de�nition:
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De�nition 1.7. The operation ant on!G2

0

mi

e�

-derivation is de�ned as follows

ant(ax

x

P

;�

) := fx : Pg [ � ;

ant(�x

A

:t

B

) := ant(t

B

) n fx : Ag ;

ant(let

y

B

(t

C

1

; x

A!B

t

A

0

)) := ant(t

A

0

) [ (ant(t

C

1

) n fy : Bg) ;

ant(Ren

u

A

;v

A

(t

C

)) := (ant(t

C

) n fu : Ag) [ fv : Ag ;

ant(W

�

(t

C

)) := ant(t

C

) [� ;

ant(t

C

1

J

J

Jx

D

:= t

D

0

K

K

K) := ant(t

D

0

) [ (ant(t

C

1

) n fx : Dg) :

Again, outermost types of terms on the left sides of the de�nition have been dropped here,

whenever it is possible to reonstrut them. �

Then the following lemma holds:

Lemma 1.12. For every (!G2

0

m

e�

+Cut)-derivation-term t

C

there is exatly one deriva-

tion D in (!G2

0

m

e�

+Cut) suh that D is of the form

D

�) t : C

(� a set of formulas); for this derivation D moreover � = ant(t

C

) holds.

Proof. Again (as for Lemma 1.3) by indution on the syntatial depth of t

C

, thereby

inspeting all rules of!G2

0

mi

e�

for the indution-step.

Theorem 1.2. Cut-elimination holds for !G2

0

mi

e�

.

More preisely, every derivation D in (!G2

0

mi

e�

+Cut) an be transformed by a �nite

sequene of suessively applied loal redution-steps with the result of a ut-free derivation

in !G2

0

mi

e�

ontaining no appliations of strutural rules mW or Ren.

Furthermore the proess of ut-elimination for a derivation D in !G2

0

mi

e�

an be

ompletely simulated on derivation-terms by appliations of rules from an appropriate

rewrite-rule system starting at the derivation-term t of D; these rule-appliations have

to respet a ertain order, in whih single rewrite-rule steps are suessively exeuted.

The Proof of this theorem is very similar to that of Theorem 1.1. The rule Ren

turns out to be eliminable from the bottom of a derivation ontaining only logial rules

by upwards-permuation over logial rules without the need to introdue other non-logial

rules of !G2

0

mi

e�

. Nearly the same applies for mW, sine here appliations of Ren are

needed to make upwards-permutation of mW possible

12

. Cut-elimination an then be

done as a proess of loal transformation-steps referring to the subproesses of eliminating

appliations of Ren and mW from ut-free derivations in!G2

0

mi

e�

.

12

(in some ases of upwards-permutation of mW over R!)
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It seems that similar problems as with inversion, that is the obvious diret ause of

the \omputational anomalies", in G

+

are ompletely avoided in!G2

0

mi

e�

. This is on

the other hand but not so astonishing, sine the system!G2

0

mi

e�

is atually very near

to Zuker's system S and would even ompletely

13

math with it, if a variant of it were

onsidered with similar restritions on the indies as in S (the loseness of !G2

0

mi

e�

to S an be seen very good from a slight reformulation of S by A.M. Ungar in [Ung92℄,

Appendix A, starting on p. 186); for suh a variant-system the orrespondene between

ut-elimination and normalization on normal-dedution derivations (with respet to an

appropriately de�ned map � as in setion 2) holds again as in Zuker's system.

13

The G3[mi℄-like formulation of the L!-rule still stands out a bit then, but [I think, C.G.℄ this does

not ause similar problems as in G

+

and G

+

v

.



Chapter 2

Strong Cut-Elimination

G. Gentzen devised sequent-aluli for lassial and intuitionisti prediate logi as systems

that are equivalent to related

1

natural dedution aluli and that allowed him to obtain

important formal results about the possible struture of proofs for arbitrary given provable

onlusions; results that ould then be \exported bak" to the natural dedution systems

(whih were also mainly developed by Gentzen and an be onsidered as preise formal

proof systems very near to the atual mathematial pratie and therefore were and are

of great foundational interest) to gain deep metamathematial importane.

For establishing the equivalene of sequent- and natural dedution aluli formalizing

the same logi (equivalene in the sense that the same theorems are provable in these

systems) a ertain rule in sequent aluli, the ut rule, suggested itself as being useful

and neessary and was introdued for that purpose by Gentzen. His main formal result

for sequent-aluli, the \Hauptsatz", states that appliations of the ut-rule in derivations

either of his sequent-aluli LK for lassial or LJ for intuitionisti prediate logi an be

e�etively removed and the derivation itself an be transformed into a ut-free form (i.e.

one in whih the ut-rule does not our any more). This an be arried through with

the help of an e�etive ut-elimination proedure that proeeds by the stepwise exeution

of loal simpli�ations (i.e. redutions) to a given derivation ontaining appliations of

ut and arrives at a ut-free proof of the same onlusion after a �nite number of suh

redution-steps. The proof-redutions used in this proedure an be ompletely spei�ed

as to the exat onditions of their appliability and to the result produed by them and

they an be gathered and listed into a �nite atalogue of suh steps.

Cut-elimination proedures suh as the one impliit in Gentzen's proof of the \Haupt-

satz" for LJ and LK presribe a ertain order (as well as many other similar proedures

for related and di�erent sequent aluli do the same) in whih these redution-steps have

to be applied to a given derivation ontaining ut suh as to then guarantee termination.

1

(this means: formalizing the same logis)

44
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Usually �rst topmost ourrenes of ut

2

in a derivation are onsidered and treated,

are either removed right away whenever this is possible (e.g. in the ase when an axiom

is involved as a premise) or are permuted upwards over logial or strutural rules or split

into two or more appliations of ut (of a somehow simpler kind); (\somehow simpler"

means that:) in all ases a parameter assoiated with the number, plaes and forms of

the appliations of ut in a derivation D has to be seen to have dereased stritly while

performing suh a redution-step, so that termination of the whole proedure an then

be seen diretly given the domain of this derivation-assoiated parameter onerning the

appliations of ut in D is well-founded.

There is often some indeterminateness left in the proess, but this is mostly narrowed

down onsiderably to either the hoie of an arbitrary topmost ut or to the possibility

that at some plae in the derivation perhaps two or more redution-steps an be hosen

and is generally very far from allowing the exeution of arbitrary appliable steps to a

given derivation (at perhaps even arbitrary plaes therein) from the proedure's atalogue

of redutions. That is, proofs for ut-elimination usually do not also show termination of

a related proedure P

1

, in whih the possible redution-steps impliit in the proedure P

an be applied to a given derivation ontaining ut in an arbitrary, only by the general

onditions of their appliability restrited order.

While Gentzen had found himself lead to the introdution of sequent-aluli for the

purpose of proving his outstanding foundational results, D. Prawitz ([Pra65℄) disovered

a more diret possibility of arriving at basially the same metamathematial results by

onsidering natural dedution aluli alone and by giving a strutural proof-theory of these

systems without (from the outset:) referene to sequent-aluli. He gave|in some ways|a

similar proedure to ut-elimination in sequent-aluli that allowed to onstrut \diret",

then alled normal natural dedution derivations (i.e. derivations that an roughly be

desribed as ones that avoid to go unneessary \detours") when starting out from given

arbitrary suh derivations (in one of Gentzen's natural dedution systems NK for lassial

and NJ for intuitionisti logi). This proedure for the normalization of natural dedution

derivations an (like a ut-elimination proedure) also be onsidered as onsisting of the

exeutions of atomi redution-steps, steps that again an be ompletely desribed as to

their exat outlook and the very preise irumstanes of their appliability; they also

an be gathered to form a short list of di�erent types of redutions. Prawitz' original

normalization-proedure demanded that these possible redution-steps have to be applied

to a given natural dedution derivation in a ompletely spei�ed order that is determined

by the proedure (namely always treating the rightmost, topmost and longest \detour"

in the given derivation �rst and either removing it ompletely or dereasing it in its

length). { Using the lose onnetion between sequent- and natural-dedution-aluli

2

(in the ase of the proedure impliit in Gentzen's proof a generalization of Cut, the mix-rule Mix,

omes in)
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Prawitz was then also able to give an alternative, though now more indiret proof for

Gentzen's \Hauptsatz" in the sequent aluli LK and LJ and he did state this result as

a orollary to his Normalization Theorem.

Later Prawitz reognized that the stepwise exeution of arbitrary but appliable

redution-steps from his �rst found normalization-proedure to a given natural-dedution-

derivation ultimately always leads to a normal proof after the exeution of �nitely many

of suh steps; the normal proof thereby onstruted by the normalization-proedure is also

unique (if some additional easy simpli�ations and transformations are observed). Prawitz

thereby obtained what was then alled a Strong Normalization Theorem ([Pra71℄).

Although Prawitz' normalization result for natural dedution aluli had allowed him

to arrive also at an alternative way of performing ut-elimination in the related sequent-

aluli and although there appeared to be \obvious similarities" between normalization

and ut-elimination as methods to obtain normal-forms for proofs, the question as to

their exat onnetion or orrespondene, whether they \really are the same thing" (all

ited words here are from [Pott77℄), was still unanswered. Cut-elimination had been seen

to admit simulation through normalization by Prawitz, but this did only show that ut-

elimination as a whole ompleted proess ould be done quite di�erently and did not tie

these two onepts for onstruting normal-forms of proofs together losely enough by

giving a preise orrespondene between redution steps in either of these methods with

eah other.

A thorough investigation of the exat relationship between ut-elimination and nor-

malization with respet to intuitionisti aluli was presented in [Zu74℄. J. Zuker took a

variant S of Gentzen's LJ , namely a version with the anteedents of sequents onsisting

of indexed formulas, as the starting point of his investigations. He de�ned a many-to-one

map � from his intuitionisti sequent-alulus S to Ni and was then able to prove that

there exists a mutual orrespondene under � between \natural" ut-elimination steps

(as suh Zuker saw the ones also used by Gentzen) in S

�

, the negative fragment of S,

and normalization steps in Ni

�

, Ni 's negative fragment. { His detailed analysis made it

possible for Zuker to show that every ut-elimination or strong ut-elimination theorem

for S

�

implies a normalization or respetively a strong normalization theorem for Ni

�

and vie versa.

Zuker was also able to extend his results to the full aluli S and Ni, but only at

the expense of having to deviate from some of what he saw are Gentzen's altogether very

natural ut-elimination steps (and of having instead to employ somewhat \unnatural"

ones

3

). G. Pottinger in [Pott77℄ gave an alternative approah to Zuker's results and

also extended these to the full respetive proof-systems for intuitionisti prediate logi

by again giving some new ut-elimination steps not previously used (it is meant: not

3

This onerns suh ut-eliminations steps that deal with the permutation of ut upwards over

introdution-rules for _ and 9.
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presented) by Gentzen. But he insisted that at least the fat that these few alternative ut-

elimination steps failitate a diret orrespondene between ut-elimination in Zuker's S

and normalization inNimakes them appear perhaps even more natural than the respetive

ones utilized by Gentzen (for proof-transformation in similar situations).

In 1977 A.G. Dragalin (for an exposition see [Drag79℄) gave a quite di�erent and self-

ontained proof of the fat that a strong form of the ut-elimination theorem also holds

for Gentzen's aluli LK and LJ , and namely in the interesting sense that this is even

true w.r.t. exlusively suh ut-elimination steps as had already been used by Gentzen.

The results of Zuker and Pottinger (here stated without proof:) do arry over to

the minimal and intuitionisti sequent-aluli GK3[mi℄ with impliit strutural rules as

originally developed by S.C. Kleene (but here used in the notation as well as in the

presentation of these aluli from [TS96℄) and thereby also allow to establish an analogous

orrespondene between ut-elimination in GK3[mi℄ and normalization in N[mi℄.

But as was explained earlier in Chapter 2, a Zuker-type orrespondene does not

exist between the N[mi℄- and the G3[mi℄-systems, again aluli without expliit stru-

tural rules and presented in [TS96℄ (these G3-systems

4

in a somewhat di�erent presen-

tation are mainly due to A.G. Dragalin, but were reformulated with only one formula

in the suedent|as this is a more ommon formulation of intuitionisti systems than

Dragalin's|by A.S. Troelstra). Hene strong normalization for N[mi℄ does not|at least

not in an obvious way|arry over to yield a strong ut-elimination theorem for G3[mi℄.

{ On the other hand Dragalin's proof for strong ut-elimination in LJ and LK does not

diretly apply to the G3-systems (sine it was intentionally spei�ed to over LJ and

LK|with weakening and ontration rules present there|and only ut-elimination steps

already used by Gentzen).

2.1 A Strong Cut-Elimination Theorem for !G3mi and

!?G3i

In Gentzen's proedure for ut-elimination in the sequent-aluli LK and LJ the redu-

tion steps applied to a derivation D ontaining Mix

5

w.r.t. a topmost ourrene S of

Mix are essentially loal; this means they do not involve operations to be applied to whole

subderivations in D (more preisely suh subderivations ending more than one rule appli-

ation above the premise of S) but do only ombine immediate subderivations of S and

other suh subderivations ending not more than one rule appliation above S in a new

way (whih an mean some suh subderivations are being dropped altogether) and with

some few rule appliations being added at the bottom of an appropriate ombination of

4

The designation G3 for a Gentzen-system without expliit strutural rules originated with S.C. Kleene's

system of this name in [Kl52℄.

5

Whih essentially takes over the role of Cut in his proof.
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subderivations suh that S 's onlusion-sequent is reahed again. In the added rule ap-

pliations extensive use is made of LJ and LK 's strutural rules (weakening, ontration

and|sine Gentzen used lists as anteedents and suedents of sequents|also exhange).

In the notation and formulation of sequent-aluli for minimal, intuitionisti and las-

sial prediate logi aording to [TS96℄ the strutural rules weakening and ontration

that appear in the basi G1-systems have been ompletely absorbed into the aluli in the

G3-systems. This means they are not longer present as expliit derivation-rules but an be

proven to be derived (or \admissible") rules of the aluli, i.e. lemmas about derivability

valid in the systems G3[mi℄ .

De�nition 2.1 (The Gentzen systems !G3mi

e

, !?G3i

e

). The variant!?G3i

e

of G3i 's absurdity-ontaining impliative fragment!?G3i with expliit strutural and

inversion rules is spei�ed by the following axioms and rules:

Ax P;�) P (P atomi)

L? ?;�) A

A! B;�) A B;�) C

L!

A! B;�) C

A;�) B

R!

�) A! B

�) C

W

A;�) C

A;A;�) C

C

A;�) C

A! B;�) C

Inv

B;�) C

The variants !G3m

e

and !G3i

e

of the impliative fragments !G3m and !G3i of

G3m and G3i with expliit strutural and inversion rules are de�ned just as !?G3i

e

,

but with all axioms L? left out. (Sine !G3m and !G3i mean the same formal

system, also!G3m

e

and!G3i

e

are idential aluli and will be together referred to as

!G3mi

e

.

L! and R! will be alled the logial rules, weakening W and ontration C the

strutural rules of the systems de�ned here.

The systems !G3mi

e

and !?G3i

e

will sometimes be enlarged by the adding the

ut-rule

�) D D;�) C

Cut

��) C

.

The resulting systems will be denoted by!G3mi

e

+Cut and!?G3i

e

+Cut. �

When attempting to onstrut a stepwise loal ut-elimination proedure for!?G3i,

whih operates in the usual way of always treating a topmost ourrene of ut �rst, by

either removing it ompletely (whenever this is possible if an axiom is involved) or by
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permuting it upwards over logial rules, or by splitting it into a few uts of \simpler" kind

(if the ut-formula is prinipal in both inferenes of the immediate subderivations), one is

for example led to the following ut-elimination redutions as in the lists A, B and C below.

In the redued derivations essential use is made of!?G3i

e

's strutural rules weakening

and ontration and therefore these redutions take (!?G3i+Cut )-derivations over to

(!?G3i

e

+Cut )-derivations.

Cut-elimination for!G3mi an thereby be treated as a speial ase, in whih fewer

redution-steps for transformations involving rule-appliations immediately sueeding ax-

ioms have to be devised (due to the fat that!G3mi has the same rules but less axioms

than!?G3i). For the purpose of motivating the below redutions it will therefore only

be spoken of!?G3i and the just slightly more general situations ouring for derivations

in this system.

A. Redutions by elimination or simpli�ation of uts with axioms:

(1) Either of the premises of Cut is an axiom Ax :

a.

P;�

0

) P

D

1

P;�) C

Cut

P;�

0

�) C

>

red

D

1

P;�) C

W

P;�

0

�) C

b.

D

0

�) P P;�) P

Cut

��) P

>

red

D

0

�) P

W

��) P

.

D

0

�) D
P;D;�) P

Cut

P;��) P

>

red

P;��) P

(2) Either of the premises of Cut is an axiom L? :

d.

?;�) D

D

1

D;�) C

Cut

?;��) C

>

red

?;��) C

e.

D

0

�) D ?;D;�

0

) C

Cut

?;��

0

) C

>

red

?;��

0

) C

f.

?;�

0

)? ?;�

0

) C

Cut

?;�

0

�

0

) C

>

red

?;�

0

�

0

) C
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g.

D

00

A! B;�

0

) A

D

01

B;�

0

)?

L!

A! B;�

0

)? ?;�) C

Cut

A! B;�

0

�) C

>

red

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

D

01

B;�

0

)? ?;�) C

Cut

B;�

0

�) C

R!

A! B;�

0

�) C

B. Redutions by permuting uts upwards over logial rules:

a.

D

00

A! B;�

0

) A

D

01

B;�

0

) D

L!

A! B;�

0

) D

D

1

D;�) C

Cut

A! B;�

0

�) C

>

red

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

D

01

B;�

0

) D

D

1

D;�) C

Cut

B;�

0

�) C

L!

A! B;�

0

�) C

b.

D

0

�) D

D

10

A;D;�) B

R!

D;�) A! B

Cut

��) A! B

>

red

D

0

�) D

D

10

D;A;�) B

Cut

A;��) B

R!

��) A! B

.

D

0

�) D

D

10

A! B;D;�

0

) A

D

11

B;D;�

0

) C

L!

D;A! B;�

0

) C

Cut

A! B;��

0

) C

>

red
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D

0

�) D

D

10

A! B;D;�

0

) A

Cut

A! B;��

0

) A

D

0

�) D

D

11

D;B;�

0

) C

Cut

B;��

0

) C

L!

A! B;��

0

) C

C. Fork Cut-Redution

6

:

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

D

11

B;�) C

L!

A! B;�) C

Cut

��) C

>

red

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

Cut

��) A

D

00

A;�) B

Cut

�

2

�) B

D

11

B;�) C

Cut

�

2

�

2

) C

C

��) C

A proess of ut-elimination based on the above redutions also requires the e�etive

removal of the ontration and weakening rules, not present in!?G3i. For this purpose

it will suÆe to give a list of loal transformation steps whih allow to build a proedure

for eliminating a single weakening or respetively a single ontration rule as the last rule

appliation S from the bottom of a derivation D, where S 's immediate subderivation is

in fat a !?G3i-derivation, i.e. does not ontain ut nor any of !?G3i

e

's strutural

rules.

Upwards permutation of weakening turns out to be straightforward, while that of

ontration needs another of!?G3i

e

's strutural rules, namely inversion of L! .

D. Weakening Redutions:

(1) Involving an Axiom:

a.

P;�) P

W

D;P;�) P

>

red

P;D;�) P

b.

?;�) A

W

D;?;�) A

>

red

?;D;�) A

6

The name \fork-redution" follows Dragalin [Drag79℄.

6

The name \fork-redution" follows Dragalin [Drag79℄.
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(2) Permuting weakening upwards over logial rules:

.

D

00

A;�) B

R!

�) A! B

W

D;�) A! B

>

red

D

00

A;�) B

W

A;D;�) B

R!

D;�) A! B

d.

D

00

A! B;�) A

D

01

B;�) C

L!

A! B;�) C

W

D;A! B;�) C

>

red

D

00

A! B;�) A

W

A! B;D;�) A

D

01

B;�) C

W

B;D;�) C

L!

A! B;D;�) C

E. Contration Redutions:

(1) Involving an Axiom:

a.

P;D;D;�

0

) P

C

P;D;�

0

) P

>

red

P;D;�

0

) P

b.

P; P;�

0

) P

C

P;�

0

) P

>

red

P;�

0

) P

.

?;D;D;�

0

) A

C

?;D;�

0

) A

>

red

?;D;�

0

) A

d.

?;?;�

0

) A

C

?;�

0

) A

>

red

?;�

0

) A

(2) Permuting ontration upwards over logial rules:

e.

D

00

A;D;D;�

0

) B

R!

D;D;�

0

) A! B

C

D;�

0

) A! B

>

red

D

00

D;D;A;�

0

) B

C

A;D;�

0

) B

R!

D;�

0

) A! B

f. Contrated formula is not prinipal in L! :
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D

00

A! B;D;D;�

0

) A

D

01

B;D;D;�

0

) C

L!

D;D;A! B;�

0

) C

C

D;A! B;�

0

) C

>

red

D

00

D;D;A! B;�

0

) A

C

A! B;D;�

0

) A

D

01

D;D;B;�

0

) C

C

B;D;�

0

) C

L!

A! B;D;�

0

) C

g. Contrated formula is also prinipal in L! :

D

00

A! B;A! B;�) A

D

01

B;A! B;�) C

L!

A! B;A! B;�) C

C

A! B;�) C

>

red

D

00

A! B;A! B;�) A

C

A! B;�) A

D

01

A! B;B;�) C

Inv

B;B;�) C

C

B;�) C

L!

A! B;�) C

Now also redution-steps for the systemati removal of inversion are needed to build a

ut-elimination proedure for !?G3i. It will again suÆe to give suh redution-steps

that permit the removal of a bottom-most appliation of inversion in a derivation that is

otherwise a !?G3i-derivation (i.e. one ontaining neither Cut nor one of !?G3i

e

's

strutural rules). No other strutural rule (let alone a new one) is needed for upwards

permutation of inversion.

F. Inversion Redutions:

(1) Involving an Axiom:

a.

P;A! B;�) P

Inv

B;P;�) P

>

red

P;B;�) P

b.

?; A! B;�) C

Inv

?; B;�) C

>

red

?; B;�) C

(2) Permuting inversion upwards over logial rules:
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.

D

00

C;A! B;�) D

R!

A! B;�) C ! D

Inv

B;�) C ! D

>

red

D

00

C;A! B;�) D

Inv

C;B;�) D

R!

B;�) C ! D

d. Ative formula of inversion is not also prinipal formula of L! :

D

00

C ! D;A! B;�) C

D

01

D;A! B;�) E

L!

A! B;C ! D;�) E

Inv

B;C ! D;�) E

>

red

D

00

A! B;C ! D;�) C

Inv

C ! D;B;�) C

D

01

A! B;D;�) E

Inv

D;B;�) E

L!

C ! D;B;�) E

e. Ative formula of inversion is also prinipal formula of L! :

D

00

A! B;�

0

) A

D

01

B;�

0

) E

L!

A! B;�

0

) E

Inv

B;�

0

) E

>

red

D

01

B;�

0

) E

It will be possible to show (by following and varying Dragalin's proof of strong ut-

elimination for LJ and LK) that the redution-steps from the above lists A{F an be

applied to a given (!?G3i+Cut)-derivation D stepwise in an arbitrary order and at

arbitrary plaes within D or within the meanwhile already transformed derivation (and

where single redutions are only subjet to the restritions of their appliability as apparent

from their desription in A{F), suh that for every suÆiently long sequene of redution

appliations a ut-free form of D is reahed. In short, strong ut-elimination holds for

!?G3i with respet to the set of redutions in the lists A{F.

As also indiated above the redutions in A{F derive from analyzing losely the ut-

elimination proedure impliit in the Cut-Elimination Theorem for the G3-systems in

[TS96℄ (for the speial ase onsidered here of G3[mi℄s' absurdity-ontaining implia-

tive fragment !?G3i) and allow to rebuild and at the same time further speify this

proedure as a stepwise proess of loally applied transformations.

In order to onsider a strong form of a ut-elimination theorem for !?G3i and

for !G3mi w.r.t. above listed (types) of redution rules now a larifying de�nition is

neessary.



CHAPTER 2. STRONG CUT-ELIMINATION 55

De�nition 2.2 (Redution, normal derivations, strong ut-elimination).

Let L be one of the aluli !G3mi

e

or!?G3i

e

.

1. Let D, D

0

be L-derivations.

D L-1-redues to D

0

(in signs: D > D

0

) i� there exists a subderivation D

0

of D suh

that D

0

>

red

D

0

0

by one of the redutions of the list A{F, if L is!?G3i

e

, [of A.a{,

B{C, D.a, D., D.d, E.a., E.b, E.e{g, F.a, F.{e, if L is !G3mi

e

℄, and D

0

is the

result of the replaement of D

0

by D

0

0

in D.

2. A derivation is said to be L-normal i� it does not L-1-redue to any other derivation,

i.e. if no D

0

exists suh that D > D

0

.

3. Strong ut-elimination holds in L w.r.t. redutions of the lists A{F i� for all L-de-

rivations SN

>

(D) holds (this means in the notation

7

of [TS96℄ that D is strongly

normalizing w.r.t. >, i.e. that the redution-tree of D w.r.t. L-1-redution > is

�nite). �

The following theorem is the main result of this setion.

Theorem 2.1 (Strong Cut-Elimination for !G3mi and !?G3i).

Strong ut-elimination holds for the aluli!G3mi and!?G3i with respet to redution

steps in the lists A{F.

The Proof of this theorem is split into several lemmas and will be onluded later in

this setion on page 69.

Lemma 2.1. A derivation D in one of the aluli !G3mi

e

or !?G3i

e

is normal i�

it does neither ontain weakenings, inversions, ontrations nor uts as rule-appliations,

i.e. i� D is a !G3mi-, or respetively, a !?G3i-derivation.

Proof. It is lear that a derivation D whih does not ontain weakenings, inversions, on-

trations or uts as rule-appliations is normal (sine all redutions >

red

of the types

listed in A{F presuppose the existene of at least one weakening-, inversion-, ontration-

or ut-rule in the derivation; therefore D > D

0

for some derivation D

0

is not possible).

On the other hand any derivation D ontaining at least one rule appliation that is a

weakening, an inversion, a ontration or a ut annot be normal:

To see this hoose a top-most suh rule-appliation S and let D

0

be the subderivation

of D with S as its bottom-most rule appliation. Then all rule appliations in immediate

subderivations of D

0

above S are appliations of logial rules of L (i.e. of L!- or R!-

rules).

7

(here slightly expanded with the additional used expliit sign >)
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If S is a weakening it is easy to see from the list D of redutions that at least one of the

redutions >

red

from this list is appliable to the immediate subderivation D

00

of S in D

0

(the redutions in this list have exatly been hosen suh as to exhaust all possible ases).

{ The same an be heked for the lists F and E, if S is an inversion or a ontration.

Hene D

0

>

red

D

0

0

for some D

0

0

in all these ases.

If S is an appliation of ut and D

00

and D

01

are its immediate subderivations in D

then either (1) one of D

00

or D

01

is an axiom, or (2) both of D

00

and D

01

are not axioms

and furthermore are of suh form that the ut-formula of S is not prinipal in at least

one of the two bottom-most rule-appliations in D

00

and respetively in D

01

immediately

above S, or (3) both of D

00

and D

01

are not axioms and the ut-formula of S is prinipal

in both of the bottom-most rule-appliations in D

00

and D

01

. It an easily be heked

that in ase (1) one of the \axiomati"-redutions >

red

from list A is appliable to D

0

,

in ase (2) one of the redutions from the list B of ut-permutation redutions (that deal

with upwards permutation of ut over logial rules), and in ase (3) a fork-redution is

appliable to D

0

. This means that then again D

0

>

red

D

0

0

holds.

Thus whatever rule appliation out of W, Inv, C or Cut the inferene S happens to

be, always D

0

>

red

D

0

0

holds. Hene D > D

0

follows for that derivation D

0

whih is the

result of the replaement of D

0

by D

0

0

in D. Thus D is not normal.

De�nition 2.3 (Redutive Derivations). Let L be either of the aluli !G3mi

e

or

!?G3i

e

.

A derivation D is alled L-redutive, i� it has a �nite redution-tree with repet to the

L-1-redution > (i.e. i� D is strongly normalizing with respet to >, whih we abbreviate

symbolially to SN

>

(D)). The redutive omplexity red(D) of a L-redutive derivation D

is the size of the redution-tree of D with respet to >. �

Some simple properties of redutive derivations are stated in the following two lemmas.

Lemma 2.2. Let D be a derivation that terminates with a basi logial rule S, i.e. D is

of the form

D

0

(D

1

)

S

�) C

and suppose D > D

0

.

Then D

0

terminates with the same rule and is of the form

D

0

0

(D

0

1

)

S

�) C

where for exatly one of the immediate subderivations D

0

;D

1

of S it holds that D

i

> D

0

i

,

while for the other one (if S is an appliation of the two-premise rule L! at all) D

i

� D

0

i

(i = 0; 1) is true.
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Proof. This learly follows sine no >

red

-redution of the types listed in A{F is appliable

to D itself (sine in all these redutions the bottom-most rule has to be di�erent from a

logial rule) and suh redutions an therefore only be appliable to proper subderivations

of D, thus to subderivations of D

0

or D

1

.

Lemma 2.3. Suppose a derivation D terminates with a logial rule S and has immediate

subderivation(s) D

0

(D

0

or D

1

), where D

0

is (D

0

and D

1

are) redutive. Then D is also

redutive.

Proof. By indution on the sum of the sizes of the redution-trees of D

0

and of D

1

with

respet to >, i.e. on the sum red(D

0

) + red(D

1

) using Lemma 2.2 as well as red(D) >

red(D

0

) for all D

0

suh that D > D

0

(whih is obvious from the de�nition of the redutive

omplexity) in the indution step.

De�nition 2.4 (Indutive derivations, indutive omplexity).

Let L be either of the aluli !G3mi

e

or!?G3i

e

.

The lass of L-indutive derivations in L is given by an indutive de�nition with

lauses (1), (2) and (3) below

8

. At the same time a derivation-assoiated number red(D),

the indutive omplexity of D is de�ned in parallel.

(1) Every L-derivation D

0

onsisting only of an axiom of L is L-indutive. The indutive

omplexity of D

0

is then de�ned by ind(D

0

) := 1.

(2) If D

0

terminates with a logial rule S of L and has immediate subdedution(s) D

0

0

(D

0

0

and D

0

1

), then D

0

is L-indutive i� D

0

0

is (D

0

0

and D

0

1

are) L-indutive. The

indutive omplexity of D

0

is then de�ned by ind(D

0

) := ind(D

0

0

) + 1 (respetively

by ind(D

0

) := ind(D

0

0

) + ind(D

0

1

) + 1).

(3) IfD

0

terminates with an appliation of W, C, Inv or Cut andD

0

1

; : : : ;D

0

n

is a omplete

list of L-derivations suh that D

0

> D

0

i

(for i = 1; : : : ; n), then D

0

is L-indutive i�

all D

0

1

; : : : ;D

0

n

are L-indutive. The indutive omplexity of D

0

in this situation is

de�ned by ind(D

0

) := 1 +

P

n

i=1

ind(D

0

i

). �

Sine the further proof of Theorem 2.1 is in essene largely the same for !G3mi

and for !?G3i, the expliit referene to either of this systems will be dropped in the

following; this will also apply to notations like \L-redutive" (L meaning one of these

aluli) and it will then be taitly assumed that all statements given will be valid in eah

of these two ases respetively and aordingly. In ases and at plaes where di�erenes

our this will be stated learly.

8

Dragalin prefers to state a very similar de�nition more exatly than above in the form of a formal

alulus Ind with indutive L-derivations as its \theorems"; it was hoped here that this presentation of

the de�nitions is learer to understand.
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Lemma 2.4. Every indutive derivation is redutive.

Proof. By indution on the size ind(D) of a \proof" of D to be indutive.

If ind(D) = 1, then D is an axiom, whih is a normal and hene also a redutive derivation.

If ind(D) > 1 and D terminates with a logial rule S, then the indutive omplexities

ind(D

0

) and ind(D

1

) of the immediate subderivations of S are by de�nition smaller than

ind(D) and D

0

and D

1

are then indutive by de�nition as well. By the indution hypothesis

it follows that D

0

and D

1

are redutive; Lemma 2.3 now implies that D is redutive.

If ind(D) > 1 and D terminates with a strutural rule, an inversion or a ut and D

1

; : : : ;D

n

is a omplete list of all derivations D

0

suh that D > D

0

, then by De�nition 2.4, (3), all D

i

(i = 1; : : : ; n) are indutive and ind(D

1

) < ind(D) (i = 1; : : : ; n). From this by indution

hypothesis it follows that all D

i

are redutive, whih in turn implies that D is redutive

(namely by lause (2) of Def. 2.3).

Lemma 2.5. Suppose that D terminates with a logial rule and has D

0

and D

1

as its

immediate subderivations. Then D is indutive i� D

0

and D

1

are indutive; moreover it

holds that ind(D

0

); ind(D

1

) < ind(D).

Proof. This is an immediate onsequene of lause 2 in the de�nition of indutiveness in

De�nition 2.4.

Lemma 2.6. If D is indutive and D > D

0

, then D

0

is also indutive and ind(D

0

) <

ind(D).

Proof. By indution on the depth of the derivation D.

If D is an axiom, then D > D

0

is not possible, hene there is nothing to show.

If D is indutive and terminates with a logial rule S, then it is of the form

D

0

(D

1

)

S

�) C

.

By Def. 2.4, (2), D

0

;D

1

are indutive. D > D

0

implies that either D

0

> D

0

0

or D

1

> D

0

1

.

Suppose for one that D

1

> D

0

1

holds. Sine then by de�nition of the indutive omplexity

ind(D

1

) < ind(D) holds, now by the indution hypothesis D

0

1

is implied to be indutive as

well, and also ind(D

1

) < ind(D

0

1

) follows. Then D

0

is of the form

D

0

D

0

1

S

�) C

,

and is again indutive by Def. 2.4, lause (2); moreover then

ind(D

0

) = ind(D

0

) + ind(D

0

1

) + 1 < ind(D

0

) + ind(D

1

) = 1 = ind(D)
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holds. { If D

0

> D

0

0

, the argument is similar.

If D is indutive and terminates with a strutural rule, an inversion or a ut, then the

statement of the lemma is diretly implied by lause (3) of Def. 2.4.

Lemma 2.7. A derivation D is indutive i� every D

0

suh that D > D

0

is indutive.

Proof. \)": Is the main statement of Lemma 2.6.

\(": By indution on the depth of a derivation D:

If D is an axiom, then D is indutive by lause (1) of Def. 2.4.

If D terminates with a logial rule S, then it is of the form

D

0

(D

1

)

S

�) C

.

Suppose now that D

0

is indutive for all D

0

suh that D > D

0

.

Then D

0

is indutive: Suppose D

0

> D

0

0

. Then also D > D

0

with D

0

being the

derivation

D

0

0

(D

1

)

S

�) C

and by assumption D

0

is indutive as well. Thus (sine

D

0

0

has here been arbitrary with D

0

> D

0

0

) it has been shown that D

0

0

indutive holds

for arbitrary D

0

0

suh that D

0

> D

0

0

. Sine the depth of D

0

is smaller than that of

D, the indution hypothesis is appliable and gives that D

0

is indutive. { In a

ompletely analogous way it an be shown that D

1

is also indutive.

Now that D

0

and D

1

have been reognized as being indutive, it follows that D is

indutive as well (beause D terminates with a logial rule, f. Def. 2.4, (2)).

If D terminates with a strutural rule, an inversion or a ut, then the statement \D

is indutive" preisely amounts to the assumption of \("; hene there is nothing

else to show in this ase.

Lemma 2.8. Every normal derivation is indutive.

Proof. A normal derivation D does not ontain weakenings, inversions, ontrations or

uts by Lemma 2.1. Then indutiveness of D follows by an obvious indution using only

the lauses (1) and (2) of De�nition 2.4.

Lemma 2.9. Every subderivation of an indutive derivation is indutive.

Proof. It suÆes to show that immediate subderivations of the bottom-most rule applia-

tion S in an indutive derivation D are indutive themselves (the lemma then follows by

stepwise indution). This will be shown by indution on ind(D).

If ind(D) = 1 then D is an axiom and has only itself as a subderivation.
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If ind(D) > 1 for an indutive derivation D that terminates with a logial rule that has

D

0

as well as possibly also D

1

as immediate subderivations, then the indutiveness of D

0

and D

1

follows from lause (2) in Def. 2.4 of D to be indutive.

If ind(D) > 1 for an indutive derivation D that terminates with a rule S that is a

strutural rule, an inversion or a ut, then D has the form

D

0

(D

1

)

S

�) C

.

To prove that D

0

and D

1

are indutive it suÆes by Lemma 2.7 to show that all derivations

D

0

i

suh that D

i

> D

0

i

are indutive (i = 0; 1). Both ases are dealt with analogously, so we

look for example at D

1

. Suppose D

1

> D

0

1

. Then D > D

0

holds, where D

0

is the derivation

D

0

(D

0

1

)

S

�) C

.

By Lemma 2.6 it an be seen that ind(D

0

) < ind(D). From the indution hypothesis

applied to D

0

it then follows that D

0

1

is indutive. Thus|D

0

1

was arbitrary suh that

D

1

> D

0

1

, and in view of Lemma 2.7 as mentioned above|D

1

is then reognized as being

indutive. { Similarly D

0

an be seen to be indutive.

The following 4 lemmas are the \heart" of the proof of Theorem 2.1 and together will

state that the indutiveness of derivations is preserved under appliations of weakening,

inversion, ontration or ut, whih take plae at the bottom of indutive derivations. That

is, a derivation terminating with one of these 4 rules, that has an indutive subderivation

(in the ase of Cut: : : : that has indutive subderivations), is again indutive. (In the ase

of the logial rules R! and L! this is part of De�nition 2.4.)

Lemma 2.10. Every derivation D obtained by adding an appliation of weakening at the

bottom of an indutive derivation D

0

is indutive.

Proof. It has to be shown that every derivation D of the form

D

0

�) C

W

A;�) C

,

(2.1)

where D

0

is indutive, is indutive.

In view of Lemma 2.7 it suÆes to show for any suh D that

9

8D

0

�

D > D

0

) D

0

is indutive

�

. (2.2)

This will be shown by indution on ind(D

0

).

9

The notation in this and similar statements to ome is to be understood as part of an informal meta-

language dealing with properties of and relations between derivations.
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Let D be of the form (2.1), with D

0

indutive. Assume the indution hypothesis for

D.

Let D

0

be arbitrary suh that D > D

0

. To prove (2.2) it needs to be shown that D

0

is

indutive.

Case 1: D > D

0

is due to a redution >

red

that takes plae within D

0

, i.e. whih does not

involve nor hange the weakening at the bottom of D:

Then D

0

is of the form

D

0

0

�) C

W

A;�) C

with D

0

> D

0

0

. By Lemma 2.6 it follows from D

0

> D

0

0

that ind(D

0

0

) < ind(D

0

)

holds; hene the indution hypothesis is appliable to D

0

, whih gives that D

0

is

indutive.

Case 2: D > D

0

is true beause of D >

red

D

0

, i.e. the redution step D > D

0

takes plae

at the last rule appliation of D and thus involves the bottom-most weakening in D:

The redution D >

red

D

0

must then be a weakening redution from the list D of

types of suh redutions, sine none of the other redutions of the lists A{F has a

weakening at the bottom of the derivation to be redued.

If ind(D

0

) = 1, then D

0

onsists only of an axiom and hene the redution D >

red

D

0

must be one of the types D.a or D.b . But then D

0

is again an axiom, whih is a

normal and hene an indutive derivation; thus D

0

is indutive in these ases.

If ind(D

0

) = 1 and D >

red

D

0

holds beause of and via a redution of one of the types

D. or D.d, then the indutiveness of D

0

follows easily from the indution hypothesis:

For example in the ase of a redution of type D.d the derivation D has the form

D

00

B ! D;�

0

) B

D

01

D;�

0

) C

L!

B ! D;�

0

) C

W

A;B ! D;�

0

) C

.

(2.3)

Sine D

0

(here the subderivation of D terminating with the appliation of L! above

W) is indutive and ends with a logial rule, both D

00

and D

01

are indutive and

ind(D

00

); ind(D

01

) < ind(D

0

) by Lemma 2.5. Then by the indution hypothesis the

derivations
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D

00

B ! D;�

0

) B

W

A;B ! D;�

0

) B

as well as

D

01

D;�

0

) C

W

A;D;�

0

) C

are indutive; from this by De�nition 2.4, (2), it now follows that the derivation D

0

,

whih|sine D > D

0

via a redution of type D.d and D is of form (2.3)|must be

of the form

D

00

B ! D;�

0

) B

W

B ! D;A;�

0

) B

D

01

D;�

0

) C

W

D;A;�

0

) C

L!

B ! D;A;�

0

) C

,

is indutive. { The proof for the remaining ase, in whih D >

red

D

0

is due to a

redution of type D., is easier still.

Sine for arbitrary D

0

suh that D > D

0

the indutiveness of D

0

has now been shown, (2.2)

has been proved. As already said, from this the lemma follows.

Lemma 2.11. Every derivation D terminating with an appliation of inversion to the

end-sequent of an indutive derivation D

0

is itself indutive.

Proof. It has to be established, that every derivation D of the form

D

0

A! B;�) C

Inv

B;�) C

,

(2.4)

where D

0

is indutive, is itself indutive. As before, on the basis of Lemma 2.7 only a

proof of

8D

0

�

D > D

0

) D

0

is indutive

�

for all D as above needs to be given.

This again an be shown by indution on ind(D

0

). The proof proeeds analogously to

that of (2.2) in Lemma 2.10; exept that in ase 2, when D > D

0

is due to D >

red

D

0

, a

redution of type F.e and of the form

D

00

A! B;�

0

) A

D

01

B;�

0

) E

L!

A! B;�

0

) E

Inv

B;�

0

) E

>

red

D

01

B;�

0

) E

(2.5)



CHAPTER 2. STRONG CUT-ELIMINATION 63

has to be onsidered additionally, for it has no ounterpart in the list D of types of

weakening redutions. The indutiveness of D

0

here follows diretly: Firstly, D

0

� D

01

holds (as an be seen from (2.4), (2.5)), and|on the other hand|D

01

is indutive as

a onsequene of Lemma 2.5, beause it is a subderivation of the indutive derivation

D

0

(the immediate subderivation of the bottom-most inversion in D), whih ends with a

logial rule (namely with L!).

Lemma 2.12. Every derivation D obtained from an indutive derivation D

0

by a single

sueeding appliation of ontration is indutive.

Proof. It has to be shown, that every derivation D of the form

D

0

A;A;�) C

C

A;�) C
,

(2.6)

where D

0

is indutive, is indutive. By Lemma 2.7 again only

8D

0

�

D > D

0

) D

0

is indutive

�

(2.7)

has to be proved for all D onsidered here.

This will be shown by indution on

�

jAj+1; ind(D

0

)

�

with respet to the lexiographi

order on N � N , that is to say by indution on the depth of the formula ontrated at the

bottom of D together with a subindution on the indutive omplexity ind(D

0

) of D

0

.

Let D be of the form (2.6), with D

0

indutive. Assume the indution and subindution

hypothesis for D.

Let D

0

be arbitrary suh that D > D

0

. The aim now is to reognize D

0

as an indutive

derivation.

Case 1: D > D

0

is due to a redution >

red

, that takes plae within D

0

, i.e. one, whih

does not involve the ontration at the bottom of D.

Then D

0

is of the form

D

0

0

A;A;�) C

C

A;�) C

with D

0

0

suh that D

0

> D

0

0

. Sine ind(D

0

0

) < ind(D

0

) (by Lemma 2.6) and the

ontration at the bottom of D was unhanged by the redution, the subindution

hypothesis is appliable to D

0

and implies that D

0

is indutive.
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Case 2: D > D

0

is due to D >

red

D

0

, i.e. the redution step D > D

0

takes plae at the

bottom of D.

The redution must then be of the type of a ontration redution from the list E,

sine all other >

red

-redutions in the lists A{F do not apply to derivations ending

with a ontration rule.

If D

0

onsists only of an axiom, then the redution D >

red

D

0

must be of one of the

types E.a{d, whih all redue to axioms, hene to normal and as suh also indutive

derivations. Thus D

0

is indutive in these ases.

If D

0

is not an axiom and D >

red

D

0

takes plae via a redution of one of the types E.e

or E.f, then the indutiveness of D

0

easily follows from the subindution hypothesis

(and in part analogously to the more speial ase treated expliity below), notiing

that the formula(s) ontrated one step above the bottom of D

0

is (are) again A

and that therefore the (syntatial) depth of the ontrated formula(s) in the newly

introdued ontrations has (have) not inreased (whih is a neessary ondition for

applying the subindution hypothesis).

If D

0

is not an axiom and D >

red

D

0

is a redution of the type E.g, then D >

red

D

0

has the form

D

00

B ! D;B ! D;�) B

D

01

D;B ! D;�) C

L!

B ! D;B ! D;�) C

C

B ! D;�) C

>

red

(2.8)

D

00

B ! D;B ! D;�) B

C

B ! D;�) B

D

01

B ! D;D;�) C

Inv

D;D;�) C

C

D;�) C

L!

B ! D;�) C

,

where|to make the orrespondene to (2.6) lear|it holds that A � B ! D and

that D

0

is the immediate subderivation of the bottom-most ontration in the re-

dution to be redued. Here by Lemma 2.5 D

00

and D

01

are indutive (as immedi-

ate subderivations of the derivation D

0

ending with the logial rule L!) and with

ind(D

00

); ind(D

01

) < ind(D

0

).

Then by the subindution hypothesis the derivation

~

D

0

of the form

D

00

B ! D;B ! D;�) B

C

B ! D;�) B



CHAPTER 2. STRONG CUT-ELIMINATION 65

is indutive (as a preondition for using the subindution hypothesis the ontration

formula B ! D herein is the same as the original one A at the bottom of D).

By Lemma 2.11 now the derivation

~

D

01

D

01

B ! D;D;�) C

Inv

D;D;�) C

is also indutive (beause D

01

is indutive); sine jDj = 1 < jB ! Dj+ 1 = jAj+ 1,

the indution hypothesis is appliable for a ontration at the bottom of

~

D

01

and

shows that the derivation

~

D

1

of the form

D

01

B ! D;D;�) C

Inv

D;D;�) C

C

D;�) C

is indutive as well.

Then learly the indutiveness of D

0

, the derivation at the right side of the redution

in (2.8), follows from Def. 2.4, (2), sine it is of the form

~

D

0

~

D

1

L!

B ! D;�) C

and

~

D

0

,

~

D

1

have already been reognized as indutive derivations.

Sine for arbitrary D

0

with D > D

0

it has been shown that D

0

is indutive, (2.7) has been

proved. This ompleted the proof of the lemma.

Lemma 2.13. Every derivation D, whih ends with an appliation of ut, that has indu-

tive immediate subderivations in D, is indutive itself.

Proof. The lemma states that every derivation D of the form

D

0

�) D

D

1

D;�) C

Cut

��) C

,

(2.9)

where D

0

and D

1

are indutive derivations, is indutive.

The proof will use indution on

�

jDj ; ind(D

0

) + ind(D

1

)

�

with respet to the lexio-

graphi order on N

0

� N ; phrased di�erently, this says that the proof will proeed by

indution on the (syntatial) depth jDj of the ut-formula together with a subindution
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on the sum of the indutive omplexities of the immediate subderivations D

0

and D

1

of

the ut.

Let D be a derivation of the form (2.9) with D

0

, D

1

indutive subderivations. In view

of Lemma 2.7 it suÆes to show for arbitrary given D, that is of the form (2.9) and for

whih the indution hypothesis is assumed to be true, that

8D

0

�

D > D

0

) D

0

is indutive

�

(2.10)

holds.

Thus we assume the indution hypothesis for D and we let D

0

be suh that D > D

0

.

It will be shown that D

0

is indutive.

Case 1: The redution >

red

underlying D > D

0

takes plae in either D

0

or D

1

.

Suppose for example D

1

> D

0

1

and D

0

is the result

D

0

�) D

D

0

1

D;�) C

Cut

�;�) C

of replaing D

1

in D by D

0

1

. Then by Lemma 2.6 ind(D

0

1

) < ind(D

1

); hene ind(D

0

)+

ind(D

0

1

) < ind(D

0

) + ind(D

1

). By appeal to the subindution hypothesis it then

follows that D

0

is indutive.

The same argument an be arried out analogously, if D

0

is the result of a >

red

-re-

dution that takes plae within D

0

.

Case 2: The redution D > D

0

is due to a redution involving the ut at the bottom of

D; this means that D > D

0

is a onsequene of D >

red

D

0

.

The redution D >

red

D

0

must then be one of the types A{C, sine >

red

-redutions

of the types D{F are not appliable to a derivation that has a ut as its bottom-most

rule appliation.

The derivation D

0

is diretly reognizable to be indutive in the ases, where D >

red

D

0

holds beause of an axiomati ut-redution of type A.{f, sine then D

0

onsists

only of an axiom (whih|as a normal derivation|is indutive by De�nition 2.4,

(1)).

In ase D >

red

D

0

holds beause of an axiomati ut-redution of one of the types A.a

or A.b, D

0

is formed from D by appliation of one or more weakenings at the bottom

of either one of the immediate indutive subderivations of D; sine by Lemma 2.10

the additional appliation of weakening at the bottom of an indutive derivation

again leads to an indutive derivation, D

0

an be seen to be indutive by one or
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more appeals (just as many as there are weakenings at the bottom of D

0

below D

0

or D

1

respetively) to Lemma 2.10.

The ase of an axiomati redution D >

red

D

0

of type A.g is treated similarly to

the ase of a redution of type B.a: In this latter ase one noties �rstly, that|with

the notations of formulas as in the list B.b above|the subderivations D

00

and D

01

of D are indutive (sine D

0

is indutive and therefore De�nition 2.4, (2) an be

used); furthermore ind(D

01

) < ind(D

0

) (again by De�nition De�nition 2.4). Thus

the subindution hypothesis an be applied to the derivation

D

01

B;�

0

) D

D

1

D;�) C

Cut

B;�

0

�) C
,

(2.11)

sine D is again the ut-formula of the original ut at the bottom of D, but|beause

of ind(D

01

) + ind(D

1

) < ind(D

0

) + ind(D

1

)|the sum of the indutive omplexities

of this ut is now lower than that in the original ut at the bottom of D.

Sine D

00

is indutive, so is

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

(by a (�nite) number of appeals to Lemma 2.10). Thus it then follows from this and

the indutiveness of the derivation in (2.11) that D

0

, whih here has the form

D

00

A! B;�

0

) A

W

A! B;�

0

�) A

D

01

B;�

0

) D

D

1

D;�) C

Cut

B;�

0

�) C

L!

A! B;�

0

�) C

,

is indutive.

The ases, in whih D >

red

D

0

is due to a redution of one of the types B.b or B.,

an be treated quite analogously and even easier.

In the ase, where D >

red

D

0

is due to a fork ut-redution of the type in list C

above, D is of the form

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

D

11

B;�) C

L!

A! B;�) C

Cut

��) C

.
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By appeals to De�nition 2.4, (2), D

00

, D

01

and D

11

are seen to be indutive; fur-

thermore ind(D

10

) < ind(D

1

) holds. Thus ind(D

0

) + ind(D

10

) < ind(D

0

) + ind(D

1

)

holds, and hene the subindution hypothesis an be applied to the derivation

~

D,

whih is of the form

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

Cut

��) A

,

to see that this derivation is indutive. Then two onseutive uses of the indution

hypothesis make lear that also the derivation

~

~

D

~

D

��) A

D

00

A;�) B

Cut

�

2

�) B

D

11

B;�) C

Cut

�

2

�

2

) C

is indutive (sine jAj ; jBj < jA! Bj holds, the depths of the ut-formulas in the

two uts displayed within

~

~

D above are both smaller than the depth of the ut-

formula A! B at the bottom of D, whih justi�es the appliability of the indution

hypothesis in both ases). A number of onseutive appliations of Lemma 2.12 (as

many as there are formulas in the multisets � and �) then give that the derivation

D

0

�

~

~

D

�

2

;�

2

) C

W

��) C

, whih is also idential to

D

00

A;�) B

R!

�) A! B

D

10

A! B;�) A

Cut

��) A

D

00

A;�) B

Cut

�

2

�) B

D

11

B;�) C

Cut

�

2

�

2

) C

C

��) C

,

is indutive.

Thus in all ases of redutions D >

red

D

0

the indutiveness of D implies that one of

D

0

.

Now (2.10) has been show, whih onludes the proof of the lemma.
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The Lemmas 2.10{2.13 now allow to onlude the Proof of Theorem 2.1.

Theorem 2.2. Every derivation is redutive.

Proof. It follows by an immediate indution on the depth of a derivation with the help of

Lemma 2.5 and the Lemmas 2.10{2.13, that every derivation is indutive. Lemma 3.2.4

then implies the theorem.

Proof. [Proof of Theorem 2.1℄ This is now immediate from Theorem 2.2 and the de�nition

of \strong ut-elimination holds w.r.t. ut-elimination steps in the lists A{F" (appropriate

for either of!G3mi or!?G3i).

2.2 A more general version of a Strong Cut-Elimination

Theorem for !G3mi and !?G3i

It has been pointed out before that the redution rules in A{F ome from a nearer analysis

of the Cut-Elimination Theorem for the G3-systems in [TS96℄ and of the proess impliit

in the proof of this theorem. A proof for ut-elimination in G3[mi℄, whih proeeds by

onsidering topmost ourrenes of uts with maximal utrank

10

and by replaing sub-

derivations ending with suh uts by derivations of either lower utrank or by derivations

ontaining uts of lower utrank together with one ut of again maximal utrank, but now

of smaller level

11

(all replaements involved in this proess are loally applied transforma-

tions, if for one the neessary use of weakening- and ontration-operations is put aside,

operations, that in the G3-aluli have global e�ets on the subderivations to whih they

are applied.)

Considering this basis for the ut-elimination redutions for !?G3i as presented

above, it ould be argued that the strong ut-elimination result Theorem 2.1, whih refers

to the redution-rules in the lists A{F is not really a very strong statement, beause these

redution rules are atually too losely onneted to the usual top-down ut-elimination

proedure and do permit to little freedom in hoosing appropriate next redution steps

for a possibly more eÆient deterministi or non-deterministi alternative proedure. The

redutions in A{F do not allow permutations of strutural rules and uts with eah other,

and so any ut-elimination proedure for!?G3i that operates aording to these rules

annot really gain muh eÆieny over the usual proedure: This is due to the fat that e.g.

most work towards the ompletion of the elimination of a ertain ut somewhere deeper

down in a derivation D (in the sense that suh an elimination|often onsisting of the

appliation of lemmas transforming whole subderivations|is treated as a single step in

10

In [TS96℄ the utrank of an appliation of ut is de�ned as the depth of the ut-formula plus one.

11

The level of an appliation S of ut is in [TS96℄ de�ned as the sum of the depths of the two immediate

subderivations of S.
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the ut-elimination proof for G3[mi℄ in [TS96℄) is likely to be often bloked from getting

done in an upwards diretion by unredued uts or by \residuals" of previous redutions

higher up in D (by \residuals" still unremoved newly introdued uts or strutural rules of

!?G3i

e

are meant); this is so beause redutions A{F do not allow shifts or movements

of strutural rules or of ut over eah other at all.

Under these irumstanes it an be thought that the appliation of redutions to a

given derivation D in an arbitrary and not top-down restrited order does not really make

too muh sense as atual progress with the elimination of uts or strutural rules deeper

down in D more often than not will depend on the one with eliminations above it in D

(so that a sequential top-down treatment of redutions might not be too muh worse in

its omputational omplexity).

But sine some redutions in A{F lead to the removal of whole subderivations (A.,

Ad. and notably Fe.) there might nevertheless be some substantial gain thinkable w.r.t.

the omplexity-behaviour of a more general ut-elimination proedure operating on the

basis of the redutions A{F. Still, this gain is possibly limited and more ould be ahieved

by the introdution of redutions for the (limited) permutation of strutural rules and ut.

In the following additional rules, listed in G below, for restrited permutation of

!?G3i

e

's strutural rules and ut are adopted as the basis for the formulation of a

strong ut-elimination-theorem for !G3mi and for !?G3i. Underlying the hoie of

these rules is the stipulation that upwards permutation

12

of weakening shall possess high-

est priority, to be followed in priority by upwards permutation of inversion, ontration

and ut (in this order); this stipulation seems to be suggested by the way usual ut-

elimination, using the rules A{F, is atually formulated as a deterministi proedure, yet

some variations of it (with perhaps even better behavior) are still oneivable. It follows

that permutations of weakening and inversion upwards over ontration and ut will be

permitted, but not vie versa (as otherwise in�nite redution sequenes learly are possi-

ble); ontration will be allowed to permute upwards over ut in some ases and whenever

this is possible, but this permutation is not possible in general.

G. Permutation-Redutions for Strutural Rules:

(1) Weakening over inversion, ontration and ut:

a.

D

00

A! B;�) C

Inv

B;�) C

W

D;B;�) C

>

red

D

00

A! B;�) C

W

A! B;D;�) C

Inv

B;D;�) C

12

([Vest99℄ uses the very visual expression \upwards propagation" in this respet)
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b.

D

00

A;A;�) C

C

A;�) C

W

B;A;�) C

>

red

D

00

A;A;�) C

W

A;A;B;�) C

C

A;B;�) C

.

D

00

�) D

D

01

D;�) C

Cut

��) C

W

A;��) C

>

red

D

00

�) D

W

A;�) D

D

1

D;�) C

Cut

A;��) C

(2) Inversion over ontration and ut:

d.

D

00

D;D;A! B;�) C

C

A! B;D;�) C

Inv

B;��) C

>

red

D

00

A! B;D;D;�) C

Inv

D;D;B;�) C

C

D;B;�) C

e.

D

00

A! B;A! B;�) C

C

A! B;�) C

Inv

B;�) C

>

red

D

00

A! B;A! B;�) C

Inv

B;A! B;�) C

Inv

B;B;�) C

C

B;�) C

f.

D

00

A! B;�

0

) D

D

01

D;�) C

Cut

A! B;�

0

�) C

Inv

B;�

0

�) C

>

red

D

00

A! B;�

0

) D

Inv

B;�

0

) D

D

01

D;�) C

Cut

B;�

0

�) C

g. Similarly and symmetrially to ase f, if A ! B ours in � in the onlusion

of D

01

in the derivation to be redued in ase f (but not in the anteedent

� � A! B;�

0

of the onlusion of D

00

there).

(3) Contration over ut:
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h.

D

00

A;A;�

0

) D

D

01

D;�) C

Cut

A;A;�

0

) C

C

A;A;�

1

) C

C

.

.

.

C

A;A;�

n

) C

C

A;�

n

) C

>

red

D

00

A;A;�

0

) D

C

A;�

0

) D

D

01

D;�) C

Cut

A;�

0

) C

C

A;�

1

) C

C

.

.

.

C

A;�

n

) C

where �

0

� �

0

� and the �rst n ontrations below ut annot be permuted

upwards over ut, i.e. their respetive prinipal formulas our just one in �

0

and � respetively.

i. Similarly and symmetrially on the right as in ase h, if A ours twie in � in

the derivation to be redued in ase h.

Theorem 2.3. (Strong Cut-Elimination for!G3mi and!?G3i, more general

version)

Strong ut-elimination holds for the aluli !G3mi and !?G3i with respet to the

redution steps in the lists A{G.

The proof of this theorem resisted our [my, C.G.℄ attempts to give it in the framework

of Dragalin's onepts and notations in his proof for strong ut-elimination for LK and

LJ (these onepts and notations have been used above in the proof of Theorem 2.1). We

an therefore at present give only a sketh of a very ad ho version of the proof.

Proof. [Sketh of the Proof℄ The use of the notation D > D

0

for two (!G3mi

e

+Cut)- or

(!?G3i

e

+Cut)-derivations D and D

0

will here be understood as extending the meaning

of \D redues to D

0

" as de�ned in De�nition 2.2, (1), by inluding also the new redution

rules of the list G.

(1) Strong normalization holds for every derivation D in the systems (!G3mi

e

+Cut)

or in (!?G3i

e

+Cut) with respet to the redutions D{G (i.e. w.r.t. all rules in
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A{G but the ut-redutions A{C): This an be proved in a straightforward way by

using and slightly adapting the onepts of the proof for Theorem 2.1.

Furthermore it an be easily heked, that appliations of one of the redutions D{G

do not inrease the logial size (= the number of appliations of logial rules) of a

derivation D, nor the logial depth, the logial level and the rank of a partiular

appliation S of a ut in D (the logial depth kD

0

k of a derivation D

0

is de�ned

similarly to the (usual) depth of D

0

, but by ounting only rule-appliations of logial

rules are; the logial level ll(S) of an appliation S of ut in a derivation D

0

is de�ned

as the sum of the logial depths of the two immediate subderivations of S in D

0

).

(2) The maximum number of ut-redution steps from A{C for ompletely eliminating

a ut S at the same time with all its residuals ouring during a redution-sequene

� � D > D

1

> D

2

> D

3

> : : : starting from a derivation D, whih does only ontain

the ut S, an be alulated from the logial level ll(S) and the rank rank(S) of S

(= the depth of the ut-formula of S plus 1) alone. Let this maximum number of

ut-redution steps be bounded by a funtion 

1

(ll(S); rank(S)). The logial depth of

every resulting ut-free derivation D

0

may|in omparison with D|have inreased

(due to appliations of ut-redutions of the type B.), but it an still be bounded

by a funtion l

1

(kDk; ll(S); rank(S)).

(3) Considering a (!G3mi

e

+Cut)- or (!?G3i

e

+Cut)-derivation D ontaining ex-

atly two uts S

1

and S

2

, it is possible|sine the redutions A{G do not permit the

permutation of two appliations of the ut rule over the other|to �nd a bound for

the maximal number of steps aused by ut-redutions in every redution sequene

� � D > D

1

> D

2

> D

3

> : : : starting from D. This an be ahieved by �rst looking

at the steps neessary for the removal of S

1

and S

2

separately, if (a) S

1

and S

2

our

in subderivations of D apart from eah other, or suessively, if (b) an immediate

subderivation of S

1

ontains S

2

or () the opposite is true.

But for example in situation (b) it has to be taken into aount, that (i) the om-

plete removal of S

1

�rst, together with all its possible residuals, before dealing

with S

2

may inrease inrease the logial level of S

2

in the resulting derivation

to d+ l

1

(d; ll(S

1

); rank(S

1

)), where d is the logial depth of S

2

in D; and furthermore

that (ii) the redution of S

2

and or of any residual of S

2

may|if the redution hap-

pens to be a fork ut-redution|almost double the the amount of steps that have

previously been neessary for the omplete elimination of S

1

alone.

Still, and over all, the amount of ut-elimination steps in � stays �nite and an be

bounded by a funtion 

2

(ll(S

2

);max(rank(S

1

) + rank(S

2

))), where S

2

is here taken

to be the bottom-most of the uts S

1

and S

2

. The logial depth of every resulting
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ut-free derivation D

0

may then also be bounded by a funtion

l

2

(kDk; ll(S

2

);max(rank(S

1

) + rank(S

2

))) .

(4) Carrying on in this way step by step it is then possible to �nd a bound 

n

(kDk; r)

for the maximum number of steps due to ut-elimination redutions of A{C in an

arbitrary redution sequene � � D > D

1

> D

2

> D

3

> : : : starting with D, where

n is the number of appliations of ut in D, and r is the utrank of D, i.e the maximal

rank of all appliations of ut in D.

At the same time a bound l

n

(kDk; l; r)), where l means the maximum logial level

of all uts in D, for the logial depth of every resulting ut-free derivation D

0

an be

given as well.

(5) Strong normalization for a (!G3mi

e

+Cut)- or (!?G3i

e

+Cut)-derivation D with

respet to the rules A{G then follows from (1) and (4). This is true, sine in an

arbitrarily hosen redution sequene � � D > D

1

> D

2

> D

3

> : : : the number

of onseutive steps aused by redutions of type E{G always has to be �nite (due

to (1)) and therefore after every suÆiently long subpart of � onsisting only of

redutions of type D{G a ut-redution has to follow. But then by (5) also the

number of redutions in �, that are due to ut-redutions of A{C, is bounded as

well. As a onsequene � must be of �nite length.
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Appendix A: Handout at the

defense on 15th Otober 1999

Example underlying a \Computational Anomaly" of distint

derivations D

n

in!G3mi, that all redue to the same deriva-

tion D

0

by ut-elimination

13

Let for n 2 N the derivation D

n

be

D

00

A;B;C;C ! C ) B

R!

B;C;C ! C ) A! B

A! B;A;C;C ! C ) A

D

(n)

11

B;A;C;C ! C ) C

L!

A! B;A;C;C ! C ) C

Cut

A;B;C;C ! C ) C

,

where A;B and C are atomi formulas and D

00

is the derivation

C ! C;C;A;B ) C C;C;A;B ) B

L!

C ! C;C;A;B ) B

and

14

D

(n)

11

� D

(n)

[A;B℄ with D

(n)

the derivation

15

13

Here (1) ut-elimination is performed similar as in [TS96℄ for the systems G3[mi℄, but as a stepwise

proess of loally applied transformations, and (2) a multiple-ontration rule is used for doing this.

14

(

~

D[E

1

; : : : ; E

n

℄ for formulas E

1

; : : : ; E

n

and a derivation

~

D means the derivation that results from the

addition of the formulas E

1

; : : : ; E

n

to the anteedent of every sequent in

~

D.)

15

The derivations D

(n)

, if P were read for C, orrespond (in the ase of the untyped system !G3mi

here it is better to say: relate) to the derivation-term {

n

used by Vestergaard, whih in the setting of the

system G

+

is de�ned on p. 28; more preisely, �

0

(D

{

n

) equals D

(n)

, if P in �

0

(D

{

n

) is exhanged by C

and D

{

n

is the G

+

0

-derivation orresponding to {

n

.
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C ! C;C ) C C;C ) C

L!

C ! C;C ) C C;C ) C

L!

.

.

.

C ! C;C ) C C;C ) C

L!

C ! C;C ) C

(with n appliations of L!). The �rst ut-elimination step in D

n

is a fork-redution step:

D

00

A;B;C;C ! C ) B

R!

B;C;C ! C ) A! B A! B;A;C;C ! C ) A

Cut

A;B;C

2

; (C ! C)

2

) A

D

00

A;B;C;C ! C ) B

Cut

A;B

2

; C

3

; (C ! C)

3

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C

.

Then an axiomati ut-redution step follows:

A;B;C

2

; (C ! C)

2

) A

C ! C;C;A;B ) C C;C;A;B ) B

L!

C ! C;C;A;B ) B

Cut

A;B

2

; C

3

; (C ! C)

3

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C

.

Next a permutation-redution step of the topmost ut over L!, followed by two axiomati

ut-redutions yield:

C ! C; (C ! C)

2

; C

3

; A;B

2

) C C;C

3

; (C ! C)

2

; A;B

2

) B

L!

A;B

2

; C

3

; (C ! C)

3

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C
.

The following derivation is the result of a permutation-step of Cut over L!:

C ! C; (C ! C)

2

; C

3

; A;B

2

) C

W

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

C;C

3

; (C ! C)

2

; A;B

2

) B

D

(n)

11

B;A;C;C ! C ) C

Cut

C;C

4

; (C ! C)

3

; A

2

; B

2

) C

L!

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

A;B;C

2

; (C ! C)

2

) C
.
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We then reah the following ut-free derivation through the appliation of an axiomati

ut-redution (and by an axiomati multiple-weakening redution):

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

D

(n)

[A

2

; B

2

; C

4

; (C ! C)

2

℄

C;C ! C;C

4

; (C ! C)

2

; A

2

; B

2

) C

L!

A

2

; B

2

; C

4

; (C ! C)

4

) C

C

fA;B;C

2

;(C!C)

2

g

A;B;C

2

; (C ! C)

2

) C

.

If now all ontrations are permuted upwards over L! simultaneously (in the analogous

sense as on derivation-terms multiple-ontration is permuted upwards in a G

+

-derivation

aording to the ontration rewrite-rule E., seond ase), inversion has to be used for

the treatment of the left premise. This leads to:

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

C

fA;B;C

2

;(C!C)

2

g

C ! C;C ! C;C

2

; A;B ) C

D

(n)

[A

2

; B

2

; C

4

; (C ! C)

2

℄

C ! C;C;C

4

; (C ! C)

2

; A

2

; B

2

) C

Inv

C!C;C

C

6

; (C ! C)

2

; A

2

; B

2

) C

C

fA;B;C

3

;C!Cg

C;C ! C;C

2

; A;B ) C

L!

(C ! C)

2

; C

2

; A;B ) C

If now inversion is permuted upwards, almost all of D

(n)

[A

2

; B

2

; C

4

; (C ! C)

2

℄ gets lost

(with the exeption of the axiom in the bottom-most appliation of L! in it):

C ! C; (C ! C)

3

; C

4

; A

2

; B

2

) C

C

fA;B;C

2

;(C!C)

2

g

C ! C;C ! C;C

2

; A;B ) C

C;C

5

; (C ! C)

2

; A

2

; B

2

) C

C

fA;B;C

3

;C!Cg

C;C ! C;C

2

; A;B ) C

L!

(C ! C)

2

; C

2

; A;B ) C

Two axiomati multiple-ontration redutions lead to:

C ! C;C ! C;C

2

; A;B ) C C;C ! C;C

2

; A;B ) C

L!

(C ! C)

2

; C

2

; A;B ) C

.

This result D

0

of the ut-elimination proedure performed at D

n

is now learly independent

of n.

For all n 2 N derivations

�

D

n

(given on page 32 in the form of orresponding G

+

-

derivation-terms

�

t

n

) paralleling D

n

in the typed system G

+

,

�

D

n

orrespond to the natural-
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dedution derivation �

0

(

�

D

n

)

(C ! C)

s

(C ! C)

s

(C ! C)

s

C

z

!E

C

!E

C

.

.

.

C

!E

C

(with n appliations of !E), whereas the result

�

D

0

(relating to D

0

) of the (usual) ut-

elimination-proedure applied to

�

D

n

(largely paralleling in G

+

the above redutions in

untyped!G3mi) orresponds just to the natural-dedution image �

0

(

�

D

0

) of trivial shape

C

z

:

This is what onstitutes an \anomaly" here.

The drawbak at this my example is, that if ontrations were not permuted upwards in

the gathered form of a multiple-ontration but as single ontrations, the example would

not result in an \anomaly". Although it aounts for an a bit more areful formulation of

one redution-rule (for redutions on derivation-terms this is the ontration rewrite-rule

E.), the example does not over the most general possible situation.

I do think that with a bit more e�ort an \anomaly" ould also be onstruted if the

typed system allowed only single-ontrations (the proof of ut-elimination is then still

possible in the way I gave it). But I have no example for this most general situation, yet.
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