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Chapter 1

A “Computational Anomaly”
discovered by Vestergaard
in a typed —G3[mi]-System!

In [TS96] the Gentzen-systems G3[mic] (for minimal, intuitionistic and classical logic)
are presented as a formulation of sequent-calculi (proof-systems that were developed by
G. Gentzen) with the andecedents and succedents of sequents consisting of multisets of
formulas, where the structural rules weakening and contraction do not appear as explicit
rules of the systems. In relation to the G3-systems these rules occur only as derived rules,
that is, as lemmas about derivability. This contrasts with the basic Gentzen-systems
G1l[mic] and partly also with the systems G2[mic] defined in [T'S96]: Whereas in the
G1-systems (that remain closest to Gentzen'’s original sequent-calculi LK and L.J) explicit
weakening and contraction rules are part of the systems, weakening does not longer appear
as a derivation rule in the G2-systems (it has instead been absorbed into the other rules
and become a derived rule), but contraction is still present there as a formal rule.

The designation G3 for Gentzen-systems without explicit weakening and contraction
rules originated with S.C. Kleene, who in [K152] presented a sequent-calculus under this
name. The formulation of the G3-systems in [T'S96] owes much—at least in the intuition-
istic case—to a Gentzen-system GHPC for intuitionistic logic given by A.G. Dragalin in
[Drag79], in which also the succedents of sequents are permitted to consist of mulitsets of

'T do want to thank Prof. A.S. Troelstra for his suggestion to investigate the two different, but related
topics in proof-theory treated in this thesis, for his careful reading of my drafts and for many ideas about
how to improve both the mathematical precision and then also the style of expression and exposition; I
do think that I have learned much through this from him. Prof. Troelstra has also found many errors and
mistypes for me, for which I feel very thankful. (If other misprints or more severe errors have nevertheless
slipped through or there appear shortcomings in precision and the exposition-style, this only shows that I
have been negligent in watching my responsibilities. I do want to learn to do better in the future.)
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formulas. In GHPC more than one formula may occur in the succedent of a sequent (but
subject to restrictions implicit in the specific formulation of the rules). This has certain
advantages for the exposition of a proof for cut-elimination in GHPC, but on the other
hand it is an uncommon formulation of a sequent-calculus for intuitionistic logic. For this
reason the system was reformulated in the G3[mi]-systems with exactly one formula in
the succedent of every sequent (as in Gentzen’s L.J and Kleene’s G3) by A.S. Troelstra in
[TS96].

The fact that the G3-systems do not contain structural derivation rules has noteworthy
effects on the structure of possible cut-elimination procedures in these systems. In proofs
of cut-elimination for the G1-systems and in Gentzen’s original proof for cut-elimination
in LK and L.J the local transformation steps applied to a derivation, that are needed for
removing a cut or for reducing the depth of at least one subderivation of a currently treated
cut, depend heavily on the use of the structural rules weakening and contraction?. This
is no longer in the same way possible in proofs for cut-elimination for the G3-systems.
Here two ways of carrying out such a proof are practicable: Either (1) in situations, where
a weakening or a contraction is necessary to link a derivation D to other derivations by
rules of the system or by cut, certain lemmas have to be relied on, that state, given
D is a cutfree derivation, another derivation D’ can effectively be found, in which the
corresponding weakening or contraction has (in relation to D) already taken place. Or
(2), explicit weakening and contraction rules are again permitted to occur temporarily
during the course of performing cut-elimination in a derivation for the purpose of making
some of the involved local transformation steps possible, but have to be removed later
separately (and also regularly as part of the entire procedure at many occasions).

To refer to these matters more precisely, the definition of the G3[mi]-systems in the
special case of their implicative fragments will be repeated here as well as the most im-
portant properties of these calculi (that they still admit weakening and contraction to be
derived rules). In the case of the implicative fragments the most important particularity
of the G3-systems is the asymmetric formulation of the L—-rule.

Definition 1.1 (G3[mi]’s implicative fragments —-G3m and —G3i). The formal
system —G3i , the implicative fragment of the system G3i in [TS96], is defined by the
following axioms and rules:

Ax P,T'= P (P atomic)

Al'= B
R— ' A—-B
A—->BTIl=A4 B, I'=C
L= A>BI=C

%In the case of LK and L.J also “exchange” is necessary, since Gentzen considered the antecedents (as
well as the succedents in the classical case) to be lists of formulas instead of sets or mulitsets.
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The implicative fragment —-G3m of G3m is the same system as —-G3i; -G3m and
—G3i will here together be referred to as —G3mi.

The cut-rule Cut relative to these systems for minimal and intuitionistic logic takes
on the shape

I'=D DI=C

Cut = C
Whenever —G3mi will be considered to be enriched by the additional presence of Cut,
the extended system will be denoted as either of —G3mi+Cut, respectively. X

The system —G3mi does not contain weakening and contraction rules

r=07¢ AAT= C

WAT=S ¢ AiT= 0,

and C

but has instead been formulated in such a manner, that these rules are derived or admis-
sible rules of the systems. This is the content of the following lemma.

Lemma 1.1. Suppose that the notation =, symbolically designates the notion of deriv-
ability in —G3mi by a deduction of depth < n. Then for all A,C,T', A it holds:

(i) If Fo T = C , then b, TA = C.
(ii) If by A, AT = C | thent, AT = C.

The proof of (i) can be done by an immediate induction on n; (ii) can also be shown in
this way, but there is one non-obvious case: This occurs, if the formula to be contracted
happens to be also the principal formula of an application of L— in the last step, i.e. in
the following situation:

DO Dl

tn B—D,B— D,I'= B Fn D,B — D, I' = C L (1.1)
o1 B—=D,B— DT =C —

The induction hypothesis is applicable to +, B — D, B — D,I' = B (and gives -, B —
D,T = B), but not directly to -, D,B — D,I' = C. For the purpose of treating this
premise of L— in (1.1) accordingly an additional lemma (right-sided inversion with respect
to L—) is usually applied first.

Lemma 1.2 (Inversion lemma with respect to the rule L—). For —G3mi the fol-
lowing holds for all A, B,C,T" in the notation of the preceding lemma:

Ift-, A— B,T'= C, then also -, B,I' = C.

Proof. By a straightforward induction on n. O
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The argument in the case (1.1) for the induction-step in the proof of (ii) in Lemma 1.1
can now be carried through: By an application of Lemma 1.2 to the right premise of L—
n(1.1) +, D,B - D,I" = C also +, D,D,T" = C follows. The induction hypothesis
can then be applied to this latter statement and implies -, D,I' = C. Together with the
already established statement -, B — D,I’ = C the desired result

rwB—=DT=B F+,DT=C
o1 B— D,I = C

L—

for the completion of the induction step follows.
Lemma 1.2 can also be interpreted as stating that the rule

A—-BTI'=C I
BIL=C |

called inversion of L— (with respect to its right premise), is an admissible rule in the
system G3[mi].

The proof of cut-elimination for the G3-systems in [TS96] (there Theorem 4.1.2, p.77)
relies in some cases of local transformation-steps on the possibility to perform contractions
in a given derivation effectively; that is, a form of Lemma 1.1 is applied in some situations?.
Thereby for the G3[mi]-systems also an inversion-lemma with respect to the rule L—, a
version for the system considered comparable to its special case Lemma 1.2 for —G3mi,
comes in implicitly, since the proof of the fact that contraction is a derived rule in —+G3mi,
depends on such an inversion-lemma (as described above). The proof of a cut-elimination
theorem for —G3mi is actually a special case of the proof of cut-elimination for G3[mi]
in [TS96], in which Lemma 1.1 (which relies on Lemma 1.2 implicitly) can be used to
perform weakenings and contractions to given derivations.

There is a very natural (many-to-one, but surjective) map from derivations in an
intuitionistic (or minimal) sequent calculus to natural-deduction derivations, which was
first described and utilized in the context of his discovery of “normalization” for natural-
deduction derivations by D. Prawitz in [Pra65]. The relation between sequent- and natural-
deduction calculi under such a map and the exact connection between the concepts of cut-
elimination and normalization in these systems was first deeply investigated in a paper
[ZuT4] of J. Zucker.

He found out, that for a suitable L.J-near sequent-calculus S and relative to a surjective
map ¢ from S-derivations to natural-deduction derivations (essentially a map like the
one used by Prawitz) cut-elimination steps in a S-derivation D and normalization-steps
on ®(D) can simulate each other (with respect to the connection between these formal
systems as given by @), that is, (1) if for a S-derivation D a derivation D’ is the result of

3(A form of this lemma that is true for the considered G3-system (and not just for the implicative
fragments —G3i, —-G3m of the systems G3[mi] as Lemma 1.1).)
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a cut-elimination step applied to D, then ®(D’) can be the result of a finite sequence of
normalization-steps performed in ®(D), and (2) if for a S-derivation D a derivation D’ is
the result of a normalization-step performed in ®(D), then there exists a S-derivation D’
such that D’ is the result of a finite number of cut-elimination steps carried out starting
from D and ®(D') = D'. (Zucker showed this result relative to a completely specified
list of cut-elimination steps (the normalization-steps instead had already been given in
the form of a—almost entirely—fixed list by Prawitz), but for the negative fragment S~
of his sequent-calculus § only. By work of G. Pottinger in [Pott77] this result could be
generalized to cover a Gentzen-system for full intuitionistic logic (and even Zucker’s system
S) by an appropriate choice of the possible cut-elimination steps.)

R. Vestergaard in [Vest99] is interested in whether the execution of cut-elimination
steps to a derivation D in the system —G3mi (according to a usually applied procedure
in these systems) can interfere with the “computational meaning” of D in an irregular
manner. In a typed —G3mi-like calculus he gives an example of a sequence {D,, },en
of pairwisely different derivations, such that every D,, (for n € N) is taken to the same
derivation D’ by a cut-elimination procedure very near to the usual one for the untyped
system —G3mi, but where all derivations D,, have different “meanings”. If these “compu-
tational meanings” were interpreted as the natural-deduction images ®(D,,) of D,, under
a map @ similar to the one implicitly given by Prawitz, this result would suggest that
the very smooth relationship between normalization on natural-deduction derivations and
cut-elimination on Gentzen-system derivations—as it exists in the above sketched form
with respect to Zucker’s L.J-near system S—could be seriously disturbed for the G3[mi]-
systems.

1.1 A typed —»G3m-system GT

R. Vestergaard in [Vest99] considers a typed system of the implicative fragment —G3m
of G3m, a system, that will be referred to here as g;‘ (in notational similarity to the
system G, that will here be presented and used instead), where (1) the type-expressions
t assigned to a formula C in the succedent of a conclusion-sequent xy : Ay,... 2, : A, =
t: C (n € N) of a derivation D describe a corresponding natural-deduction derivation D*
with the conclusion C from the marked assumption-classes [4;]%1, ... | [A,]"" very directly,
and (2) cut-elimination in this typed system can still be done as suggested by the proof
of the cut-elimination theorem for the untyped G3[mi]-systems in [TS96]. Vestergaard
is interested in the “computational meaning” of derivations in the G3[mi]-systems (one
could understand the related natural-deduction derivation here as this “meaning”) and in
how the usual cut-elimination procedure for these systems interferes with this meaning.
His system is therefore tailor-made for the purpose of describing cut-elimination on a
given derivation as a stepwise process of locally applied transformations (a process that
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Vestergaard later describes as one that can be executed according to rules of an appropriate
rewrite-rule system). Since—as indicated earlier—the necessity of performing weakenings,
contractions and applications of an inversion-lemma often arises during the course of a cut-
elimination process for a derivation in a —G3mi-system, explicit rules for such operations
had to be devised and taken into the system. These are explicit additional rules that on
the one hand will allow to represent cut-elimination as a sequence of local transition-steps,
but that on the other hand must be treated separately and ultimately have to be removed
completely to arrive at a cut-free derivation.

Vestergaard’s system g;r is very close to the following system G¥, that will be used
here instead.

Definition 1.2 (The derivation-term annotated systems g+,g;f). The formal sys-
tem GT, a typed version of G3m ’s or G3i ’s implicative fragment —G3mi is defined as
follows: The antecedent of a sequent in this system is a multiset of variables of formula-
type (written as variable-annoted formulas), the succedent consists of a (rigidly) typed
derivation-term, whose free type-variables occur in the antecedent. G% has the axioms
and rules as listed below:

Ax x: Pl = ax,rp: P (P atomic)

[x: A, =1t:B

R—
= X?tP: A B
L r:A—=BIl=t:A ly: B, =1t :C
%
x:A— BT = let,s(t{, 475 : C
W =t:C —
1AL an s Ay, T = WOSETH0) ¢
(x1:A1)% .. (2, A)E T =t: C
mC

n A
x1 Ay, ay s Ap, T = COii i }(tc) :C
r:A—->BI'=t:C
y: B, T = I‘TAHB#/B(tC) :C

Here the following abbreviations and conventions were used:

Inv

e The operator G} denotes the union of multisets.

e Typed variables and terms are used in both the notations =, ¢t and = : A, t : B,
which are considered to be syntactically the same, but the longer versions x : A
and ¢t : B informally refer to an assumption A labelled by = (in a corresponding
natural-deduction derivation, cf. section 1.2) or a proof-term t of a GT-derivation
with B in the antecedent of its conclusion-sequent.
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e The notation with a typed variable in brackets [ ... ] is here always to be understood
as in the following example: [ : A], T refers to one of the multisets ' & @} {x : A}
(with n € N), where x : A is assumed not to be an element of the multiset I (n =0
is excluded here, i.e. x : A occurs at least once in [z : A],T).

The system g0+ has the same axioms as G1, but contains only the logical rules R—
and L— of GT, not also inversion Inv and the structural rules mW and mC of this system.

The succedents of the sequents appearing in a G1-derivation will be called derivation-
terms of Gt.

Any of the two systems S defined above can be enriched by the additional presence of
the cut-rule

=t :D [x: D], Il =1t :C
[l = t{[«P :=tP] : C

Cut

to the system S+Cut. X

The multiple-weakening rule mW could have been written more concisely in the form

'=t¢:C
AT = W26 : C

but was formulated more explicitly in the above definition so as to allow comparison with
the more restrictive (with respect to the form of its active formulas) multiple-contraction
rule mC.

There are some noteworthy aspects, in which the systems Gt defined above differ
formally and conceptionally from the system (here abbreviated with:) G cousidered in
[Vest99]:

(i) In Vestergaard’s system g;r also axioms x : A,I' = x : A are permitted, where
the principal formula A does not need to be atomic. For GT the stronger condi-
tion on axioms Ax as in the G3-systems from [TS96] (to refer to atomic principal
formulas only) was taken over. (This has no immediate consequence with respect
to Vestergaard’s result in the case of a typed system with antecedents consisting of
multisets.)

(ii) Although Vestergaard’s system also contains a weakening rule, the derivation-terms
do not account for its presence in a derivation. This is because it looks as if the
phenomenon treated in [Vest99] has nothing to do with the fact that weakening
is not a formal rule in the G3-systems. Instead derivations are treated there as
“equivalence classes” up to applications of weakening, which—although this could
perhaps be made more precise—seems a bit unclear [to me, C.G.]. For this reason
(and because explicit treatment of weakening does not cause too much additional



CHAPTER 1. VESTERGAARD’S “COMPUTATIONAL ANOMALY” 9

work and notation) the term notation in G7T has been designed to reflect also the
effects of weakening by the introduction of a multiple-weakening rule (in a form that
will be useful for the description of the cut-elimination procedure implicit in [TS96]
(there Theorem 4.1.2 on p. 72) in the special case for the systems G7T).

(iii) To make it possible that a derivation-term describes a GT-derivation completely,
also the variable-annotated formulas in the contexts of axioms Ax had to be formally
taken into the term-notation.

(iv) With the exception of the multiple-weakening construct W) basically the same
term-expressions are used in [Vest99] to designate applications of rules (only slightly
different expressions let x := yty in t; are used there instead of let,(¢1,ytg), the
notation used in [T'S96] to describe the application of a L—-rule).

(v) Vestergaard does not consider the succedent of a sequent in his system to be a rigidly
typed derivation-term. In his system a succedent consists of a single formula that is
annotated by a term ¢, that is not a type-expression, although it can also describe a
derivation in his system precisely (up to occurrences and effects of weakenings, which
are neglected). Derivation-(describing-)terms in Vestergaard’s system G are only
looked upon as expressions that describe a derivation in his system constructed from
assumption variables x,y,z (and also of f,g,h, which he uses exclusively for non-
atomic formulas) with the use of term-constructors referring to applications of rules.
(This difference has some consequences, that will be explained below. However,
these consequences have no bearing on the phenomenon presented in [Vest99].)

A few more things have to be said about the last item: The sequents in Vestergaard’s
system all have the form

.%‘1:A1,£E2:A2,...,xn:Anjt:C s (12)

where n € N, x1,...,x, are untyped variables, Ay,...,A,,C are formulas, and t is a
derivation-term formed from untyped variables and derivation-terms by the use of term-
constructors inductively as expressions

)\.%‘.to y lety = xlp in t1 , CA(to) , Ix,y(t()) or t1|[.%‘ = t()]] (1.3)

(where x,y are variables, ¢y, t; are terms (by the induction-hypothesis of the definition)).
If the formula in the succedent of (1.2) is regarded as the type of the derivation-term C,
it could be said, that in this sequent all displayed variables and terms in (1.2) carry types,
but subterms of the typed term t© do not.

Sequents (1.2) of his system are furthermore assumed to be of the special kind that no
variable annotates two different formulas in the antecedent (a restriction that is taken into
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the definition of the axioms and rules of his system in the form of a tacit side-condition);
but an annotated formula = : A may occur there several times (the antecedents therefore
really may be proper multisets).

Vestergaard’s motivation for this side-condition in his system is that he intends to
abstract away from the derivations as far as possible and that he wants to consider them
only in the form of term-representations instead (and for this aim the side-condition really
makes sense); in Appendix A of [Vest99] he gives a proof for a statement that every
term (inductively definable from variables by the constructors A, let, C, I and -[- := ]
in the above sketched way) really represents—under some mild restrictions on the use
of bound variables—a derivation in his system (here called:) G;F. Although Vestergaard
apparently uses a tacit convention on the use of variables with the letters f, ¢ exclusively
for the annotation of non-atomic formulas (contrary to his use of variables like x,y, z)
some serious doubts about this statement Lemma 17 on p.8 of [Vest99] seem justified,
where [to me, C.G.] it looks as if the proof referring to Lemma 14 runs into troubles in the
case of the two-premise rules L— and Cut. — This claim for an inverse map from terms (in
Vestergaard’s notion as described shortly in (1.3)) to derivations in G} is not essential for
his main argument, since by the definition of the axioms and rules in his system g;ﬁ every
derivation is nevertheless represented by some derivation-term (which is obvious from the
definition of the rules in this system).

These doubts about whether terms of Vestergaard’s system g;r really always represent
derivations led to the formulation of the systems G in Definition 1.2. In these systems
every derivation D really is uniquely determined by the derivation-term in the conclusion-
sequent. It can be checked on the basis of an inspection of the term-notation given together

in g+
e t:C in GT can be

reconstructed from the succedent term t© (which in the rules is written as ¢ : C) in the
conclusion of D inductively. Thereby the term ¢t also allows to rebuild the antecedent T
of the conclusion-sequent I' = ¢ : C' of D inductively.

with the rules of GT in Definition 1.2, that every derivation

Definition 1.3. The operation ant on G14Cut-derivation-terms is defined inductively as
follows (where derivation-terms, typed variables and multisets of typed variables occuring
below are assumed to be arbitrary such objects appearing within a G -derivation according
to Definition 1.2):

ant(ax,ap):={r: A} oI ;
ant(Az.t8) = ant(tB) o [x: 4] ;
ant(let, s ¢, 227 PY)) = ant(¢) ;
ant(W2(t9)) := ant(t%) & A ;
ant(C2 (%)) := ant(t°) 6 A ;
ant(I -5 5 (t9)) := (ant(t®) o {z: A = B}) @ {y: B} ;
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ant(t{ [P = tP])) := ant(t}) @ (ant(t$) © [z : D)) .

(Here @, S denote multiset-union and multiset-subtraction® respectively. An expression
like I' © [x : A] means the deletion of all occurrences of x : A from the multiset I'. The
outermost types of the terms (which can be reconstructed in an obvious way) on the right

N

side of the definition have been dropped for legibility.) I

Lemma 1.3. For every (GT+Cut)-derivation-term t¢ there is exactly one derivation D
in (Gt+Cut) such that D is of the form

D
'=t¢t:C

(T a multiset of formulas); for this derivation D moreover T' = ant(t®) holds

Proof. By induction on the syntactical depth of ¢, thereby examining all rules of Gt +Cut
for the induction-step. O

1.2 A map ® from G; +Cut-derivations to derivations a
typed—N[mi]-system

Derivations in intuitionistic and minimal sequent-calculi can be associated with a corre-
sponding natural-deduction derivation in a very immediate and straightforward way as
was first described precisely by D. Prawitz in [Pra65]:

“A proof in a calculus of sequents can be looked upon as an instruction
on how to construct a corresponding natural deduction. This is particularly
evident in the case of intuitionistic or minimal logic. A top-sequent then corre-
sponds to a natural deduction consisting of just the formula that occur both in
the antecedent and the succedent. As we go downwards in the proof in the cal-
culus of sequents, we successively enlarge in two directions the corresponding
natural deductions at the bottom, applying the corresponding I-rules; when we
come to applications of antecedent rules, we usually enlarge the corresponding
natural deductions at the top, applying the corresponding E-rules.” [ ... ]

“The proof in the calculus of sequents can in this way be said to prescribe
(to some extent) a certain order in which a corresponding natural deduction can
be constructed. This order is often irrelevant and is only partially mirrored
in the corresponding natural deduction that results from the construction.
Different proofs in the calculus of sequents may therefore correspond (in the
way indicated) to the same natural deduction.”

1A & B means the result of a deletion process, where from the multiset A all elements of the multiset
B are removed as often as they occur in B (an element of B can but naturally only be removed from A if
it occurs in (is element of) A at all).
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In the case of the system G1 a derivation-term ¢© in an end-sequent of a derivation D
does not only allow us to describe D completely, but gives also—in most cases—clear in-
structions about how a natural-deduction derivation D’ corresponding to D under Prawitz’
map can be built. This is possible for all Gt-derivations, that do not contain applica-
tions of inversion Inv; in the more special case of g;r -derivations this is the content of the
definition below.

Definition 1.4 (The maps @, ¢, &y between Q(T—i—Cut and —N[mi]*). The map ¢
is an operation that takes derivations of the systems g;r +Cut (that is, derivations in
GT+Cut containing only applications of logical rules and Cut) to natural-deduction deriva-
tions ®(D) in a term-calculus —+N[mi]* for —N[mi] (cf. [TS96], Def. 2.2.2, p. 37 for a
term calculus for the full systems N[mi], whose special case for N[mi] is here referred
to as —N[mi]*). The derivation (D) in —N[mi] will denote the deduction ®(D) in
—N[mi]* without the occurrences of term-labels for formulas.

® will be defined in parallel with a map ¢ that maps an arbitrary g('," +Cut-derivations
D to the term-representation ¢(D) of the —N[mi]-derivation ®y(D) underlying ®(D).
Both ® and ¢ will be given by an inductive definition on the depth of D by transitions of
the following structure:

- [A1]*L .. [A, ]
e e oD
o(D): C )

where {x1 : A1,... 2z Ay} Cset(I), i.e. set(I') is the set resulting from the multiset T
by dropping multiple occurrences of elements in I'.
If D consists of an axiom only, then ® and ¢ are defined by the transition

v: Al =axap: A goes to x: A (as marked assumption: A%) .

If D ends with an application of R—, then ®(D) and ¢(D) are defined by the transition

ACC
P A 1130 to: B @[(2])0)
[: A, T =ty : Res goes to 6(Dy) : B

= 4t A—- B —Lx

Azd.p(Dy)P: A= B

In the case of D ending with an application of L—, ®(D) and ¢(D) are defined by the
transition
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Dy Dy
xT
r:A—->BI'=t:A [y:B],F:>t1:C’L goes to (4= B)
%
x:A— BT = let,s(t{,a475) . C (Do)

(A — B)” #(Dyp) = A
[ B¢ (Dy)* : B]
(@(D1))*[y” /(247 ¢(Do) )P
(6(D1)*[y" /(x4 P o(Do)H)P]: C

where the stars * indicate that a renaming in the bound variables occurring in the terms
within ®(D;) and in the term ¢(D;) has to be performed to make the substitution of
247 B¢ (Dy)P for yP in ¢(Dy) possible. Furthermore, the angle-notation (4 — B)®
®(D) above is intended to refer to only a part of the assumption-class [A — B]*, namely to
that part, which consists just of all occurrences of marked assumptions (A — B)* in ®(D)
originating from the assumption-class [A — B]* in ®(Dy) (whereas the full assumption-
class [A — B]"* in ®(D) contains all occurrences of (A — B)? in ®(D) originating from
®(Dy) and from ®(D;) as well as the single additional assumption (A — B)* in the major
premise of the explicitly shown application of —E). (This notation will be used in similar
meaning also for comparable situations.)
If D ends with a cut, ®(D) and ¢(D) are defined according to:

D (I>(,D0>
# 1 [6(Dy) : D)
=ty:D [x: D], Il =1t :C . goes to oD (D
Mo —oe (@D [x? 0(D)

((¢(D1)* 2P /6(Do)"] : C

Again, the stars indicate a necessary renaming process in the bound variables, carried out
simultaneously in ®(D;) and ¢(Dy) to make the substitution of ¢(Dg)P for &P possible.
The derivation ®4(D) in —N[mi] is defined from ®(D) by dropping the term-express-
ions in all formulas, that do not occur in a leaf at the top of the derivation ®(D) (there
the terms are retained as assumption-markers). X

It would also have been possible to extend the maps ® and ¢ to cover derivations D
in the systems G, if D contains applications of weakening mW and contraction mC, too,
but no inversion Inv. This could be done by taking the transitions

D[) DO
=t :C W and F'=t:C o go to (I)D(D())C

m m .

= W2(t): C I'= C3(ty): C ¢(Dy) :

into Definition 1.4.
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Vestergaard does not refer to such a map ® from derivations in his system gj‘ to
natural-deduction derivations explicitly, he but bases his argument merely on formal ob-
servations about terms, which—with the concepts and the terminology used here—can
be looked upon as derivation-terms ¢(D) describing natural-deduction derivations (D)
associated with derivations D in the system G1 (for Vestergaard these derivations are
derivations in the system g;ﬁ , which here was only taken as the basis for the formula-
tion of GT in Definition 1.2 above). He takes these derivation-terms ¢(D) of natural-
deduction derivations ®y(D) to be the “computational meaning” of derivations D in the
typed sequent-calculus. — Definition 1.4 was set up with the intention of following Vester-
gaard’s paper as closely as possible, but also with the aim of looking at the phenomenon
he describes from a slightly different (namely a proof-theoretic) angle.

There is one noticeable feature of the map ® as defined above (also by way of following
the argument of Vestergaard) above, which distinguishes it from an analogous map used
by J. Zucker in [Zu74]: In the case of a derivation D ending with the cut-rule, having
Dy and Dq as immediate subderivations, the transition in Definition 1.4 necessitates the
amalgamation in ®(D) of open assumption-classes [A]* with A* # D¥, that occur both in
the derivations ®(Dy) and ®(D;) (given by the induction-hypothesis of the definition of
®). In ®(D), which then can be written in the form

(A)"
®(Dy)
[¢(Do) : D] (A)*
((®(Dy1))*[x" /(Do) P
((¢(D1))*[zP [6(Do)P]: C

a new assumption-class [A]* is formed, that now consists of all occurrences of A* at places
(A)* (which here in ®(D) stand for the occurrences of marked assumptions A” in the
subderivation ®(Dy) and in the part originating from ®(Dy).)

In the case of Zucker’s sequent-calculus § such an amalgamation of assumption-classes
by his (rather similar) map ® does not happen, which is due to a very special-—indeed
careful—way of the formulation of the logical rules and the cut-rule in § based on a special
indexing system for antecedent-formulas. An identification of different assumption-classes
is in this system only possible in the image under ® of a S-derivation ending with an
application of (an unrestricted version of) the contraction-rule.

A situation, similar to a Gt-derivation ending with Cut, arises for a derivation D end-
ing with L—, that has immediate subderivations Dy and D;. There, too, identifications of
assumption-classes from ®(Dy) and ®(D;) take place implicitly in the respective transition
of Definition 1.4, that is, all occurrences of marked assumptions C* (if C* # (A — B)”) in
®(D), that originate from open assumptions C* in ®(Dy) or ®(D;), are taken to form the
new open assumption-class [C]* of ®(D). The open assumption class [A — B]* of ®(D)
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contains all open assumptions of the form [A — B]*, that originate from open assump-
tions in ®(Dy) or ®(D;) and one additional occurrence of (A — B)* (as apparent from
the definition of ®(D)).

While in the case of Zucker’s sequent-calculus S each two-premise-rule R (including
Cut) was formulated in such a way that in the image ®(D) of a S-derivation D ending
with R identifications of assumption-classes originating from ®(Dy) and ®(D;) (Dy and Dy,
the immediate subderivations of D) never take place (during the formation of (D) from
®(Dy) and ®(Dy)), this is not in the same way possible for a typed calculus of a —G3mi-
system: The formulation of the L—-rule with a multiset ' appearing simultaneously in
the antecedents of both premises and in the conclusion of the rule leads to the necessity
of amalgamating assumption-classes from Dy and D; in the image ®(D) of a derivation
ending with L— (Dy and D; are here again the immediate subderivations of D).

1.3 Cut-elimination for G+

A procedure for cut-elimination in the system G relies for some steps on the possibility
of renaming variables in the antecedents of a sequent and throughout the immediate
subderivations appropriately. This could be done as a local process by the introduction
of a new renaming-construct in addition to the rules of Gt just like mW, mC and Inv,
and by a separate treatment of applications of this new construct for the purpose of cut-
elimination in a derivation.

Since Vestergaard describes cut-elimination in his system as a process of successive
applications of rewrite-rules on derivation-terms, and because substitution is a familiar
notion for terms, he refers for this matter on substitution-lemmas like the below ones
instead:

Lemma 1.4. Let D be a derivation of the form
D
[(x: A", =t:C

(where n € N) in Gt, that contains rule-applications of logical rules of Gt only. Then
for all type-variables y*, that are distinct from all bound variables in t°

Dl [y
(y: AT =tz /y?]: C
holds.

Proof. By an induction on the depth |D| of D.
One key case for the validity of this lemma (a case involving the principal formula
of an application of L—, that is the root of trouble in many similar situations) shall be
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shown here. If « : A is the principal annotated formula x : B — D (i.e. if A= B — D) of
a bottom-most application of L— in D and if n =1 4 1, then D is of the form

Dy Dy
x:B—D,(x:B—=D),T=t,:B [2:D],[(x:B—=D)|,T=t:C L
_)
[(x: B— D)"],T = let,p(t{,2B7Pt8): C

where [ € Ny. If [ > 0, then the induction-hypothesis can be applied to both Dy and Dy,
and due to zP # yB7P the results Dy[xB 7P /yP~P] and Dy [xP 7P /yB7P] can be linked
together again by L— with the derivation

DO [wBaD/yB—)D] Dl [‘TB—>D/yB—>D]
y:B—D,(y:B—D\T=tlz/y|:B [::D],(y:B— D)\ T =tx/y:C
(y: B— D)",T = (letzp (tf,xB%DtéB))[xB%D/yB%D] : C)
as outcome. If [ = 0 the induction-hypothesis has to be applied only to Dy and the

resulting derivation Dg[z®7P /yB~P] can then be linked together again with D; by L—
to reach a derivation of the desired form. O
D
F=t:C
derwation D(yay and thus also a derivation-term tay can effectively be found (by renaming

annotated variables in the antecedents and in derivation-terms only) such that

L—

Lemma 1.5. For all Gt -derivations and all typed variables xd a gt-

Diya)
I'= t(xA) :C

and x? does not occur among the bound variables of tzay and in Diga.

Proof. By induction on the depth of D, carrying out a renaming of z* to another variable
(')A not previously occuring in the derivation (which can be done by an appropriate use
of Lemma 1.4) in the induction-step, whenever x4 appears as a bound variable. ]

D
(z: A", =>t:C
in GT., that only contains rule-applications of logical rules. Then for all variables y
D[z /y?)
(y : A)”,F = t(yA)[.%‘A/yA] :C

Lemma 1.6. Let D be a derivation of the form (where n € N)

holds, where Dyay and t(ay are in relation to D,t and y? defined (and implicitly con-
structed in the proof of) Lemma 1.5.

Proof. This is immediate from Lemma 1.4 and Lemma 1.5. U
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Theorem 1.1. Cut-elimination holds for Gt.

More precisely, every derivation D in (GT+Cut) can be transformed by a finite se-
quence of successively applied local reduction-steps with a cut-free derivation in Q(T as
result, i.e. a derivation D', that contains neither applications of the cut-rule nor of the
rules multiple-weakening mW, multiple contraction mC or inversion Inv.

Furthermore the process of cut-elimination for a derivation D in Gt can be completely
stmulated on derivation-terms by applications of rules from an appropriate rewrite-rule
system starting at the derivation-term t of D; these rule-applications have to respect a
certain order, in which single rewrite-rule steps are successively executed.

Proof. The proof of this theorem relies on two lemmas below, that together deal with the
case of a GT-derivation D, i.e. a derivation not containing Cut but arbitrary many appli-
cations of weakening mW, contraction mC and inversion Inv (Lemma 1.7 and Lemma 1.8
below give—with the help of an immediate induction on the number of applications of
mW, mC and Inv in D—that every such derivation D can effectively be transformed in
the desired manner to a derivation D’ in g;r , thus to a derivation D’, that possesses only
applications of logical rules). It suffices therefore here to show that every derivation D
terminating with an application of Cut, such that the immediate subderivations Dy and
D, of D contain only logical rules, can be transformed by stepwise and local transforma-
tions to a cut-free derivation D’ in g;r , 1.e. a derivation having only applications of logical
rules. (The theorem then follows by induction on the number of applications mW, mC,
Inv or Cut in D', an induction, in which always topmost occurrences of these rules are
treated and removed.)

This can be shown by an induction on one plus the logical depth of the formula A
within the annotated cut-formula = : A in the cut at the bottom of D, which is called the
rank of the cut, together with a subinduction on the level |Dgy|+ |D;]| of this cut, where
Do and D; are its immediate subderivations.

The proof is very similar to that of the cut-elimination theorem for the G3-systems
(cf. Theorem 4.1.2 on p. 77 in [TS96]), more precisely, it is analogous to the proof of a
cut-elimination theorem for the implicative fragments —G3mi of G3[mi].

For a derivation D in GT+Cut of the form

DO Dl
'=t:D [x:D],Il=t:C

I = t{[2P :=t§]: C

Cut

with Dy, Dy g0+ -derivations (thus containing only applications of logical rules) three cases
are distinguished and treated separately: (1) If one of the premises of the cut S consists
of an axiom, then a reduction which removes the cut in one step can be performed. (2) If
both premises are not axioms, and the cut-formula is not principal in at least one of the
rule-applications Sy, 51 immediately preceding S, then the cut can be permuted upwards
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over the logical rule S; (i = 0,1)) in that respective premise, thereby reducing the level
of the resulting cut(s) by at least one; in the case of a two-premise rule two new cuts
of lower level may appear. The induction-hypothesis can then be applied to show that
the new cut(s) is (are) transformable to a cut-free form. The resulting derivation(s) can
then be linked together again (either with each other, in the case of two new cuts, or
otherwise with a weakened subderivation of D) by a logical rule of the same type as S;
to build the result of cut-elimination for D. (3) If both of the premises of the cut at the
bottom of D are not axioms, and the cut-formula is principal in both premises, then a
“fork-reduction” (a term from [Drag79] for a similar reduction) can take place. In the
perhaps most frequent case (the cut-formula does occur just once in the antecedent of the
left premise of the cut at the bottom of D) a reduction can be performed by splitting the
cut S in one cut S| of the same rank, but lower level, and two succeeding cuts S5 and S
of lower rank than that of S, cuts, which are then followed by a number of contractions.
Th subinduction-hypothesis can be applied to the derivation D] terminating with S for
showing that D~’1 can be transformed to a cut-free derivation in Q(T in the desired way.
Then the induction-hypothesis can be used twice and successively to show that S5 and S5
can also be removed in this way. The succeeding contractions can then be done away with
by an appeal to Lemma 1.8 to arrive ultimately at a derivation in g;r . — In the second
case of a fork-reduction for a (gé" +Cut)-derivation D, that occurs if the cut-formula of the
cut S at the bottom of D appears more than once in the antecedent of its left premise, a
similar reduction is performed: Now S is split into two cuts S7 and SY of the same rank as
S, but of lower level, that are linked together by a cut S5 and followed by a cut S}, both of
lower level than S, the latter of which is then succeeded by a number of contractions in the
resulting derivation D”. The subinduction-hypothesis and the induction-hypothesis can
then be applied similar as before to show that D" is transformable to a cut-free derivation
in Gt in the desired way.

All these reduction-steps are rather straightforward to perform and—except for one
case, that will be shown here below—analogous® to the ones for an untyped —G3mi®-
system (defined precisely in Definition 2.1). For this system the reduction-steps are dis-
played in the lists A—C in chapter 2, following Definition 2.1, where they were gathered
for the formulation of a strong cut-elimination theorem.

Since derivation-terms in GT uniquely represent derivations in these systems, the
reduction-steps referred to in this proof can be given in the form of rewrite-rules on
derivation-terms. These respective rules will be given at the end of this proof.

In case (1) the situation of a derivation D of the form

3(with the sole exception of the second case of a “fork-reduction”-step just described, which is an
analogue to a cut-elimination-step necessary for dealing with a similar situation in the Kleene-System
—GK3mi)
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Dy
r:PI'=ax,pp: P (y:P)", Il =t :C
x: P,TI = t{[y" == ax,r ] : C

ut

can occur. D can be then be transformed to a cut-free derivation D’
(D1)@ry[y" [2"]
(.%‘ : P)n,H = (tl)(xP)[yP/xp] :C

mC
(@ : P11 = CE (1) ey [y /27])  ©
mC
- P‘ mC
z: P = CW (L GV (1) (ry [y /2P]) .. ) €
n—1 mW

w: P,TI = WH(CED (L el (t) r [y /27)) .)€

with the help of an application of Lemma 1.6. D’ can then be seen to be transformable to a
derivation, which only contains applications of logical rules (or consists of a single axiom)
by n — 1 successive appeals to Lemma 1.8 (for the contractions) and one to Lemma 1.7
(for the weakening).

The rewrite-rules originating from cut-elimination steps in this proof are gathered in
the lists A-C below®:

A. Axiomatic Cut-Reduction Rewrite-Rules

a 5Ty = axpen] —rowy WH(CHT (L CEN ) oo [y a7 )

where” n := mult(y”, ant(¢{)), n—1
and (tf)(xp) is defined in relation to ¢ and ¥ by an application of Lemma 1.5.

b. aXyP;Hl[yP = tOP]] —(Cut) WH(tOP)
C. axxp;yD7H0|[yD = tOD]] —(Cut) aXxP;ant(t(I)))HO .
B. Rewrite-Rules for Upwards-Permutation of Cut
a. tlcl[yD = letzB (tODlv xA_)BtE?O)]I —(Cut)
C .
let(.s (tF[y" := ) [=7 /() 2], w A= BWA S Dl )
for 2’ such that [(2/)5 ¢ ant(t{) & [y: D] A

A (=2 Vv (2)P does not occur in t{})].

5The symbols used here are essentially meta-language symbols (as “by default” throughout the thesis),
which has the consequence that variables z and y, formulas A and B or typed variables z4, yP need
not stand for different variables or formulas in general expressions, except this is explicitly stated using
formulations like for instance  # y, A # B or a* # yP.

"Where for every multiset I' and every object a the expression mult(a,T') means the multiplicity of a
in I, i.e. the number of occurrences of @ in I'.
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b. A tp)[y” =171 —cury Al (] MDly” =51
for 2’ such that [(2/)? ¢ ant(t?) A
A (z=2" v (2/)* does not occur in t5)].
c. Whenever yP # 247 5:
(let,s (15}, 247 B [y? = t]) — (cuy)
let (s ((t5[27 /(=N PDly" = td], =47 Pty = 5])
for 2’ such that [(2/)® ¢ ant(tJ’) A

A (z=2" Vv ()P does not occur in t§])].
C. Fork Reduction Rewrite-Rule

let(zB)(t?lvyA%BthH[yA%B = Al‘ tOO]I —(Cut)

OG5 = et = ™ o= A5 TIN)
if IT = [y (or equivalently if: mult(y*=5 #}) = 1)

O (O (15[ = A B 1= B = th [y = Ac 4B 11)
if I1 D My (or equivalently if: mult(y?=5 #}) > 1)

where I := ant(tf}) © [2 : A],
I := ant(t{}) © {y : A — B} and
My := ant(t{y) © [y : A — B].

(It is immaterial to understand the reason for the particular form of the subscript-notation
used in derivation-terms in the above rewrite-rules for their application. Yet, this notation
comes from one for subderivations of a given derivation D, where for n € N the derivation
Di. i (i1,... ,in € Np) is inductively defined as the subderivation of D leading to the
(in, + 1)-th premise from the left of the bottom-most rule application in D;, ;. _,, if
n > 1, or in D, if n = 1; if D for example terminates with a one-premise rule, then
only the immediate subderivation Dy of D is defined in this way, not also Dy, Ds,..., and
similar for more-premise rules. This notation was extended here to derivation-terms for
devising and checking the above rewrite-rules and it was thought that this origin should
not get concealed in the result.)

It is apparent from the above rewrite-rules, that during the process of cut-elimination
in a derivation according to the stepweise and local procedure used here implicitly new
applications of weakening or of contraction or of both appear in a derivation, that pre-
viously may only have contained applications of logical rules and of cut. Therefore these
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rewrite-rules for cut-elimination on derivation-terms will have to be supplemented by fur-
ther rules for the reduction of derivation-terms containing subterms W4¢ for weakening-
and C2t for contraction-applications. These additional rules correspond to the places in
this proof, where Lemma 1.7 and Lemma 1.8 are used (so to say as subroutines) and will
be given together with the proofs for these statements.

Cut-elimination on a G1-derivation-term ¢ can then be seen as a finite sequence of
reductions according to the system of rewrite-rules partly given here and being com-
pleted below: A reduction-process, in which always an innermost occurrence of a cut-
term ¢1[[x := ¢g] in ¢ is considered, where (a) first ¢y and ¢, are transformed by a finite
subsequence of reductions (involving applications of rewrite-rules for the treatment of
weakening-, contraction- and inversion-subterms) to terms ¢y and 1, that only contain ap-
plications of logical rules (or that are axioms), such that then (b) the cut ¢[z := o] can
get reduced by one of the above cut-reduction rules to a term ¢ (by arguments used above
it is clear that one of these rules is then always applicable). The proof guarantees the
termination of this process for every given GT-derivation-term, provided the termination
of the subprocesses, which will be justified separately in Lemma 1.7 and Lemma 1.8. [

Lemma 1.7. Every derivation D in GT, that contains only applications of weakenings
mW and logical rules, can be transformed by a finite number of local transformation-steps
to a deriation D' in g;r (i.e. D' contains no application of mW any more, nor such of
mC or Inv); this elimination process of weakenings can take place on the corresponding
derivation-terms as the successive application of appropriate rewrite-rules.

Proof. 1t suffices to show that weakening can be effectively eliminated from a derivation D
in Gt terminating with an application of mW, that for the rest contains only applications
of logical rules (the lemma then follows by induction on the number of weakenings in a
given derivation). This in turn can be shown by induction on the depth |D| of D:

If |D] = 1 and mW therefore is applied directly to an axiom in D, then an easy
reduction of D to a new axiom, which now incorporates the weakening, can take place.
If |D| > 1, then the rule mW is permuted upwards one step over a rule R— or L— and
then the induction hypothesis is applicable. In the case of R— the following reduction is
possible:

Dy
[x: AT =1t :B
=Xt A-B
TA = WA tP)A7B . A 5 B

R—

mW

reduces to
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Dolz/(2')"]
(22 AL, T = to[z?/ (2] : B
[+ A],TA = WA (t8[a4/(2")4]) : B
TA = X(a) A WA (t8[2")(a)]) : A — B

mW

The substitution of (2/)4 for 2 in Dy is possible by Lemma 1.4, if (2/)* does not occur as
a bound variable in téB ; to keep 7’ : A distinct from elements of I" furthermore the stronger
condition, that (2')4 does not occur in t{f at all, is necessary. The application of R— after
mW in the displayed way in the reduced derivation is possible, if (/)4 &€ A. — The case
with mW following an application of L— at the bottom of D is more costly to write down,
but quite analogously to treat.

Since the derivation-term t for a Gt-derivation D allow to represent (and to recon-
struct) D completely, the reductions referred to (and in the case of R— explicitly given) in
this proof can be gathered for the following list D of rewrite-rules for weakening-reductions:

D. Weakening Rewrite-Rules

A
a. W2 (ax,r.p) —>(Weak) aXzP.ra -

b. WAAzA18) — (wear)  A@) W2 ((t[?/ (")) P) |
where 2’ is such that (2')4 does not oc-
cur in A nor in the term tZ.

C. WA(let(y/)B (tlc,xA_)Btf)q» —>(Weak)

let (s (W2 ((t1[y? /() E]))C), a4 BWA (1))
where 3/ is such that (3/)? does neither occur in A
nor in tf.

Weakening-elimination on derivation-terms takes the form of successive reductions of in-
nermost occurrences of weakening in a term ¢ according to the above rewrite-rules, i.e.
of occurrences W2 (t) in ¢, such that ¢y does not contain further subterms of the form
W2 (t0). O

Lemma 1.8. Every derivation D in G, that contains only applications of the rules mul-
tiple-contraction mC, inversion Inv and logical rules, can be transformed effectively by a
finite number of transformation-steps to a derivation D' in g;r (i.e. one, that possesses
only applications of logical rules). This elimination process can furthermore be carried
through completely on the derivation-terms corresponding to g(')"—derivations in the form
of applications of rules of a rewrite-rule system.

Proof. 1t again suffices to show that an application of inversion or multiple-contraction
can effectively be removed from a GT-derivation D terminating with either Inv or mC,
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but otherwise containing only applications of logical rules (the lemma then follows by
induction on the number of applications of inversion and multiple-contraction in D). This
in turn can be shown by an induction on either the logical complexity |A — B| of the
annotated inversion-formula 2 : A — B in an application I,a-5 5 (...) of inversion®, if the
bottom-most rule in D is an inversion, or on the sum of the logical complexities of the
contraction-formulas in A of an application C2(...) of mC at the bottom of D, together
with—in both cases—a subinduction on the depth |D| of D.

Applications of mC or Inv, that follow axioms in D, can be directly reduced to other
axioms. Applications of these rules following logical rules can be permuted upwards over
L— and R— in most cases, much in the same way as in the case for mW in Lemma 1.7;
the subinduction hypothesis can then always be applied.

There are two less obvious cases:
(1) If D terminates with the inversion of the principal formula of an immediately preceding
application of L—, then D is of the form
Do D,
r:A=>BTI=t:A4 [(z:B)"],[ =t :C
r:A— BT =let,s(t, 2478 . C
y: BT =TLass 5 ((let,s(t{, 247 Bt))): © tov ,

where n € N.

The inversion can here be removed by taking the right subdeduction Dy of L—, carrying
out a renaming y” for z# with the help of Lemma 1.6 and by then using a number of
contractions for the annotated formulas y : B. The induction hypothesis can then be
applied to all of these contractions, since the logical complexity |B| of B is smaller than
that of A — B. The reduced derivation then has the form

(D1) () [z [y"]
(y: B)",T = (t) [z /Y"1 : C
(y: B)",T = CW I ((t),m 7 /yT]) : C

m

y:B,T = CWI(.clv ) ,m 7)) ...) : C me .
ntl

(2) If D terminates with a contraction mC, that involves the principal annotated formula
x: A — B of an application of L— immediately preceding the inversion, then D is of the

8Such an application was here indicated as an operation on derivation-terms.
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form
DO Dl
r:A—->Bax:A—=-BTl=>t:4 ly:Bl,x:A—=BTI'=t:C

L—
x:A— B,x:A— BT = let,s(t{, 2478 : C .
tASBlo(Aolr:A=B)=CA.):C
D can here be transformed to the derivation
D,
Dy y:Bl,x:A—=BI'=t:C .
r:A—=-Brx:A—-BTI'=t:A [y:B],I' = Lass s(ty) : C
) Ay, m . AG{aA7E} o "
r:A— Bl = C3(t): C [y:B],Il= C (L y (1)) : C
As{zA—E A—BCA L=
z:A— B = let,s (CA 7 (Tann yp(t)), 247 PCA(t)): C ,

where II'=I'6 (Ao {z: A— B}).

Here, since |Dy|, |D1| < |D| holds, the subinduction-hypothesis can be applied to see
that the inversion immediately below D; and the contraction succeeding the end-sequent
of Dy can be eliminated (by a required stepwise local process) with the results D} and
75’1, that only contain logical rules. The induction hypothesis can then be applied to 75'1

to see that a contraction CAe{e*77} immediately succeeding 75’1 can be eliminated as a
desired stepwise local process with result D} in G . Linking together D} and D} by L—
then leads to an inversion- and contraction-free derivation D’ in g(')" .

On derivation-terms the reductions needed in the proof of this lemma can be presented
as rewrite-rules of the following lists E and F.

E. Contraction Rewrite-Rules
a. CA(axxp;F) _>(Cont) axxp;F@A .
b. C*(AattB) —(com) AzA.CR(tD) |
c. CA (letyB( t§’ A%BtA) ) —(Cont)
let(,5)(C2(t), 47 BCA (1)) oxAoB g A
let s (CA P} (Lann 5 (1)), a4 BCA () ... a7 B e A
F. Inversion Rewrite-Rules

a. IIA—>B,yB (aXZP;$A_’B,F> —>(Inv) aXzP;yB’F .

b. IanB7yB ()\ZC.tD> —(Inv) A(ZI)C.IanB7yB (tD[ZC/(ZI>C]> >
where 2’ is such that (2')¢ # y? and (2)¢ does not occur in tP.
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C. IxA—>B,yB (leth (151157 ZC%DtOC)) —(Inv)

let (o (IanB,yB ((tl[wD/(wl)D])E) , ZCA)DIIAAB)yB (tg)) ,
where w' is such that (w')? # y” and (v')P does not
occur in the term ¢

d. Lass s (letzB (tlc,xA%Bté)) —(Inv)
B B

SO VI () [P /yP) )

1 where n := mult(z : B,ant(t%)) and®

(tf)(ys) is defined according to Lemma 1.5.

Contraction- and inversion-elimination on a g;r -derivation-term ¢, that contains no wea-
kening-subterms, can then be looked upon as a process consisting of successive reductions
of innermost occurrences of contraction- or inversion-subterms in ¢ according to the above
rewrite-rules in the lists E and F; the termination of this process is guaranteed by the
arguments above (that apply also for derivation-terms, since by Lemma 1.3 Gt-derivations
and GT-derivation-terms correspond to each other uniquely). ]

1.4 Vestergaard’s “Anomaly”

In introductory remarks at the begin of section 5 in [Vest99], where the “computational
anomaly” in his system is presented, Vestergaard starts from the observation, that with
respect to his system g;‘ there are two inversion-reduction rewrite-rules, for which it is
apparent from their shape, that they do not preserve the identity of derivation-terms.
That is, syntactically different derivation-terms t¢; and t2 can get reduced to the same
derivation-term t. Only one of these two rules corresponds to a respective rewrite-rule
for inversion-reduction in the setting of the system GT considered here instead; the other
would correspond to the reduction of a derivation, which consists of the application of an
inversion I a~5 5(...) (here indicated as an operation on derivation-terms) to an axiom
ax,a-sp with a non-atomic annotated principal formula A — B (such axioms have but
been excluded in the formulation of GT similar as in the systems G3[mi] in [TS96]).
The one remaining inversion-reduction rewrite-rule with this noticeable property is the
rewrite-rule F.d given in the proof of Lemma 1.8:

Laos o (let,s (6,047 P8)) — ) CW (W) s 2P /4P)) L)

n—1

(where n := mult(z : B,ant(t{')) and (tf)(yB) is defined according to Lemma 1.5). Here
the subterm t{' occuring in the derivation-term on the left side of the reduction is obviously

9See footnote 7 for an explanation of multiplicities mult.
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lost in the reduction, since it does not appear in the reduced term. Therefore different
terms can get reduced to the same result by applications of this rule.

Vestergaard then asks whether it is possible that during the process of cut-elimination
(represented as a finite reduction-sequence on derivation-terms) applications of the two
rewrite-rules appearing with respect to his system, that do not preserve identity of terms,
can actually change the “computational meaning” of derivation-terms in an unexpected
way. Or whether an “unfortunate use of the inversion-principle” does never happen during
a cut-elimination process—perhaps due to some very special features of this process as a
whole. Unstated though (and only hinted at other places in the article), he seems to ask
here, whether it is possible that the “computational meaning” of a derivation-term can be
changed during the execution of the usual cut-elimination procedure substantially different
from the way, how the “meaning” of a derivation is affected by normalization (which in
the case of derivation-terms for derivations of an intuitionistic of minimal calculus simply
corresponds to A-reduction).

He then immediately proceeds by giving his example of a “computational anomaly”,
which is intended to provide an answer insofar, as it shows that the computational mean-
ing of a derivation containing cut in his system can indeed be changed during the cut-
elimination process in an unexpected way, that is, in a way not corresponding to normal-
ization (A-contraction) on derivation-terms.

Before looking closer at the “anomaly”, let us briefly note this: Vestergaard does not
mention the parallel case of a rewrite-rule among those necessary for dealing with axiomatic
cut-reductions, which does obviously also not preserve the identity of derivation-terms and
which appears in his system as well as in G1: Here it is the rule A.c,

D D
aXxP;yD,H()'[y = t()]l —(Cut) AX P ant (D)1 (1.4)

given in the proof of Theorem 1.1. Apparently the term t{? disappears during this reduction
(only the annotated formulas in the antecedent of the derivation Dy represented by ty
remain as side formulas of the resulting axiom, which but do not tell anything about
the derivation Dy that leads to the conclusion ant(tg) = typ : D). — Were it then also
possible that the “meaning” of a derivation-term could be (unexpectedly) changed due
to an application of this rule during a process of cut-elimination executed on derivation-
terms?

If go+ +Cut -derivation terms t are given the “meaning” of their natural-deduction
derivation image ®(D) of the derivation D represented by ¢, this is not possible, as can
be seen in the following way: On the related g;r +Cut-derivations the reduction (1.4)
corresponds to:

Dy
ant(tf) = to: D [y: D],x: P,Tlp = ax,r oy, : P

x: Pant(t)), Iy = axxP;yD,noﬂyD =t5]: P

Cut
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reduces to
x: Pant(tf), Iy = AX P ant(tD),11p * -

If now the images under the map @ from section 2 are formed from the derivations on the
left and on the right side of this axiomatic cut-reduction, it easily turns out, that both
natural-deduction derivation images are equal to P*. Thus this “meaning” of derivation-
terms is certainly not changed by applications of the rule A.c .

It is therefore possible, that the “computational meaning” of a derivation-term (if this
is interpreted as the natural-deduction image of the corresponding go+ +Cut-derivation) is
not affected by applications of rewrite-rules with the seemingly very bad property that the
identity of the terms, on which they act, is not preserved. On the other hand it can easily
be checked for the rewrite-rules for upwards-permutation of Cut of the list B in the proof of
Theorem 1.1, that while “identity of terms” is preserved under applications of these rules,
they do nevertheless actually change the natural-deduction images of the corresponding
GT-derivations (if only in a way that corresponds to the execution of normalization steps
on these natural-deduction derivations). Zucker in [ZuT74] calls cut-elimination steps of
these kind in list B permutative conversions and they play a vital rule for his result of a
close correspondence between cut-elimination in his intuitionistic sequent-calculus § and
normalization on A/, his intuitionistic system of natural-deduction.

For the efficient treatment of weakening in the exposition of Vestergaard’s “anomaly”
the following definition, which introduces an abbreviation for weakened derivation-terms,
and a lemma about the relation between this new notation and weakening-reduction

—>Z(Weak) on derivation-terms will be used.

Definition 1.5. Let ¢t be a derivation-term of a derivation D in g;r.

Then for typed variables x‘fl, e ,:L’ﬁ" the term t{xfh, . ,:L‘ﬁ"} denotes the derivation-
term of that derivation, which results from D by adding x; : Ai,...,x, : A, in the
antecedent of every sequent in D as well as to the side-formulas I' in every axiom-subterm
ax,p v (for arbitrary y”) of a derivation-term occuring in D. X

Lemma 1.9. Every derivation D in GT of the form

Dy
r=t¢:C
1 Ay, A, D=t C

mW

?

where Dy is a derivation in g;r (hence it is an axiom or contains only applications of
logical rules) and the typed variables xfl, . ,xﬁ‘” do not occur as bound variables in t€,
can be effectively transformed to a derivation D' in g;r of the form

Dy
Ty Ay my s A, D= t{af i) O
1 1, yn n» 1 > y b
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Moreover, with respect to the weakening-reduction rewrite-rules in the list D given in the
proof of Lemma 1.7 for every derivation-term t of a ga"-derivation D and arbitrary typed

variables w‘fl, .., xdn that do not occur as bound variables in t,
n g A An
WO (1) ity ot 2}
holds.
Proof. Can be seen to be implicit in the proof of Lemma 1.7. O

The example of a “computational anomaly” given by Vestergaard uses the following
derivation-terms ¢, and 7, (for n € Ny):

= {aXZP;sPaP ...n=20 (1‘5)
let(xn)p (aXxTIL’;zP, SP%P 5_1) ..mn>0
and
— {aXzP;(SP—»P)Q ..n=20
In= let,r ({y”}, s"7 {70 L on> 0.

(Here the same designations of these terms and of the involved variables in the type-
expressions (more precisely, the names of the typed variables here, if the formula-types
were dropped ) have been kept to make comparisons with the reduction-sequence in [Vest99]
easier.)

Vestergaard’s example of a “computational anomaly” in his system g;r can now be
rewritten as sequences o, of reductions (n € N refers to the subterm 3, in the first term ¢,
in all of these sequences) by applications of rewrite-rules from the lists A-F in section 1.3
for a cut-elimination process according to Theorem 1.1. For all n € N the following holds:

let(y/)P (]n{(yl)P},gP%PZ {gP—)P P%P})"" P—P _)\Z ax zP]I
VP P PP
—scuny CUEO (1P = axgy e

|[z —zl{gp_’P P—)P}II P=P ._ 3, P ax. zP]”]]I)

P=P.— X\P axnp,.r],

_>(Cut) C{ } ( .. I[ e |[ZP = let‘r{? (axxf;ZP,SP‘)P,gP‘)PIIg
SP—)P(ZO{gP—)P7SP—>P}|[gP—>P _ AZ ax ZP]I )]m)
_)(Cut) C{}< ...... |[ .. I[ZP = letx{: (aXCL‘P'zP,(z’)P PP s

SP%P( {gP—)P P%P}"" P—P —)\Z ax zP]I )]m)
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2! P ZP SP~>P
—(Cut) C{( yma }<]n{ }I[ axX (PP

P P—P
I[Z = let P(axx{—’;(zl)P,zP,SP_;p“g —

axzp;(sP—’P)2,(z’)P)]|]|>

\P zP,sP*)P}(

—cury CLE {7 HW)T = axne e (sp-ry ,e])

WGPz (Papy}(]n))
G712, 27, (777 2))
= U (let (Y, 5P P {P PN ()P 2P (5P F))
O ety (1o <<z'>P>2 PP,
sPoP P (P2, (PﬁP) D)

—(Cont) letyP(C{Z”’“’)P}Isw e (ndy®, ()F)2 20, (57772,

PPl PHP}(@ {((z ) ) Pj(SP%P)g}))
7 (Inw) letyP(C{ZP’(z) }(aXyP;zP{(( NP2, 2P P%P})

sP=PlE)? 2 PHP}(“{(( Py, P’(SP_yp)g}))
—(Cont) let,r (aXyP;zp{(Z,)P’ sF=r

sPPCUET R ()2, 27 (77 1)3)))

oy 1etyp (@, p {()7, (P70 ST (s DT, s TY)

_>(CUt) C{(ZI)P,ZP,SP_)P}(

P P sPoP)

* C{(z’) 2

/
z

= let,r (axyp;zp,SP%le{sP_)P}){(z')P,sP_’P} .

(3)

— (Cont) three applications of contraction-reduction rewrite-rules have been gathered.)

Let for n € N the term ¢,, be the first derivation-term in the above reduction-sequence
oy, and let t' denote the resulting derivation-term (n € N refers to the free occurrence of n in
Jn in the derivation-term at the beginning). If one looks at the natural-deduction derivation
images ®(D,,) and ®(D’) for the (GT+Cut)-derivations D, and D’ corresponding to the
derivation-terms t,, and t', it can easily be seen, that ®(D,,) is the typed natural-deduction
derivation

-reduction step above has its justification in Lemma 1.9, in the step

(P—>P)* P*

(P — P)° sz: P B —F
s(sz): P -
(1.6)
(P — P)* sl P
m —E
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whereas ®(D') is just
(Pspy P
(P — P)* =P - (1.7)
s(sz): P -

Since for n > 2 the derivations ®4(D,,) do not reduce to ®¢(D’) by normalization ($o(D,,)
and @y (D’) being the derivations ®(D,,) and ®(D’) after dropping the term-labels in all
conclusions of rule-applications), this means that “something more” than what would
have corresponded to normalization must have happened during cut-elimination here. It
is straightforward to check that the “jump” for n > 2 of @(D,g)) (with Y being the
derivation corresponding to the i-th derivation-term in oy,) from (1.6) to (1.7) occurs just
in the single inversion-reduction step in oy,

Informally it is clear, that an unnecessarily complicated proof, the natural-deduction
derivation in (1.6), has obviously been reduced to a more compact form, the derivation
in (1.7). But this reduction on proofs (as informal objects that are thought to underly
formal derivations (cf. for example G. Kreisel in [Kr71], p. 111)) is not reflected by the
way how normalization on natural-deduction simplifies proofs. (It also has to be noted
that the “proof-reduction” between (1.6) and (1.7) is certainly not optimal and therefore
seemingly indeed of a special kind.)

It is interesting, that in the setting of a system Gt comparable to Vestergaard’s (in
the notation here:) g;‘ , but containing an explicit weakening-rule, Vestergaard’s example
does not look convincing any more: This is because the contraction-reduction rewrite-rule
E.c in the proof of Lemma 1.8 can certainly be modified to the following more careful
form:

c? (letys (t?, l‘AﬁBt(I;” ) —(Cont)

let(ys) (CA(tIC%CL’A%BCA(tE?))
B g Aor (2478 € Aand 2.mult(x 7P A) < mult(2 78, ant(to)))
let(,s)(CA" 7} (Tann o (7)), A7 BCA(t7))

coxA7B e Aand 2mult(xA 78 A) = mult(247 8 ant(ty)))

On the corresponding g;r -derivations this means: Multiple contraction is always allowed
to permute upwards over L— directly (without the use of inversion) also in case that the
principal formula of L— is active in the succeeding contraction, whenever it is possible to
do this. That is, whenever there are enough occurrences of the principal formula of L—
also in the right premise of the involved application of this rule to carry out the required
multiple contraction also there: If x: A — B € A, then
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DO Dl
r:A->Br:A—-BT=t:A ly:Bl,x:A—B,I'=1t:C
w:A—>B,x:A—>B,F:>Iety3(t?,w‘4_>3t6‘) :C
r:A=-Bl'o(Ac{r:A— B})=> CA((letyB(t?,xA_’Btg‘))c) :C

L—
mC

is now allowed to reduce (as in the first case of the rule E.c) to

DO Dl
r:A—>B,x:A—>BTl'=t: A ly:Bl,x: A= B, I'=1t:C
AA n AC mC
r:A— BIl=C2(t)): A [y:B],H:>C(t1):CL
_)

z: A — B,Il = let,s (CA(t0), 247 BCA(t)): C

Y

(where IT:=T & (A S {x: A — B})) whenever (A — B)?>™tHA=BA) c T3 {4 — B}, or
equivalently (4 — B)?™UMA=BA) C g {A — B, A — B} = ant(t) holds.

Given this formulation of the inversion-reduction rewrite-rule E.c, the reduction-se-
quence for a cut-elimination process in Vestergaard’s example would then continue after
the weakening reduction-steps succeeding the six cut-elimination reductions as follows:

—lweary CUETT (D)2 AP (5P T))
= C{(zI)P,zP,sPﬁP} (letyP (Zn{yP}’ SP—)Pz{D{SP—)P}) {((zI)P)2’ ZP, (SP—)P)Q})
— (Cont) letyp (C{(zI)P,zP,SP—»P} (Zn{yP7 ((ZI)P)Z7 ZP, (SP%P>2})7

SP—)PC{(Z’)P,zP,sPHP}(lf{((Z/)P)z,ZP, (SP—>P)3})>

—>E?(’j)ont) let,r (let,r (... ), sT P {(NE (s77F)?Y)
—conty letyr (let,r (CIE5"" ax o [y ()2, ()7, (s771)2)),

(PP LT 2 P F) (o1 Ly ()P)2, 2P (sP=P)21), )
—>Z(C'ont) let,r (letxrp; (axxﬁ;zp {yP, (z')P, SP_”P}7 SP_MDZ,%l{yP7 (z')P, sP_’P}), .. )
let,r (1n{y”, ()7, ") TP ((u{s"7 PPN, 77 0))

]n{(ZI)P, SP—)P}‘

)—reduction—step in this reduction-sequence is again justified by Lemma 1.9,

(The —>Z‘Weak

in the reduction-step —>E3C)on ) neans three successive applications of contraction-reduction

rewrite-rules. In the last reduction-step, that consists of a gathered number of single
contraction-reduction steps, it was used that the contraction involved on the left can then
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be permuted upwards inductively over all of the n —1 applications of L— in 7, 1 similarly
as in the previous step over the bottom-most application L— in 2,.)

Here an inversion-reduction step is no longer needed during this process and the form of
the resulting term tzl is not independent of n any more. This means, that if the reduction-
sequences o, for n € N of this kind were considered as applications of an operation c¢f (to
make terms cut-free) on derivation-terms t, (the left-most terms in the sequences), then
the identity of derivation-terms from the family {¢,}n,en would be preserved under this
operation c¢f. Moreover, if the natural-deduction image <I>(D~;1) under ® of the derivation
D,, in GF, which corresponds to #/ , is looked at, the derivation ®(D,,) in (1.6) is encoun-
tered again. The “meanings” of the terms ¢,, and tZz at the start and at the end of &), are
therefore identical.

Closer inspection shows that the whole process of cut-elimination for D,, is here—under
the just slightly modified conditions of a variant of the contraction-reduction rewrite-rule
E.c used here instead—undetectable from the natural-deduction images of the derivation-
terms (there are also no changes in this natural-deduction images during the course of the
derivation, as is easy to check). — The “anomaly” has disappeared here.

Yet, it is possible to give another example of a “computational anomaly” also in the
system GT with an explicit weakening rule. Here essentially the idea behind the example of
Vestergaard is used, but in a slightly different way. The example below was initially found
by considering cut-elimination in a rather easy derivation of the untyped G3[mi]-system
(cf. this example in Appendix A on p. 77), for which the first step in the cut-elimination
procedure necessitates the application of a fork-reduction of list C in section 1.3.

The derivation-terms 2, (for n € N) in (1.5) from Vestergaard’s example will be used
again in the new example. Furthermore let t(])30 be the derivation-term

P—P

tggo = let(Z/)P (aXyB;mA7zP7(ZI)P,S aXZP;xAvyB”gP%P) .

Then for all n € N the following reduction-sequence g, on derivation-terms represents a
process of cut-elimination according to Theorem 1.1:

let, s ({2, yP}, w7 Bax . yasn p gpor) w7 P = X2t tf]
C{:cA,yB,(zP)Q,(sP_’PV}ln{mA7 yPHy” = t{l" == axpa.pa-n p por

[w=B = Xz B
P {at yPHYP = " = axgays ()2 (sp ]l
) C{xA,yB,(zP)Q,(sP_’P)Z},Ln{mA7yBH[yB — wiv®.E") 5

* zA yB (yP)2 (sP—P)2
—weary CUTVEETT 0 (ot y BT = a5 (v, ()2 (7))

7 (Cut)

A, B (,P\2 (PP
_)(Cut) C{J: Y ,(Z ))(5

2)(5P—>P)2}
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zP)Q,(sp_’P)Z

—>(Cut) C{xA’yB’( }let( p(ln{xA,yB}

I[y = aX BigA yB (2P)3 (2/)P (sP—P)2 ]I7
P_’PW{J:A P P_’P}(ax P.gA (yB)Z’(zP)Z( P—»P)3))
—s(uy CEETCTTI (let o (W CETCTI G, (04, ),

xA P PP
P%PW{ }(aXZP;xA7(yB)2,(ZP)2,(sP~>P)3)))

* A 2P)2 (sPP)2
—>(Weak) C{ B, (2P)2,(sP=P) }(let ('Ln{( ) ( )27(ZP>37(ZI)P7(SP—)P)2}7

SP—)P(

BX.p, e 2, o3 PP )
A : —
(Cont) let(z,)p (C{x ;yB’(zP)Z)SP P}(

ISPAPJP (Zn{(-rA)za (yB)27 (ZP)37 (’Z,)P7 (SP%P)z}))7
SPA)PC{IAJyB)(ZP)Z)(SP*)PP}
—(Cont) let(zl)P ( .. ,SP_)PaXZP;IA’yB’ZP’(SP—»P)Q)

A yB,(zP)Z,sPaP}

—(Inw) let(z/)P(C{x ’

(aXzP;zP{(xA)Zv (yB)Zv (ZP)37 (ZI)Pv (SP%P)Z})v s )

P—P A B
—*(Cont) let(zf)p(aXzP;(ZP)Q)SP—»P’(z/)P7S - aXzP;(zP)Q,(SP—)P)Z){.T Nl

(The —>2‘W€ak)—steps here are again justified as applications of Lemma 1.9.)

Let ¢, and t’ denote the topmost and bottom-most derivation-terms in the above
derivation-sequence o, respectively. It is straightforward to check that for the Q(T +Cut-
derivation D,, corresponding to f, the image ®(D,) under ® is equal to ®(D,,) (D,
the g;r -derivation corresponding to 1,), which for n > 1 in turn equals (1.6). But the
derivation D’ corresponding to ¢ has simply P? as its natural-deduction image ®(D’).

This means that for n > 1 something special has happened here again to the natural-
deduction images of derivation-terms in a reduction-sequence o, of the above kind, some-
thing, that is not explainable by normalization-steps on the natural-deduction images of
the derivation-terms occuring in o,. — Closer inspection shows that the one and only jump
takes place—as in Vestergaard’s example—in the single inversion-reduction step occurring
in the reduction-sequence.
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1.5 Closer analysis of the “problematic” cut-elimination
step in GT

In the introduction to [Vest99] R. Vestergaard refers to an article by G. Kreisel in [Kr71] of
1971, which was intended by the author to supplement an earlier article with aspects and
thoughts springing up from the consequences of the then recent discovery of normalization
for natural-deduction derivations by D. Prawitz in the early and mid-1960ies. Kreisel was
interested in what exactly the new concept could tell about properties of and relations
between proofs (as informal objects that mathematicians are familiar with):

“Here I wish to emphasize formal results and and problems concerning rela-
tions between proofs, for example the identity relation between proofs described
by formal derivations of a given system.”

With respect to “normal derivations and conversions” Kreisel lists the following desirable
properties of normal derivations (in a not directly specified formal system, that for example
can be both a sequent- or a natural-deduction calculus) such that they can “serve as
canonical representations of all proofs represented in the system considered, the way the
numerals are canonical notations for the natural numbers”:

“A minimum requirement is then that any derivation can be normalized,
that is transformed into a unique normal form by a series of steps, so-called
“conversions”, each of which preserves the proof described by the derivation.
This requirement has a formal and an informal part:

(«) The formal problem of establishing that the conversions terminate in a
unique normal form (independent of the order in which they are applied).

(Bi) The informal recognition (by inspection) that the conversion steps con-
sidered preserve identity, and the informal problem of showing that

(Bii) distinct, that is incongruent normal derivations represent different proofs
(in order to have unique, canonical, representations).”

Vestergaard draws from this a connection to his findings and specifically stresses the above
requirement (/i) for this. He goes on to interpret the proof thought to be underlying a
derivation D in his typed —G3mi-like system g;r as just the natural-deduction image
®(D) of D (to be precise, only for a derivation D in g0+ not containing an application of
inversion). If this is done, his example of a “computational anomaly” really shows that
the cut-elimination procedure he uses similar to the one for the G3[mi]-systems given
implicitly in [TS96] indeed changes “proofs”, in Kreisel’s use of this word, it thus does not
preserve the identity of proofs.
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But it has to be remembered at the same time that—as Zucker’s result from 1974
shows—also the cut-elimination steps in the seemingly much better behaved L.J-near sys-
tem S do not preserve the so-understood identity of proofs, insofar as the steps for upwards
permutation of cut (Zucker calls these steps permutative conversions) change the natural-
deduction images of derivations; again, if only in a way that can be simulated on the
images by a finite sequence of normalization-steps'?.

It seems doubtful, that Kreisel had really wanted to have the meaning of the word
“proof” in the quoted passages understood as just a natural-deduction derivation (since
this is again a derivation in a strict formal system that can only model the mathematical
practice of proving and therefore does not really contain the proofs mathematicians deal
with and have in their minds). Nevertheless, in the absence of better suited candidates
natural-deduction surely can serve as a very good approximation to the informal notion
of proof.

Zucker in [Zu74] takes this as a starting point and provides arguments for the follow-
ing: If one accepts the view that the performance of normalization-steps on a natural-
deduction derivation does not change the underlying (informal) proof (a conjecture by
D. Prawitz in [Pra7l]), that is, that synonymity of derivations is equivalent to interre-
ducibility by normalization-reductions, then the results in [Zu74] can be seen as a jus-
tification to interpret—at least for the negative fragment &~ of Zucker’s sequent-system
S—the synonymity of derivations in the sequent-system S as the property of their interre-
ducibility by (appropriately specified) cut-elimination steps in S. (Pottinger in [Pott77]
later indicated a way how to generalize Zucker’s result to a full intuitionistic calculus.)

Vestergaard’s result shows that “synonymity” of derivations in his typed —G3mi-like
system g;f cannot be interpreted just as the interreducibility of their natural-deduction
images by normalization, if this so-understood “meaning” of derivations shall be preserved
by a cut-elimination procedure near to that for G3[mi] given implicitly in [TS96] (this
result was transferred here to a system comparable to Vestergaard’s but with an additional
explicit weakening rule).

Prawitz above mentioned conjecture “Two [natural-deduction] derivations represent
the same proof if and only if they are equivalent [i.e. interreducible by normalization-steps]”
in [Pra71] was challenged by S. Feferman in [Fef75], particularly for the V-contraction step
of normalization. He suggested instead:

“Even if it does not settle the relation of identity between proofs, the work
described by Prawitz may give simple syntactic explanations of other familiar
relations and operations, for example, for the idea of one proof specializing
to another or of extracting from a proof just what is needed for its particular
conclusion.”

107t is easy to check that the same is true in the here considered system G for the derivation-reductions
corresponding to the rewrite-rules of list B in section 3 for upwards-permutation of Cut.
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Following Feferman’s above words here an argument shall be given, why it can be thought,
that even the problematic step during a cut-elimination process in the system G1 as well as
in g;r , namely upwards-permutation of contraction that needs an additional application of
inversion (cf. the contraction-reduction rewrite-rule E.c, second case, that is the immediate
cause of the anomaly), does in fact lead to the extraction from a given derivation D in
g(_,'_ +Cont just what is needed to prove its conclusion. In the more precise sense that
only such unnecessary subderivations are getting “axed out” as a consequence of this
step during contraction-elimination, for which another subderivation leading to a stronger
conclusion stays in the transformed derivation.

For simplicity let us consider the “problematic” step in the cut-elimination procedure
for Gt in the case of an analogous step that occurs during the cut-elimination proce-
dure implicit in [TS96] for the untyped —G3mi-system. There during a subprocess of
contraction-elimination the following situation of a derivation D

Dy D,
A—-BA->BI'=A B,A—- B, I'=C
A-BA-BI=C L=
A—-BTI'=C

(1.8)

C

can occur. Here the contraction at the bottom of D cannot be directly permuted upwards
over L—, at least not in the case, when A — B ¢ I'. Here D gets transformed by the
procedure in a first step to

Dy
Dy A5 BBT= C
A BA-BT= A BBl = C W (1.9)
A5BT=> A4 © BT = C
L—

A—-BTl'= C

by the use of an additional application of inversion. The removal of the inversion at the bot-
tom of D is then responsible for the unwanted effects described by Vestergaard’s anomaly,
since during this operation of inversion-elimination some sub-derivations of D; can disap-
pear completely (in the setting of the typed calculus G in an analogous situation some
subderivations can equally get lost when going over to the respective natural-deduction
images, an effect, which ultimately leads to the “anomalies”). It shall be tried to argue
here, that while in a proof thought to be underlying (1.8) as an informal object indeed
some sub-proofs, corresponding to subderivations of Dy, can be lost as a consequence of
inversion-reduction steps in D; following after the situation (1.9), such lost subproofs lead
only to weaker versions of the sequent A — B,I' = A, a proof of which must then still
underly the transformed derivation Dy after the elimination of the succeeding contraction
in (1.9) there.
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To be able to demostrate this, two lemimas are necessary, the first analyzes the structure
of Dy in (1.9) and the second describes the result of eliminating the newly appearing
inversion there completely from the left immediate subderivation of L—.

Lemma 1.10. Every deriwation Dy in —G3mi with the conclusion B,A — B,I' = C
has the structure
Dn Dy,
(A—)B,F1H121:>01> (A%B,annzn:>01>
Dy
B,A—B,I'=C

(here a sequent in brackets (...) means exactly one occurrence of this sequent as a leaf in
the derivation-tree of the “partial derivation” Dig), where

(1.10)

(i) each derivation Dy; (i =1,...,n) is either an aziom or terminates with an applica-
tion of L— and is hence of the form
Diio Diin
A= B.TILY, = C; —
where furthermore for all i € {1,... ,n}
[Crl and (1.12)

VD eTU{B} Del;V
(EID' strictly positive subformula of D )(D' € H,)]
(but no property of the formulas in 3; is singled out here).

(i) Do is a partial derivation (i.e. it contains sequents A — B, 1;1L;Y; = C; as top-leafs,
that are not necessarily axioms), which contains no axioms except ones that occur
among the Di1,... ,Dy, and no L—-application with principal formula A — B.

Lemma 1.11. The result D} of eliminating a bottom-most application of inversion ac-
cording to the cut-elimination procedure implicit in [TS96]' in the —G3mi-derivation
D1 of the form

Dy Dy,
(A—>B7F1H121 :>Ol> (A—>B,FanEn:>Cn)
Dy (1.13)
B,A—- B,I'=C
BBT=C ™ ;

Y Cf. the item (vii) of the inversion-lemma in the Proposition on p. 66, 67 and its proof in [TS96], on
which the proof of the cut-elimination theorem for the G3[mi]-systems relies for the treatment of such a
subproblem.
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where the immediate subderivation Dy of the bottom-most inversion in Dy is of the form
(1.10) with the conditions on Dy, D1;, T, 11;, 3 as in Lemma 1.10, is

D}, Din
(B,T/ILE = C1) ... (B.LLILS, = Cy) (1.14)
D1o{A — B/B}
B,BT =C

(where D1g{A — B/B} means the result of replacing exactly one occurrence of A — B in
the antecedent of every sequent by B) and where for alli =1,... ,n

(1.15)

/ {Dlil ... if Dy; s not an azxiom
1 *—

- (the aziom:) B, 1IN, = C ... if Dy; is an axiom
(D1i0 and D1;1 mean the subderivations of Dy with these denotations from Lemma 1.10).

The Proofs of these two lemmas consist just of—appropriately formulated—inductions
on the depth of the derivation D;.

The derivation D; in (1.9) can by Lemma 1.10 be seen to be of the form (1.10) with
the derivations Dy; of the form (1.11) and the conditions on Dig, Dy;, I, I1;, E; as in
Lemma 1.10.

By Lemma 1.11 the result of eliminating the inversion appearing in (1.9) is then

Dy 2
A-BA—BT= A B,B.,T = C
C C (1.16)
A-BTl= A BT = C
1-BT=C L=

where D} is of the form (1.14) (with subderivations D}, for i = 1,...n as defined in
Lemma 1.11). As described by Lemma 1.11 D] is the result of dropping subderivations

D10

1.17

from Dy and of replacing a single passive occurrence of A — B in every sequent throughout
Dlg by B.

Due to (1.12) the conclusion of every derivation (1.17) is obviously weaker than the
conclusion A — B,I" = A of the derivation leading to the left premise of L— in (1.16). It
seems therefore justifiable to say that while removing the additional occuring application
of inversion in (1.9) leads in effect to the loss of subderivations in the result (1.16) of this
subprocess, these lost derivations would correspond only to weaker versions of a sub-proof
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that stays in the transformed derivation (that one that underlies the proof of the left
immediate subderivation of L— in (1.16)).

In other words, although the subderivations Dy in (1.17) of D; disappear as a con-
sequence of the upwards-permutation of contraction over L— in (1.8) via the first step
(1.9) and the following inversion-reduction steps, the process as a whole may be seen here
as keeping back only one essential copy of a derivation for A — B,I' = A (underly-
ing the further transformed derivation Dy), while possibly many proofs of “special cases”
A — B, IILY; = A (where [, II; satisfy (1.12)) of A — B,I' = A get “axed out”
from D;. The process of cut-elimination in this contraction-elimination step could then
be thought of as dropping applications of unnecessary lemmas from the proof underlying
D, that turned out to be special cases of a statement, for which a proof is retained. Or,
as extracting from the proof, that is thought to be formalized by D, essential parts for a
derivation of its conclusion, using the distinctive combinatorial properties of the L—-rule
in an intuitionistic or minimal G3[mi]-system.

1.6 An alternative system —G2'mi*

It is not apparent from the outset, why Vestergaard chose to present his result in the
setting of a typed system, where the antecedents of sequents are considered to be multi-
sets of variable-annotated formulas (instead of as respective such sets). He only stresses
that he is interested in the “computational meaning” of single rules and of derivations
in the (untyped) G3[mi]-sytems (and whether such a precisely definable “computational
meaning” of a derivation is affected or not during the execution of cut-elimination steps),
where the antecedents of sequents in fact are multisets of (not annotated) formulas.

On the other hand the logical rules in Vestergaard’s system (as in the very similar
system GT above) do act on their premises by treating multiple occurrences [x : A] of
annotated active formulas x : A in a set-like way as one object for the rule-applications
(with the obvious unstated motivation of considering such multiple occurrences as referring
to the same assumption class in a corresponding natural-deduction derivation).

Also J. Zucker in his ground-breaking paper [Zu74] about the exact relationship be-
tween cut-elimination in a sequent-calculus and normalization in a related natural-deduc-
tion system took a sequent-calculus § as the basis for his investigation, in which the an-
tecedents of sequents consist of sets of (precisely defined:) “indexed” formulas and where
the rules were formed appripriately for this notion of sequents. Zucker’s system S is (as to
the logical shape of its rules, not with respect to the special indexing conventions used in
it) close to Gentzen’s L.J and could be easily transformed into a typed system, such that
his results of a close correspondence between cut-elimination steps in § and normalization
steps in A/ (his slightly modified system for natural deduction) would carry over to the
typed system (if variable annotations and indexes of formulas were corresponding to each
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other bijectively, the typed system therefore then being only the result of rewriting S).

In the conclusion of [Vest99] Vestergaard states that the “anomaly” could have been
avoided by using a variant-system instead of (the here called system) g;‘ with the an-
tecedents of sequents consisting of sets instead of multisets:

“The computational anomaly could [ ... | have been avoided if we instead
had considered (a variant) of G31i incorporating a notion of assumption classes.
This can be accomplished, e.g. by defining antecedents to be sets of variables
with a proposition annotated. In such a setup we could have utilized the
implicit contraction which is expressed in the idempotency of set union to take
place of the trouble instigator in G3i: the explicit contraction rule.”

It could be argued in more detail, why we think that this is not, at least not directly
possible: (1) In an axiomatic cut-elimination step comparable to the case covered by the
rewrite-rule A.a a lemma for substitution (comparable to Lemma 1.4 and Lemma 1.6)
has to be relied on also in a new system, but such lemmas do not hold any more in the
case, that the axioms are not restricted to such that have only atomic active formulas
(as in Vestergaard’s system g;r ); else completely similar problems as are the cause of the
“anomaly” could come in from the seemingly harmless case of an axiomatic cut-reduction
in an new system comparable to the reduction A.a on derivation-terms in G*. (2) One
encounters difficulties with the treatment of upwards permutation of Cut in the case of
non-principal cut-formulas (reductions on derivations similar to those given in list B for
reductions on derivation-terms). Difficulties, that may indeed let Vestergaard’s system gj‘
(and the here defined system GT) with the antecedents of sequents consisting of multisets
look as a quite natural choice for a typed —G3mi-like calculus, that relates derivations in
it quite naturally to natural-deduction derivations and at the same time allows to describe
cut-elimination for derivations in it (to be precise, cut-elimination done close to the usual
way for a G3[mi]-system) as a stepwise and local process.

Vestergaard’s suggestion cited above can be carried through for the following typed
system —G2'mi®*, which has a very —G3mi-like formulation of its L—-rule and is itself
a G3-system (this means, contraction is an admissible rule for it), but which perhaps
derives more from the type-annotation of a G2-system —G2'mi (in which contraction
is not an admissible rule any more—due to the fact that the context in the premises of
L— is not the same any more as in the respective rule for the G3[mi]-systems). The
explicit structural rules in —G2'mi®* have also (as in g;r and g+) been defined just in
such a way so as to make cut-elimination possible as a stepwise process of locally applied
transformations (the role of contraction is taken over by a renaming-rule Ren, where two
successive renamings always suffice to mimick an arbitrary given contraction).

Definition 1.6 (The derivation-term annotated system —G2'mi*). The system
—G2'mi* is defined as follows: The antecedent of a sequent in this system is a set
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of variables of formula-type (written as variable-annotated formulas), the succedent con-
sists of a (rigidly) typed derivation-term, whose free type-variables occur in the antecedent.
—G2'mi®* has the following axioms and rules:

Ax 2:P;I'=ax,pp: P (P atomic)

z:A; I'=1t:B

R—
I'=X4t?: 4B
L r: A= B;Tg=1t: A y:B; 1=t :C
_)
x:A— B,To, Iy = let,s(t{, x4 B : C
R u:A; I'=t:C
en
v: AT = Renya a(t9) : C
W r=t¢t:C

AT = WA(t%) . C
Here the following notations are used:

e Expressions I'g, 'y or ['yI';y mean the set I'g UI'y, expressions = : A, " denote the set
{z: A} UT, and = : A;I is also to be understood as {z : A} UL, but thereby z : A
is understood to be no element of I'.

e As in Definition 1.2 typed variables 2 are also written as = : A (when they occur

in the antecedent and thereby informally refer to marked assumptions of a corre-
sponding natural-deduction derivation). Terms t© in the succedent of a sequent are
written in the form ¢ : C' (since they are often informally thought of as derivation-
terms describing a natural-deduction derivation with conclusion C').

The term in the succedent of the end-sequent of a —G2'mi*-derivation D will be called
the derivation-term of D.
The systems —G2'mi®*+Cut are the systems —G2'mi®* enriched with the cut-rule

I'=1t:D z:D;ll=t:C

Cut
h I = t{[2P :=tP]: C

as an additional inference rule. X

Derivation-terms in this system again represent derivations uniquely (due to the rigid
typing in these terms). For cut-elimination in this system it is necessary that it is possible
to reconstruct the antecedents ant(¢) of the conclusion-sequent I' = ¢ : C' of a derivation
from the derivation-term ¢. Like in GT this can be done inductively using the following
definition:
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Definition 1.7. The operation ant on —G2'mi®*-derivation is defined as follows

={xz:P}UT ;

ant(tP)\ {z: A} ;

ant (tj') U (ant (¢7) \ {y : B}) ;
(ant(t)\ {u: A}) Ufv: A} ;
an (tC)UA

= ant (t§') U (ant(t{) \ {z : D}) .

Again, outermost types of terms on the left sides of the definition have been dropped here,
whenever it is possible to reconstruct them. X

ant(ax,e p
ant(Az? 1P

ant(let, s (t¢, 247 B!

to)
ant(Ren,a ,a(t =)
ant(W2 (%)

01

ant (tS 2P =t}

)
)=
) :
)=
) :
) :

Then the following lemma holds:

Lemma 1.12. For every (—G2'm® + Cut)-derivation-term t there is exactly one deriva-
tion D in (—+G2'm**+Cut) such that D is of the form

D
'=t:C

(T a set of formulas); for this derivation D moreover I' = ant(t®) holds.

Proof. Again (as for Lemma 1.3) by induction on the syntactical depth of t¢, thereby
inspecting all rules of —G2'mi®* for the induction-step. O

Theorem 1.2. Cut-elimination holds for —G2'mi®*.

More precisely, every derivation D in (—G2'mi®*+ Cut) can be transformed by a finite
sequence of successively applied local reduction-steps with the result of a cut-free derivation
in =>G2'mi®* containing no applications of structural rules mW or Ren.

Furthermore the process of cut-elimination for a deriwation D in —G2'mi®* can be
completely simulated on derivation-terms by applications of rules from an appropriate
rewrite-rule system starting at the derivation-term t of D; these rule-applications have
to respect a certain order, in which single rewrite-rule steps are successively executed.

The Proof of this theorem is very similar to that of Theorem 1.1. The rule Ren
turns out to be eliminable from the bottom of a derivation containing only logical rules
by upwards-permuation over logical rules without the need to introduce other non-logical
rules of -G2'mi®*. Nearly the same applies for mW, since here applications of Ren are
needed to make upwards-permutation of mW possible!?. Cut-elimination can then be
done as a process of local transformation-steps referring to the subprocesses of eliminating
applications of Ren and mW from cut-free derivations in —G2'mi®*

12(in some cases of upwards-permutation of mW over R—)
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It seems that similar problems as with inversion, that is the obvious direct cause of
the “computational anomalies”, in G are completely avoided in —G2'mi®*. This is on
the other hand but not so astonishing, since the system —G2'mi®* is actually very near
to Zucker’s system S and would even completely'® match with it, if a variant of it were
considered with similar restrictions on the indices as in S (the closeness of —G2'mi®*
to S can be seen very good from a slight reformulation of & by A.M. Ungar in [Ung92],
Appendix A, starting on p. 186); for such a variant-system the correspondence between
cut-elimination and normalization on normal-deduction derivations (with respect to an
appropriately defined map ® as in section 2) holds again as in Zucker’s system.

13The G3[mi]-like formulation of the L—-rule still stands out a bit then, but [I think, C.G.] this does
not cause similar problems as in 1 and g7 .



Chapter 2

Strong Cut-Elimination

G. Gentzen devised sequent-calculi for classical and intuitionistic predicate logic as systems
that are equivalent to related' natural deduction calculi and that allowed him to obtain
important formal results about the possible structure of proofs for arbitrary given provable
conclusions; results that could then be “exported back” to the natural deduction systems
(which were also mainly developed by Gentzen and can be considered as precise formal
proof systems very near to the actual mathematical practice and therefore were and are
of great foundational interest) to gain deep metamathematical importance.

For establishing the equivalence of sequent- and natural deduction calculi formalizing
the same logic (equivalence in the sense that the same theorems are provable in these
systems) a certain rule in sequent calculi, the cut rule, suggested itself as being useful
and necessary and was introduced for that purpose by Gentzen. His main formal result
for sequent-calculi, the “Hauptsatz”, states that applications of the cut-rule in derivations
either of his sequent-calculi LK for classical or LJ for intuitionistic predicate logic can be
effectively removed and the derivation itself can be transformed into a cut-free form (i.e.
one in which the cut-rule does not occur any more). This can be carried through with
the help of an effective cut-elimination procedure that proceeds by the stepwise execution
of local simplifications (i.e. reductions) to a given derivation containing applications of
cut and arrives at a cut-free proof of the same conclusion after a finite number of such
reduction-steps. The proof-reductions used in this procedure can be completely specified
as to the exact conditions of their applicability and to the result produced by them and
they can be gathered and listed into a finite catalogue of such steps.

Cut-elimination procedures such as the one implicit in Gentzen’s proof of the “Haupt-
satz” for L.J and LK prescribe a certain order (as well as many other similar procedures
for related and different sequent calculi do the same) in which these reduction-steps have
to be applied to a given derivation containing cut such as to then guarantee termination.

!(this means: formalizing the same logics)

44
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Usually first topmost occurrences of cut? in a derivation are considered and treated,
are either removed right away whenever this is possible (e.g. in the case when an axiom
is involved as a premise) or are permuted upwards over logical or structural rules or split
into two or more applications of cut (of a somehow simpler kind); (“somehow simpler”
means that:) in all cases a parameter associated with the number, places and forms of
the applications of cut in a derivation D has to be seen to have decreased strictly while
performing such a reduction-step, so that termination of the whole procedure can then
be seen directly given the domain of this derivation-associated parameter concerning the
applications of cut in D is well-founded.

There is often some indeterminateness left in the process, but this is mostly narrowed
down considerably to either the choice of an arbitrary topmost cut or to the possibility
that at some place in the derivation perhaps two or more reduction-steps can be chosen
and is generally very far from allowing the execution of arbitrary applicable steps to a
given derivation (at perhaps even arbitrary places therein) from the procedure’s catalogue
of reductions. That is, proofs for cut-elimination usually do not also show termination of
a related procedure P;, in which the possible reduction-steps implicit in the procedure P
can be applied to a given derivation containing cut in an arbitrary, only by the general
conditions of their applicability restricted order.

While Gentzen had found himself lead to the introduction of sequent-calculi for the
purpose of proving his outstanding foundational results, D. Prawitz ([Pra65]) discovered
a more direct possibility of arriving at basically the same metamathematical results by
considering natural deduction calculi alone and by giving a structural proof-theory of these
systems without (from the outset:) reference to sequent-calculi. He gave—in some ways—a
similar procedure to cut-elimination in sequent-calculi that allowed to construct “direct”,
then called normal natural deduction derivations (i.e. derivations that can roughly be
described as ones that avoid to go unnecessary “detours”) when starting out from given
arbitrary such derivations (in one of Gentzen’s natural deduction systems N K for classical
and N J for intuitionistic logic). This procedure for the normalization of natural deduction
derivations can (like a cut-elimination procedure) also be considered as consisting of the
executions of atomic reduction-steps, steps that again can be completely described as to
their exact outlook and the very precise circumstances of their applicability; they also
can be gathered to form a short list of different types of reductions. Prawitz’ original
normalization-procedure demanded that these possible reduction-steps have to be applied
to a given natural deduction derivation in a completely specified order that is determined
by the procedure (namely always treating the rightmost, topmost and longest “detour”
in the given derivation first and either removing it completely or decreasing it in its
length). — Using the close connection between sequent- and natural-deduction-calculi

%(in the case of the procedure implicit in Gentzen’s proof a generalization of Cut, the mix-rule Mix,
comes in)
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Prawitz was then also able to give an alternative, though now more indirect proof for
Gentzen’s “Hauptsatz” in the sequent calculi LK and LJ and he did state this result as
a corollary to his Normalization Theorem.

Later Prawitz recognized that the stepwise execution of arbitrary but applicable
reduction-steps from his first found normalization-procedure to a given natural-deduction-
derivation ultimately always leads to a normal proof after the execution of finitely many
of such steps; the normal proof thereby constructed by the normalization-procedure is also
unique (if some additional easy simplifications and transformations are observed). Prawitz
thereby obtained what was then called a Strong Normalization Theorem ([PraTl]).

Although Prawitz’ normalization result for natural deduction calculi had allowed him
to arrive also at an alternative way of performing cut-elimination in the related sequent-
calculi and although there appeared to be “obvious similarities” between normalization
and cut-elimination as methods to obtain normal-forms for proofs, the question as to
their exact connection or correspondence, whether they “really are the same thing” (all
cited words here are from [Pott77]), was still unanswered. Cut-elimination had been seen
to admit simulation through normalization by Prawitz, but this did only show that cut-
elimination as a whole completed process could be done quite differently and did not tie
these two concepts for constructing normal-forms of proofs together closely enough by
giving a precise correspondence between reduction steps in either of these methods with
each other.

A thorough investigation of the exact relationship between cut-elimination and nor-
malization with respect to intuitionistic calculi was presented in [Zu74]. J. Zucker took a
variant § of Gentzen’s L.J, namely a version with the antecedents of sequents consisting
of indexed formulas, as the starting point of his investigations. He defined a many-to-one
map ¢ from his intuitionistic sequent-calculus S to Ni and was then able to prove that
there exists a mutual correspondence under ¢ between “natural” cut-elimination steps
(as such Zucker saw the ones also used by Gentzen) in S~, the negative fragment of S,
and normalization steps in Ni—, Ni’s negative fragment. — His detailed analysis made it
possible for Zucker to show that every cut-elimination or strong cut-elimination theorem
for S~ implies a normalization or respectively a strong normalization theorem for Ni~
and vice versa.

Zucker was also able to extend his results to the full calculi § and Ni, but only at
the expense of having to deviate from some of what he saw are Gentzen’s altogether very
natural cut-elimination steps (and of having instead to employ somewhat “unnatural”
ones®). G. Pottinger in [Pott77] gave an alternative approach to Zucker’s results and
also extended these to the full respective proof-systems for intuitionistic predicate logic
by again giving some new cut-elimination steps not previously used (it is meant: not

3This concerns such cut-eliminations steps that deal with the permutation of cut upwards over
introduction-rules for V and 3.
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presented) by Gentzen. But he insisted that at least the fact that these few alternative cut-
elimination steps facilitate a direct correspondence between cut-elimination in Zucker’s &
and normalization in Ni makes them appear perhaps even more natural than the respective
ones utilized by Gentzen (for proof-transformation in similar situations).

In 1977 A.G. Dragalin (for an exposition see [Drag79]) gave a quite different and self-
contained proof of the fact that a strong form of the cut-elimination theorem also holds
for Gentzen’s calculi LK and L.J, and namely in the interesting sense that this is even
true w.r.t. exclusively such cut-elimination steps as had already been used by Gentzen.

The results of Zucker and Pottinger (here stated without proof:) do carry over to
the minimal and intuitionistic sequent-calculi GK3[mi] with implicit structural rules as
originally developed by S.C. Kleene (but here used in the notation as well as in the
presentation of these calculi from [T'S96]) and thereby also allow to establish an analogous
correspondence between cut-elimination in GK3[mi] and normalization in N[mi].

But as was explained earlier in Chapter 2, a Zucker-type correspondence does not
exist between the N[mi]- and the G3[mi]-systems, again calculi without explicit struc-
tural rules and presented in [TS96] (these G3-systems? in a somewhat different presen-
tation are mainly due to A.G. Dragalin, but were reformulated with only one formula
in the succedent—as this is a more common formulation of intuitionistic systems than
Dragalin’s—by A.S. Troelstra). Hence strong normalization for N[mi] does not—at least
not in an obvious way—carry over to yield a strong cut-elimination theorem for G3[mi].
— On the other hand Dragalin’s proof for strong cut-elimination in L.J and LK does not
directly apply to the G3-systems (since it was intentionally specified to cover LJ and
LK—with weakening and contraction rules present there—and only cut-elimination steps
already used by Gentzen).

2.1 A Strong Cut-Elimination Theorem for —G3mi and
— 1 G3i

In Gentzen’s procedure for cut-elimination in the sequent-calculi LK and L.J the reduc-
tion steps applied to a derivation D containing Mix®> w.r.t. a topmost occurrence S of
Mix are essentially local; this means they do not involve operations to be applied to whole
subderivations in D (more precisely such subderivations ending more than one rule appli-
cation above the premise of S) but do only combine immediate subderivations of S and
other such subderivations ending not more than one rule application above S in a new
way (which can mean some such subderivations are being dropped altogether) and with
some few rule applications being added at the bottom of an appropriate combination of

“The designation G'3 for a Gentzen-system without explicit structural rules originated with S.C. Kleene's
system of this name in [K152].
>Which essentially takes over the role of Cut in his proof.
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subderivations such that S ’s conclusion-sequent is reached again. In the added rule ap-
plications extensive use is made of L.J and LK ’s structural rules (weakening, contraction
and—since Gentzen used lists as antecedents and succedents of sequents—also exchange).

In the notation and formulation of sequent-calculi for minimal, intuitionistic and clas-
sical predicate logic according to [T'S96] the structural rules weakening and contraction
that appear in the basic G1-systems have been completely absorbed into the calculi in the
G3-systems. This means they are not longer present as explicit derivation-rules but can be
proven to be derived (or “admissible”) rules of the calculi, i.e. lemmas about derivability
valid in the systems G3[mic] .

Definition 2.1 (The Gentzen systems —G3mi¢, — 1 G3i¢). The variant — 1 G3i°
of G3i’s absurdity-containing implicative fragment —_1 G3i with explicit structural and
inversion rules is specified by the following axioms and rules:

Ax P,T'= P (P atomic) LL1I'=A4

A—->BTIl=A4 B, I'=C R Al'= B
AS>BTIT=C 7 T= A-B

= C

w Al= C
A AT = C
Al'= C
A—-BTI'= C

w—pF=7

The variants —-G3m® and —G3i°€ of the implicative fragments —-G3m and —G3i of
G3m and G3i with explicit structural and inversion rules are defined just as —_L G3i¢,
but with all axioms LL left out. (Since -+G3m and —G3i mean the same formal
system, also -G3m® and —G3i° are identical calculi and will be together referred to as
—G3mi°.

L— and R— will be called the logical rules, weakening W and contraction C the
structural rules of the systems defined here.

The systems —+G3mi® and — 1 G3i® will sometimes be enlarged by the adding the
cut-rule

=D DI=C
Iri=«¢

The resulting systems will be denoted by —+G3mi®+Cut and — 1 G3i®+Cut. =

Cut

When attempting to construct a stepwise local cut-elimination procedure for —_1 G3i,
which operates in the usual way of always treating a topmost occurrence of cut first, by
either removing it completely (whenever this is possible if an axiom is involved) or by
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permuting it upwards over logical rules, or by splitting it into a few cuts of “simpler” kind
(if the cut-formula is principal in both inferences of the immediate subderivations), one is
for example led to the following cut-elimination reductions as in the lists A, B and C below.
In the reduced derivations essential use is made of —_1G3i¢’s structural rules weakening
and contraction and therefore these reductions take (— L G3i+Cut )-derivations over to
(—LG3i°+Cut )-derivations.

Cut-elimination for —+G3mi can thereby be treated as a special case, in which fewer
reduction-steps for transformations involving rule-applications immediately succeeding ax-
ioms have to be devised (due to the fact that —G3mi has the same rules but less axioms
than — 1 G3i). For the purpose of motivating the below reductions it will therefore only
be spoken of — 1 G3i and the just slightly more general situations occuring for derivations
in this system.

A. Reductions by elimination or simplification of cuts with axioms:

(1) Either of the premises of Cut is an axiom Ax :

Dl Dl
a. PTy=P P Il = C > red PIl= C W
Pll=C ut P.lll= C
D[) DO
b. =P PIl= P c > red I's P W
M= P ut M= P
Dy
¢ I'sD PDI=P >ed  PTI= P
PIl= P ut

(2) Either of the premises of Cut is an axiom L. :

Dy

d. _L,F:>_D D,H:>C >7“ed J_,FH:>C

I To=C ut

Dy

e. I'=D 1L, DIy = C C > red L,y = C

1T, = C ut

1, To=1 1,y =C

f. 0 0 Cut > red 1, Dolly = C

_L, Tolly = C
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Do Doy
A—BIlyg= A4 B, T'y=1
& A5 BTy =1 L= T n=c¢ 7 red
A5 BT C Cut
DOO DOI
A= BTy=A BTy=1l 1L IO=C
A= B, Il= A B,Tol=C Cut
A B L= C R—
B. Reductions by permuting cuts upwards over logical rules:
a.
Do Dy
A—-BTITy=A4 B, I'y=D D
15 BT, =D L= pm=c > red
A5 B II=C ut
DOO DOI Dy
A—->BTy= A B Iyv=D D/II=C
15 B A B.TI=C Cut
A5 B.T0=C L=
b.
Do
Dy A,D,Il= B
=D DI=AoB R~
M= A—> B Cut
Dy Dy
I'=D D, All=B
ATI= B Cut
M= A>B
C.
Do Dy
Dy A= B/ DIy=A B,D]I=C N
I'=D DA-5BIy=C L= red

A— BTl =C

20
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Dy Dio Dy D1y
I'=D A—-B,DIj= A I'=D D,B,Ilj = C
A5 BT, = A4 Cut B.TM, = C Cut
A5 BT, =C L=
C. Fork Cut-Reduction®:
Dyo Dyp Dny
Al'= B A—-BIl=A BIl=C
= A B 17 A= B]Ill=C L= Zred
= C Cut
Do
A7F = B Dlg
T=ASB Y7 ASBI=A Doo
Cut o =4 AT=B Dy
ut o L= B B,Il=C
ut PP = C
Ni=cC

A process of cut-elimination based on the above reductions also requires the effective
removal of the contraction and weakening rules, not present in —_1 G3i. For this purpose
it will suffice to give a list of local transformation steps which allow to build a procedure
for eliminating a single weakening or respectively a single contraction rule as the last rule
application S from the bottom of a derivation D, where S ’'s immediate subderivation is
in fact a — 1 G3i-derivation, i.e. does not contain cut nor any of —_L G3i¢ ’s structural

rules.

Upwards permutation of weakening turns out to be straightforward, while that of

contraction needs another of — 1 (G3i¢’s structural rules, namely inversion of L— .

D. Weakening Reductions:

(1) Involving an Axiom:

PI'=P

—D,P’F:>P W >red P,D,F:>P
1. I'= A

Tz Tt >

DirsaA W ~r LDI=A

5The name “fork-reduction” follows Dragalin [Drag79].
5The name “fork-reduction” follows Dragalin [Drag79].
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(2) Permuting weakening upwards over logical rules:

DOO DOO
c ATl'=B S ATl'=1B
' = A—B \I;V% e A DI =08
DT=A—-B DI=A=B
d.
Dyp Doy
A-BT=> A4 BI=C §
A-BTI=C - T
D.ASBTl=C
Dyo Doy
A—-BTI'=A B,I'=C

1B DT=AY BbDIT=C WV
L—

A—-B,D,'= C

E. Contraction Reductions:

(1) Involving an Axiom:

P,D,D,Ty= P

a. P,D,F0:>P C > red P7D7F0:>P
P.PTy= P

b HhHlo=1F

PT,= P C >red PTygy=P

L,D,D,Ty= A

. >

¢ T DI,oAC ~m LDlo=4
1,17 A

4. ——eo=Aa o L,Ty= A

1, Tg=A

(2) Permuting contraction upwards over logical rules:

Dyo Dyo
A,D,D,Ty = B D.D,ATy= B
D DT, Ao B v e 1D.T,=>B °
DT, AoB © DT, Ao B

f. Contracted formula is not principal in L— :
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Dy Doy
A= B DDTy= A B,DDTy= C
D.D,A— B,Iy= C L= 2
D,A— B, Ty= C C
Dyo Doy
D,D,A— B,Ty= A D,D,B,Ty = C
A5 B DI,= A B, D.Ty= C
15 B,DT,= C L=
g. Contracted formula is also principal in L— :
Dy Doy
A->BA—->BI'= A B,A—B,I'= C
A5BASBT=C L= Zred
A—-BTI'=C
200
Doo A—-B,B,I'=C
A—-B A BT =A B,B,T=C W
A5BT=A4C BT=C C
15BT=C L

93

Now also reduction-steps for the systematic removal of inversion are needed to build a
cut-elimination procedure for —_ 1L G3i. It will again suffice to give such reduction-steps
that permit the removal of a bottom-most application of inversion in a derivation that is
otherwise a — 1 G3i-derivation (i.e. one containing neither Cut nor one of — 1L G3i¢’s
structural rules). No other structural rule (let alone a new one) is needed for upwards

permutation of inversion.

F. Inversion Reductions:

(1) Involving an Axiom:

PA—BTI=P
B,PT =P
1, A= BTI'=C

b.
J_,B,F:>C Inv > red J—7B7F:>O

Inv > red P,B, T =P

(2) Permuting inversion upwards over logical rules:
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Dy Do
. C,A—B,I'=D R S C’,A—>B,F:>DI
' A>Bl=C—>D 7 red C.B.T=D ™
BT=CoD ™ BT=CoD

d. Active formula of inversion is not also principal formula of L— :

Doo Doy
C—-DA—-BIl'= C D,A—-BI'= F

>
A+B.CoDT= E L= red
B.C>DTIl=E W
Dgo DOl
A—-B,C—-DTI'= C A—-B,D,'= FE
Inv Inv

C—-DBI'=C DB I'= FE L

%

C—-D,BI'=FE

e. Active formula of inversion is also principal formula of L— :

Dyg Dy
A—-BTy= A4 B T'y=F Do1
A5 BIly=E Lo 2rd  ppio E
B.T,= E ™

It will be possible to show (by following and varying Dragalin’s proof of strong cut-
elimination for LJ and LK) that the reduction-steps from the above lists A-F can be
applied to a given (—LG3i+Cut)-derivation D stepwise in an arbitrary order and at
arbitrary places within D or within the meanwhile already transformed derivation (and
where single reductions are only subject to the restrictions of their applicability as apparent
from their description in A-F), such that for every sufficiently long sequence of reduction
applications a cut-free form of D is reached. In short, strong cut-elimination holds for
— 1 G3i with respect to the set of reductions in the lists A-F.

As also indicated above the reductions in A-F derive from analyzing closely the cut-
elimination procedure implicit in the Cut-Elimination Theorem for the G3-systems in
[TS96] (for the special case considered here of G3[mils’ absurdity-containing implica-
tive fragment — 1 G3i) and allow to rebuild and at the same time further specify this
procedure as a stepwise process of locally applied transformations.

In order to consider a strong form of a cut-elimination theorem for —_1 G3i and
for —-G3mi w.r.t. above listed (types) of reduction rules now a clarifying definition is
necessary.
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Definition 2.2 (Reduction, normal derivations, strong cut-elimination).
Let L be one of the calculi -+G3mi® or — 1L G3i°.

1. Let D, D’ be L-derivations.

D L-1-reduces to D' (in signs: D > D') iff there exists a subderivation Dy of D such
that Dy >,eq D} by one of the reductions of the list A-F, if L is — 1 G3i¢, [of A.a—c,
B-C, D.a, D.c, D.d, E.a., E.b, E.e—g, F.a, F.c—e, if L is -G3mi€], and D’ is the
result of the replacement of Dy by D} in D.

2. A derivation is said to be L-normal iff it does not L-1-reduce to any other derivation,
i.e. if no D’ exists such that D > D'.

3. Strong cut-elimination holds in L w.r.t. reductions of the lists A—F iff for all L-de-
rivations SN~ (D) holds (this means in the notation” of [TS96] that D is strongly
normalizing w.r.t. >, i.e. that the reduction-tree of D w.r.t. L-1-reduction > is
finite). X

The following theorem is the main result of this section.

Theorem 2.1 (Strong Cut-Elimination for -G3mi and — L G3i).
Strong cut-elimination holds for the calculi -G3mi and — 1 G3i with respect to reduction
steps in the lists A-F.

The Proof of this theorem is split into several lemmas and will be concluded later in
this section on page 69.

Lemma 2.1. A derivation D in one of the calculi —G3mi® or — LG3i¢ is normal iff
it does neither contain weakenings, inversions, contractions nor cuts as rule-applications,
i.e. iff D is a =»G3mi-, or respectively, a — 1L G3i-derivation.

Proof. 1t is clear that a derivation D which does not contain weakenings, inversions, con-
tractions or cuts as rule-applications is normal (since all reductions >, of the types
listed in A—F presuppose the existence of at least one weakening-, inversion-, contraction-
or cut-rule in the derivation; therefore D > D’ for some derivation D’ is not possible).

On the other hand any derivation D containing at least one rule application that is a
weakening, an inversion, a contraction or a cut cannot be normal:

To see this choose a top-most such rule-application S and let Dy be the subderivation
of D with S as its bottom-most rule application. Then all rule applications in immediate
subderivations of Dy above S are applications of logical rules of L (i.e. of L—- or R—-
rules).

"(here slightly expanded with the additional used explicit sign >)
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If S is a weakening it is easy to see from the list D of reductions that at least one of the
reductions >, from this list is applicable to the immediate subderivation Dyy of S in Dy
(the reductions in this list have exactly been chosen such as to exhaust all possible cases).
— The same can be checked for the lists F and E, if S is an inversion or a contraction.
Hence Dy >eq Dy for some D in all these cases.

If S is an application of cut and Dyy and Dy; are its immediate subderivations in D
then either (1) one of Dyy or Dy; is an axiom, or (2) both of Dyy and Dy are not axioms
and furthermore are of such form that the cut-formula of S is not principal in at least
one of the two bottom-most rule-applications in Dyy and respectively in Dy; immediately
above S, or (3) both of Dy and Dy; are not axioms and the cut-formula of S is principal
in both of the bottom-most rule-applications in Dgg and Dgy. It can easily be checked
that in case (1) one of the “axiomatic”-reductions >,.; from list A is applicable to Dy,
in case (2) one of the reductions from the list B of cut-permutation reductions (that deal
with upwards permutation of cut over logical rules), and in case (3) a fork-reduction is
applicable to Dy. This means that then again Dy >,.4 D holds.

Thus whatever rule application out of W, Inv, C or Cut the inference S happens to
be, always Dy >, Dj holds. Hence D > D' follows for that derivation D" which is the
result of the replacement of Dy by Dj in D. Thus D is not normal. ]

Definition 2.3 (Reductive Derivations). Let L be either of the calculi —G3mi€ or
— 1 G3i°.

A derivation D is called L-reductive, iff it has a finite reduction-tree with repect to the
L-1-reduction > (i.e. iff D is strongly normalizing with respect to >, which we abbreviate
symbolically to SN~ (D)). The reductive complexity red(D) of a L-reductive derivation D
is the size of the reduction-tree of D with respect to >. X

Some simple properties of reductive derivations are stated in the following two lemmas.

Lemma 2.2. Let D be a derivation that terminates with a basic logical rule S, i.e. D s
of the form

Dy  (Dy)

r=2-=C §

and suppose D > D',
Then D' terminates with the same rule and is of the form
Dy (D)
=~<=C

where for exactly one of the immediate subderiations Dy, Dy of S it holds that D; > D.,
while for the other one (if S is an application of the two-premise rule L— at all) D; = D,
(i=0,1) is true.

S
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Proof. This clearly follows since no >.4-reduction of the types listed in A-F is applicable
to D itself (since in all these reductions the bottom-most rule has to be different from a
logical rule) and such reductions can therefore only be applicable to proper subderivations
of D, thus to subderivations of Dy or D;. O

Lemma 2.3. Suppose a derivation D terminates with a logical rule S and has immediate
subderiation(s) Dy (Do or Dy), where Dy is (Dy and Dy are) reductive. Then D is also
reductive.

Proof. By induction on the sum of the sizes of the reduction-trees of Dy and of D; with
respect to >, i.e. on the sum red(Dy) + red(D;) using Lemma 2.2 as well as red(D) >
red(D’) for all D’ such that D > D’ (which is obvious from the definition of the reductive
complexity) in the induction step. O

Definition 2.4 (Inductive derivations, inductive complexity).
Let L be either of the calculi -+G3mi® or — L G3i°.

The class of L-inductive derivations in L is given by an inductive definition with
clauses (1), (2) and (3) below®. At the same time a derivation-associated number red(D),
the inductive complexity of D is defined in parallel.

(1) Every L-derivation D’ consisting only of an axiom of L is L-inductive. The inductive
complexity of D’ is then defined by ind(D’) := 1.

(2) If D' terminates with a logical rule S of L and has immediate subdeduction(s) D
(Dy and Dj), then D' is L-inductive iff Dfj is (D} and D} are) L-inductive. The
inductive complexity of D’ is then defined by ind(D') := ind(D]) + 1 (respectively
by ind(D') := ind(D})) + ind(D}) + 1).

(3) If D’ terminates with an application of W, C, Inv or Cut and D}, ... , D), is a complete
list of L-derivations such that D' > D} (for i = 1,... ,n), then D’ is L-inductive iff
all Di,... D), are L-inductive. The inductive complexity of D' in this situation is
defined by ind(D') := 14" | ind(D}). X

Since the further proof of Theorem 2.1 is in essence largely the same for —G3mi
and for — 1L G3i, the explicit reference to either of this systems will be dropped in the
following; this will also apply to notations like “L-reductive” (L meaning one of these
calculi) and it will then be tacitly assumed that all statements given will be valid in each
of these two cases respectively and accordingly. In cases and at places where differences
occur this will be stated clearly.

8Dragalin prefers to state a very similar definition more exactly than above in the form of a formal
calculus Ind with inductive L-derivations as its “theorems”; it was hoped here that this presentation of
the definitions is clearer to understand.
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Lemma 2.4. Every inductive derivation is reductive.

Proof. By induction on the size ind(D) of a “proof” of D to be inductive.
If ind(D) = 1, then D is an axiom, which is a normal and hence also a reductive derivation.

If ind(D) > 1 and D terminates with a logical rule S, then the inductive complexities
ind(Dy) and ind(Dy) of the immediate subderivations of S are by definition smaller than
ind(D) and Dy and Dy are then inductive by definition as well. By the induction hypothesis
it follows that Dy and D; are reductive; Lemma 2.3 now implies that D is reductive.

If ind(D) > 1 and D terminates with a structural rule, an inversion or a cut and Dy, ... , D,
is a complete list of all derivations D’ such that D > D', then by Definition 2.4, (3), all D;
(t=1,...,n) are inductive and ind(D;) < ind(D) (i =1,... ,n). From this by induction
hypothesis it follows that all D; are reductive, which in turn implies that D is reductive
(namely by clause (2) of Def. 2.3). O

Lemma 2.5. Suppose that D terminates with a logical rule and has Dy and Dy as its
immediate subderivations. Then D s inductive iff Dy and D1 are inductive; moreover it
holds that ind(Dy), ind(D;) < ind(D).

Proof. This is an immediate consequence of clause 2 in the definition of inductiveness in
Definition 2.4. O

Lemma 2.6. If D is inductive and D > D', then D' is also inductive and ind(D') <
ind(D).

Proof. By induction on the depth of the derivation D.
If D is an axiom, then D > D’ is not possible, hence there is nothing to show.

If D is inductive and terminates with a logical rule .S, then it is of the form
Dy (Dy)
'=<C
By Def. 2.4, (2), Dy, D; are inductive. D > D' implies that either Dy > D} or D; > Dj.
Suppose for once that D; > D] holds. Since then by definition of the inductive complexity
ind(Dy) < ind(D) holds, now by the induction hypothesis D] is implied to be inductive as
well, and also ind(D;) < ind(D}) follows. Then D’ is of the form
Do D]

'=s<C S,

and is again inductive by Def. 2.4, clause (2); moreover then

S

ind(D') = ind(Dy) + ind(D}) + 1 < ind(Dy) + ind(Dy) = 1 = ind(D)
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holds. — If Dy > Dy, the argument is similar.

29

If D is inductive and terminates with a structural rule, an inversion or a cut, then the

statement of the lemma is directly implied by clause (3) of Def. 2.4.

Lemma 2.7. A derivation D is inductive iff every D' such that D > D' is inductive.

Proof. “=": Is the main statement of Lemma 2.6.
“«<": By induction on the depth of a derivation D:

If D is an axiom, then D is inductive by clause (1) of Def. 2.4.

If D terminates with a logical rule S, then it is of the form =
=
Suppose now that D’ is inductive for all D’ such that D > D'.

Dy (Dy)

O

Then Dy is inductive: Suppose Dy > Dj. Then also D > D’ with D’ being the

Dy  (Dh)

derivation 0

g and by assumption D’ is inductive as well. Thus (since

=
D|, has here been arbitrary with Dy > Dy) it has been shown that D}, inductive holds

for arbitrary Dy such that Dy > Dj. Since the depth of Dy is smaller than that of

D, the induction hypothesis is applicable and gives that Dy is inductive. — In a

completely analogous way it can be shown that D; is also inductive.

Now that Dy and D; have been recognized as being inductive, it follows that D is

inductive as well (because D terminates with a logical rule, cf. Def. 2.4, (2)).

If D terminates with a structural rule, an inversion or a cut, then the statement “D
is inductive” precisely amounts to the assumption of “<”; hence there is nothing

else to show in this case.

Lemma 2.8. Every normal derivation is inductive.

O

Proof. A normal derivation D does not contain weakenings, inversions, contractions or
cuts by Lemma 2.1. Then inductiveness of D follows by an obvious induction using only

the clauses (1) and (2) of Definition 2.4.

Lemma 2.9. Every subderivation of an inductive derivation s inductive.

O

Proof. 1t suffices to show that immediate subderivations of the bottom-most rule applica-
tion S in an inductive derivation D are inductive themselves (the lemma then follows by

stepwise induction). This will be shown by induction on ind(D).

If ind(D) = 1 then D is an axiom and has only itself as a subderivation.
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If ind(D) > 1 for an inductive derivation D that terminates with a logical rule that has
Dy as well as possibly also Dy as immediate subderivations, then the inductiveness of Dy
and D follows from clause (2) in Def. 2.4 of D to be inductive.

If ind(D) > 1 for an inductive derivation D that terminates with a rule S that is a
structural rule, an inversion or a cut, then D has the form
Dy (Dy)
I'=<C
To prove that Dy and D; are inductive it suffices by Lemma 2.7 to show that all derivations
D! such that D; > D} are inductive (i = 0,1). Both cases are dealt with analogously, so we
look for example at D;. Suppose Dy > D). Then D > D’ holds, where D’ is the derivation
Dy (DY)
I'=<C
By Lemma 2.6 it can be seen that ind(D') < ind(D). From the induction hypothesis
applied to D' it then follows that D] is inductive. Thus—D] was arbitrary such that
Dy > D}, and in view of Lemma 2.7 as mentioned above—D; is then recognized as being
inductive. — Similarly Dy can be seen to be inductive. O

S

S

The following 4 lemmas are the “heart” of the proof of Theorem 2.1 and together will
state that the inductiveness of derivations is preserved under applications of weakening,
inversion, contraction or cut, which take place at the bottom of inductive derivations. That
is, a derivation terminating with one of these 4 rules, that has an inductive subderivation
(in the case of Cut: ... that has inductive subderivations), is again inductive. (In the case
of the logical rules R— and L— this is part of Definition 2.4.)

Lemma 2.10. Every derivation D obtained by adding an application of weakening at the
bottom of an inductive derivation Dy is inductive.

Proof. 1t has to be shown that every derivation D of the form

Dy
= C (2.1)
AT=0 V.

where Dy is inductive, is inductive.
In view of Lemma 2.7 it suffices to show for any such D that”

VD' (D > D' = D'is inductive ). (2.2)

This will be shown by induction on ind(Dy).

9The notation in this and similar statements to come is to be understood as part of an informal meta-
language dealing with properties of and relations between derivations.
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Let D be of the form (2.1), with Dy inductive. Assume the induction hypothesis for

D.

Let D' be arbitrary such that D > D’. To prove (2.2) it needs to be shown that D’ is
inductive.
Case 1: D > D' is due to a reduction >,.; that takes place within Dy, i.e. which does not

Case

involve nor change the weakening at the bottom of D:

Then D' is of the form

Dy
r=«¢
Al= C w

with Dy > Dj. By Lemma 2.6 it follows from Dy > Dy that ind(D}) < ind(Dy)
holds; hence the induction hypothesis is applicable to D', which gives that D’ is
inductive.

2: D > D' is true because of D >,.4 D', i.e. the reduction step D > D’ takes place
at the last rule application of D and thus involves the bottom-most weakening in D:

The reduction D >,¢q D' must then be a weakening reduction from the list D of
types of such reductions, since none of the other reductions of the lists A—F has a
weakening at the bottom of the derivation to be reduced.

If ind(Dy) = 1, then Dy consists only of an axiom and hence the reduction D >4 D’
must be one of the types D.a or D.b . But then D’ is again an axiom, which is a
normal and hence an inductive derivation; thus D’ is inductive in these cases.

If ind(Dg) = 1 and D >,.4 D' holds because of and via a reduction of one of the types
D.c or D.d, then the inductiveness of D’ follows easily from the induction hypothesis:
For example in the case of a reduction of type D.d the derivation D has the form

Dyo Dy
B—DTy= B DTy= C

BoDIy= C

ALB-DIly= C

L— (2.3)

W

Since Dy (here the subderivation of D terminating with the application of L— above
W) is inductive and ends with a logical rule, both Dyy and Dy, are inductive and
ind(Dyp), ind(Dy1) < ind(Dy) by Lemma 2.5. Then by the induction hypothesis the
derivations
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Do Doy
B—-DIly= B W 1 D, Ty= C W
AB—>DT,= B as wetl as A, D Ty= C

are inductive; from this by Definition 2.4, (2), it now follows that the derivation D’,
which—since D > D’ via a reduction of type D.d and D is of form (2.3)—must be
of the form

Dyo Dy
B—-DIly= B W D, T'y= C W
B> D, AT,= B D AT = C ;

_)

B> D, Alg= C ,

is inductive. — The proof for the remaining case, in which D >,.q D' is due to a
reduction of type D.c, is easier still.

Since for arbitrary D’ such that D > D’ the inductiveness of D’ has now been shown, (2.2)
has been proved. As already said, from this the lemma follows. O

Lemma 2.11. Every derivation D terminating with an application of inversion to the
end-sequent of an inductive derivation Dy s itself inductive.

Proof. It has to be established, that every derivation D of the form

Dy
A—BTI=C (2.4)

BT=C W,

where Dy is inductive, is itself inductive. As before, on the basis of Lemma 2.7 only a
proof of

v (D > D' = D' is inductive )

for all D as above needs to be given.

This again can be shown by induction on ind(Dy). The proof proceeds analogously to
that of (2.2) in Lemma 2.10; except that in case 2, when D > D' is due to D >, D', a
reduction of type F.e and of the form

Do Doy

A= BTy= A BIy= E Doy
9 ? > 25
A BIl,= E L= el BTy= E (25)

BT,= E W
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has to be considered additionally, for it has no counterpart in the list D of types of
weakening reductions. The inductiveness of D' here follows directly: Firstly, D' = Dy
holds (as can be seen from (2.4), (2.5)), and—on the other hand—Dy; is inductive as
a consequence of Lemma 2.5, because it is a subderivation of the inductive derivation
Dy (the immediate subderivation of the bottom-most inversion in D), which ends with a
logical rule (namely with L—). O

Lemma 2.12. Every derivation D obtained from an inductive derivation Dy by a single
succeeding application of contraction is inductive.

Proof. 1t has to be shown, that every derivation D of the form

Dy
A AT = C c (2.6)
Al= C ,

where Dy is inductive, is inductive. By Lemma 2.7 again only
VD' (D> D' = D'is inductive ) (2.7)

has to be proved for all D considered here.

This will be shown by induction on (JA|+ 1, ind(Dy)) with respect to the lexicographic
order on N X N, that is to say by induction on the depth of the formula contracted at the
bottom of D together with a subinduction on the inductive complexity ind(Dy) of Dy.

Let D be of the form (2.6), with Dy inductive. Assume the induction and subinduction
hypothesis for D.

Let D’ be arbitrary such that D > D’. The aim now is to recognize D’ as an inductive
derivation.

Case 1: D > D' is due to a reduction >4, that takes place within Dy, i.e. one, which
does not involve the contraction at the bottom of D.

Then D' is of the form

Dy
A AT = C c
Al'= C

with Dy such that Dy > Dj. Since ind(Dj) < ind(Dy) (by Lemma 2.6) and the
contraction at the bottom of D was unchanged by the reduction, the subinduction
hypothesis is applicable to D' and implies that D’ is inductive.
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Case 2: D > D' is due to D >, D', i.e. the reduction step D > D’ takes place at the
bottom of D.

The reduction must then be of the type of a contraction reduction from the list E,
since all other >,4-reductions in the lists A-F do not apply to derivations ending
with a contraction rule.

If Dy consists only of an axiom, then the reduction D >,.; D' must be of one of the
types E.a—d, which all reduce to axioms, hence to normal and as such also inductive
derivations. Thus D’ is inductive in these cases.

If Dy is not an axiom and D >,.4 D' takes place via a reduction of one of the types E.e
or E.f, then the inductiveness of D’ easily follows from the subinduction hypothesis
(and in part analogously to the more special case treated explicity below), noticing
that the formula(s) contracted one step above the bottom of D' is (are) again A
and that therefore the (syntactical) depth of the contracted formula(s) in the newly
introduced contractions has (have) not increased (which is a necessary condition for
applying the subinduction hypothesis).

If Dy is not an axiom and D >4 D' is a reduction of the type E.g, then D >,y D’
has the form

Dyg Dy
B—-D,B-DT=B DB—-DT= C

B>D,B—DIl= C L= 2re 28)

B—>DI= C C
Doy
Doo B—-D,DI'= C

B—D,B— DT = B D.DT= C %

BoDT—=B C ur:cLi

B—>DTl= C ,

where—to make the correspondence to (2.6) clear—it holds that A = B — D and
that Dy is the immediate subderivation of the bottom-most contraction in the re-
duction to be reduced. Here by Lemma 2.5 Dyy and Dy; are inductive (as immedi-
ate subderivations of the derivation Dy ending with the logical rule L—) and with
ind(Dog), ind(Dm) < ind(Dg).

Then by the subinduction hypothesis the derivation Dy of the form
Dyp

B—D,B—DT= B
B—DTI= B
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is inductive (as a precondition for using the subinduction hypothesis the contraction
formula B — D herein is the same as the original one A at the bottom of D).

By Lemma 2.11 now the derivation D~01
Doy

B—D,DI= C
D,D.T = C

Inv

is also inductive (because Dy; is inductive); since |D| =1< |B — D|+1 = |A|+ 1,
the induction hypothesis is applicable for a contraction at the bottom of Dy; and
shows that the derivation D; of the form

Doy
B—D,DT = C
DDT= C
D, I'= C C

is inductive as well.

Then clearly the inductiveness of D', the derivation at the right side of the reduction
in (2.8), follows from Def. 2.4, (2), since it is of the form
B B,
B=DT=C

and Dy, D; have already been recognized as inductive derivations.

Since for arbitrary D' with D > D’ it has been shown that D’ is inductive, (2.7) has been
proved. This completed the proof of the lemma. O

Lemma 2.13. Every derwation D, which ends with an application of cut, that has induc-
tive immediate subderivations in D, is inductive itself.

Proof. The lemma states that every derivation D of the form

Dy Dy
=D  DU=C (2.9)
Tl=C ut

where Dy and D are inductive derivations, is inductive.

The proof will use induction on (|D|, ind(Dy) + ind(D;)) with respect to the lexico-
graphic order on Ny x N; phrased differently, this says that the proof will proceed by
induction on the (syntactical) depth |D| of the cut-formula together with a subinduction
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on the sum of the inductive complexities of the immediate subderivations Dy and D; of
the cut.

Let D be a derivation of the form (2.9) with Dy, D inductive subderivations. In view
of Lemma 2.7 it suffices to show for arbitrary given D, that is of the form (2.9) and for
which the induction hypothesis is assumed to be true, that

VD' (D> D' = D'is inductive ) (2.10)

holds.
Thus we assume the induction hypothesis for D and we let D’ be such that D > D’.
It will be shown that D’ is inductive.
Case 1: The reduction >,.q underlying D > D’ takes place in either Dy or Dy.
Suppose for example D; > D} and D' is the result

Dy 2
=D DI=C
T.I=C ut

of replacing D; in D by D). Then by Lemma 2.6 ind(D}) < ind(D;); hence ind(Dy)+
ind(D}) < ind(Dy) + ind(Dy). By appeal to the subinduction hypothesis it then
follows that D' is inductive.

The same argument can be carried out analogously, if D' is the result of a >.4-re-
duction that takes place within Dy.

Case 2: The reduction D > D’ is due to a reduction involving the cut at the bottom of
D; this means that D > D’ is a consequence of D >,.q D'.

The reduction D >,.q D' must then be one of the types A—C, since >,.4-reductions
of the types D-F are not applicable to a derivation that has a cut as its bottom-most
rule application.

The derivation D’ is directly recognizable to be inductive in the cases, where D >,..4
D' holds because of an axiomatic cut-reduction of type A.c—f, since then D’ consists
only of an axiom (which-—as a normal derivation—is inductive by Definition 2.4,

(1))

In case D >,.q D' holds because of an axiomatic cut-reduction of one of the types A.a
or A.b, D’ is formed from D by application of one or more weakenings at the bottom
of either one of the immediate inductive subderivations of D; since by Lemma 2.10
the additional application of weakening at the bottom of an inductive derivation
again leads to an inductive derivation, D' can be seen to be inductive by one or
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more appeals (just as many as there are weakenings at the bottom of D' below Dy
or Dy respectively) to Lemma 2.10.

The case of an axiomatic reduction D >,.q D' of type A.g is treated similarly to
the case of a reduction of type B.a: In this latter case one notices firstly, that—with
the notations of formulas as in the list B.b above—the subderivations Dyy and Dy;
of D are inductive (since Dy is inductive and therefore Definition 2.4, (2) can be
used); furthermore ind(Dy1) < ind(Dy) (again by Definition Definition 2.4). Thus
the subinduction hypothesis can be applied to the derivation

Dy D,
BLy=D DI=C (2.11)
B.Tl=C ut

since D is again the cut-formula of the original cut at the bottom of D, but—because
of ind(Dy1) + ind(D1) < ind(Dy) + ind(D;)—the sum of the inductive complexities
of this cut is now lower than that in the original cut at the bottom of D.

Since Dy is inductive, so is
Do
A—-BTy= A
A—- B TIyl= A

(by a (finite) number of appeals to Lemma 2.10). Thus it then follows from this and
the inductiveness of the derivation in (2.11) that D', which here has the form

DOO Do1 D,
A—->BTly= A B,Ty=D D,H:>CC
A B = A BIll=C ut

_>

A— B, IZ/il=C
is inductive.

The cases, in which D >,.; D is due to a reduction of one of the types B.b or B.c,
can be treated quite analogously and even easier.

In the case, where D >,..,q D' is due to a fork cut-reduction of the type in list C
above, D is of the form

Dy Do Dny
Al'= B R A->BIl= A B/Ill=C
= A>B A—-BIl=C

= C Cut
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By appeals to Definition 2.4, (2), Dgg, Do; and Dj; are seen to be inductive; fur-
thermore ind(D1g) < ind(Dy) holds. Thus ind(Dy) + ind(D1y) < ind(Dy) + ind(Dy)
holds, and hence the subinduction hypothesis can be applied to the derivation D,
which is of the form

Doy
ATl =B Dro
I'=A—-10B R— A—->BIl=A
Cut = A :

to see that this derivation is inductive. Then two consecutive uses of the induction
hypothesis make clear that also the derivation D

D Dyo
I'Nl= A Al'= B D
Cut 5
g L= B B,ll= C
b e = ¢

is inductive (since |A[,[B| < |A — B| holds, the depths of the cut-formulas in the

two cuts displayed within D above are both smaller than the depth of the cut-
formula A — B at the bottom of D, which justifies the applicability of the induction
hypothesis in both cases). A number of consecutive applications of Lemma 2.12 (as
many as there are formulas in the multisets I' and II) then give that the derivation

D
D= m212= C , which is also identical to
I'Ni= C
Dy
A,F:>B R Dio
oy L= A>D 7 A BI=A Doo
ut o T = A AT =B Diy
" o L= B B,Il=C
! PP = C
'i= C

is inductive.

Thus in all cases of reductions D >,.q D' the inductiveness of D implies that one of
D'

Now (2.10) has been show, which concludes the proof of the lemma. O
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The Lemmas 2.10-2.13 now allow to conclude the Proof of Theorem 2.1.
Theorem 2.2. Every derivation s reductive.

Proof. 1t follows by an immediate induction on the depth of a derivation with the help of
Lemma 2.5 and the Lemmas 2.10-2.13, that every derivation is inductive. Lemma 3.2.4
then implies the theorem. ]

Proof. [Proof of Theorem 2.1] This is now immediate from Theorem 2.2 and the definition
of “strong cut-elimination holds w.r.t. cut-elimination steps in the lists A-F” (appropriate
for either of -G3mi or — 1 G3i). O

2.2 A more general version of a Strong Cut-Elimination
Theorem for —-G3mi and — 1 G3i

It has been pointed out before that the reduction rules in A-F come from a nearer analysis
of the Cut-Elimination Theorem for the G3-systems in [TS96] and of the process implicit
in the proof of this theorem. A proof for cut-elimination in G3[mic|, which proceeds by
considering topmost occurrences of cuts with maximal cutrank'® and by replacing sub-
derivations ending with such cuts by derivations of either lower cutrank or by derivations
containing cuts of lower cutrank together with one cut of again maximal cutrank, but now
of smaller level'! (all replacements involved in this process are locally applied transforma-
tions, if for once the necessary use of weakening- and contraction-operations is put aside,
operations, that in the G3-calculi have global effects on the subderivations to which they
are applied.)

Considering this basis for the cut-elimination reductions for —1G3i as presented
above, it could be argued that the strong cut-elimination result Theorem 2.1, which refers
to the reduction-rules in the lists A-F is not really a very strong statement, because these
reduction rules are actually too closely connected to the usual top-down cut-elimination
procedure and do permit to little freedom in choosing appropriate next reduction steps
for a possibly more efficient deterministic or non-deterministic alternative procedure. The
reductions in A—F do not allow permutations of structural rules and cuts with each other,
and so any cut-elimination procedure for —_1 G3i that operates according to these rules
cannot really gain much efficiency over the usual procedure: This is due to the fact that e.g.
most work towards the completion of the elimination of a certain cut somewhere deeper
down in a derivation D (in the sense that such an elimination—often consisting of the
application of lemmas transforming whole subderivations—is treated as a single step in

10Tn [TS96] the cutrank of an application of cut is defined as the depth of the cut-formula plus one.
"'The level of an application S of cut is in [TS96] defined as the sum of the depths of the two immediate
subderivations of S.
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the cut-elimination proof for G3[mic]| in [TS96)) is likely to be often blocked from getting
done in an upwards direction by unreduced cuts or by “residuals” of previous reductions
higher up in D (by “residuals” still unremoved newly introduced cuts or structural rules of
— 1 G3i° are meant); this is so because reductions A-F do not allow shifts or movements
of structural rules or of cut over each other at all.

Under these circumstances it can be thought that the application of reductions to a
given derivation D in an arbitrary and not top-down restricted order does not really make
too much sense as actual progress with the elimination of cuts or structural rules deeper
down in D more often than not will depend on the one with eliminations above it in D
(so that a sequential top-down treatment of reductions might not be too much worse in
its computational complexity).

But since some reductions in A-F lead to the removal of whole subderivations (Ac.,
Ad. and notably Fe.) there might nevertheless be some substantial gain thinkable w.r.t.
the complexity-behaviour of a more general cut-elimination procedure operating on the
basis of the reductions A-F. Still, this gain is possibly limited and more could be achieved
by the introduction of reductions for the (limited) permutation of structural rules and cut.

In the following additional rules, listed in G below, for restricted permutation of
— 1 G3i¢ ’s structural rules and cut are adopted as the basis for the formulation of a
strong cut-elimination-theorem for —+G3mi and for —+_1G3i. Underlying the choice of
these rules is the stipulation that upwards permutation'? of weakening shall possess high-
est priority, to be followed in priority by upwards permutation of inversion, contraction
and cut (in this order); this stipulation seems to be suggested by the way usual cut-
elimination, using the rules A-F, is actually formulated as a deterministic procedure, yet
some variations of it (with perhaps even better behavior) are still conceivable. It follows
that permutations of weakening and inversion upwards over contraction and cut will be
permitted, but not vice versa (as otherwise infinite reduction sequences clearly are possi-
ble); contraction will be allowed to permute upwards over cut in some cases and whenever
this is possible, but this permutation is not possible in general.

G. Permutation-Reductions for Structural Rules:

(1) Weakening over inversion, contraction and cut:

Dyg Dyo
A—-BTI'= C A—-BTI'= C
BT= C AW ~re B bT= O
DBT=C W BDT= C W

12 ([Vest99] uses the very visual expression “upwards propagation” in this respect)
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Dyg Dyo
b AAD=C AAT = C
' AT = C e "4 ABTL= C
B AT = C A BT = C
Dyo Doy Dyo
'= D D,II= C = D D
= C Cut  Zrd  WHFPH  pr= ¢ t
ATll= C ATll= C h
(2) Inversion over contraction and cut:
Dy Dyo
o DDASBI=C A5 BDDI= C |
' ASBDI=C red D,D,BT = C W
BTIll= C 1w D,B.T = C
Doy Dy
A= BA—=BI= C A2BA-BL= O
C >7‘ed B,A—)B,F:> C
A-SBTl=C Tnv
v BBI=C |
’ B,T= C
Dyo Doy
¢ A=BTy= D D= C N
‘ A= BIll= C ut red
B ILl= ¢ W
Dy
A—)B,F0:> D I D[)l
BTo,=D "W DIlI= C o
B L= C ut

g. Similarly and symmetrically to case f, if A — B occurs in II in the conclusion
of Dy; in the derivation to be reduced in case f (but not in the antecedent
['=A — B, T’y of the conclusion of Dy there).

(3) Contraction over cut:
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Do Doy
A, ATy=D DI= C
1 A0, = C
h. A AP = C g

Cut

> red

A A, = Cg
A,®,= C

Do
A, A Ty=D Do1
AT,=D D= C
A ®yg= C
A0 = C C

Cut

1.0,= C ©

where &y = I'yIl and the first n contractions below cut cannot be permuted
upwards over cut, i.e. their respective principal formulas occur just once in 'y
and II respectively.

i. Similarly and symmetrically on the right as in case h, if A occurs twice in II in
the derivation to be reduced in case h.

Theorem 2.3. (Strong Cut-Elimination for —+G3mi and — 1 G3i, more general
version)

Strong cut-elimination holds for the calculi -G3mi and — 1 G3i with respect to the

reduction steps in the lists A-G.

The proof of this theorem resisted our [my, C.G.] attempts to give it in the framework
of Dragalin’s concepts and notations in his proof for strong cut-elimination for LK and
L.J (these concepts and notations have been used above in the proof of Theorem 2.1). We
can therefore at present give only a sketch of a very ad hoc version of the proof.

Proof. [Sketch of the Proof] The use of the notation D > D’ for two (—G3mi®+Cut)- or
(— L G3i4Cut)-derivations D and D’ will here be understood as extending the meaning
of “D reduces to D' as defined in Definition 2.2, (1), by including also the new reduction
rules of the list G.

(1) Strong normalization holds for every derivation D in the systems (—G3mi®+Cut)
or in (—LG3i4+Cut) with respect to the reductions D-G (i.e. w.r.t. all rules in
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A-G but the cut-reductions A—C): This can be proved in a straightforward way by
using and slightly adapting the concepts of the proof for Theorem 2.1.

Furthermore it can be easily checked, that applications of one of the reductions D-G
do not increase the logical size (= the number of applications of logical rules) of a
derivation D, nor the logical depth, the logical level and the rank of a particular
application S of a cut in D (the logical depth ||D'|| of a derivation D’ is defined
similarly to the (usual) depth of D’, but by counting only rule-applications of logical
rules are; the logical level 11(S) of an application S of cut in a derivation D' is defined
as the sum of the logical depths of the two immediate subderivations of S in D’).

The maximum number of cut-reduction steps from A—C for completely eliminating
a cut S at the same time with all its residuals occuring during a reduction-sequence
o0 =D >D; >Dy >D3>... starting from a derivation D, which does only contain
the cut S, can be calculated from the logical level I(S) and the rank rank(S) of S
(= the depth of the cut-formula of S plus 1) alone. Let this maximum number of
cut-reduction steps be bounded by a function ¢ (11(.S), rank(S)). The logical depth of
every resulting cut-free derivation D’ may—in comparison with D—have increased
(due to applications of cut-reductions of the type B.c), but it can still be bounded
by a function Iy (|| D||, 11(S), rank(S)).

Considering a (—G3mi®+Cut)- or (— LG3i°4Cut)-derivation D containing ex-
actly two cuts S7 and .Sy, it is possible—since the reductions A—G do not permit the
permutation of two applications of the cut rule over the other—to find a bound for
the maximal number of steps caused by cut-reductions in every reduction sequence
0 =D >D; >Dy >7D3 > ... starting from D. This can be achieved by first looking
at the steps necessary for the removal of S} and Sy separately, if (a) S; and S occur
in subderivations of D apart from each other, or successively, if (b) an immediate
subderivation of Sy contains S or (c¢) the opposite is true.

But for example in situation (b) it has to be taken into account, that (i) the com-
plete removal of Sy first, together with all its possible residuals, before dealing
with Se may increase increase the logical level of S5 in the resulting derivation
to d+11(d,l1(S1), rank(S1)), where d is the logical depth of Sy in D; and furthermore
that (ii) the reduction of Ss and or of any residual of Ss may—if the reduction hap-
pens to be a fork cut-reduction—almost double the the amount of steps that have
previously been necessary for the complete elimination of S; alone.

Still, and over all, the amount of cut-elimination steps in ¢ stays finite and can be
bounded by a function ¢ (11(S2), max(rank(Sy) + rank(S2))), where Sy is here taken
to be the bottom-most of the cuts S; and S3. The logical depth of every resulting
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cut-free derivation D’ may then also be bounded by a function

lo(||D||, 11(S2), max(rank(S1) + rank(S2))) .

Carrying on in this way step by step it is then possible to find a bound ¢, (||D||,r)
for the maximum number of steps due to cut-elimination reductions of A-C in an
arbitrary reduction sequence o =D > Dy > Dy > Dsg > ... starting with D, where
n is the number of applications of cut in D, and r is the cutrank of D, i.e the maximal
rank of all applications of cut in D.

At the same time a bound [,,(||DP||,,r)), where | means the maximum logical level
of all cuts in D, for the logical depth of every resulting cut-free derivation D’ can be
given as well.

Strong normalization for a (—G3mi®+Cut)- or (—_LG3i®+Cut)-derivation D with
respect to the rules A-G then follows from (1) and (4). This is true, since in an
arbitrarily chosen reduction sequence 0 = D > Dy > Dy > D3 > ... the number
of consecutive steps caused by reductions of type E-G always has to be finite (due
to (1)) and therefore after every sufficiently long subpart of o consisting only of
reductions of type D-G a cut-reduction has to follow. But then by (5) also the
number of reductions in o, that are due to cut-reductions of A—C, is bounded as
well. As a consequence ¢ must be of finite length. O
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Appendix A: Handout at the
defense on 15th October 1999

Example underlying a “Computational Anomaly” of distinct
derivations D,, in —G3mi, that all reduce to the same deriva-
tion D’ by cut-elimination'®

Let for n € N the derivation D,, be

R—

00 11
AB,C,C—-C=B A—- B ACC—-C=A4A B,A,O,O—>O:>CL
B.C.C 5C=A-B ASBACCSC=C -

1B.CCSC=C Cut

where A, B and C are atomic formulas and Dgy is the derivation

C—C,CAB=C CCAB=DB
C—>CCAB=DB

L—

and! Dg’f) = DM[A, B] with D the derivation'®

'3Here (1) cut-elimination is performed similar as in [TS96] for the systems G3[mi], but as a stepwise
process of locally applied transformations, and (2) a multiple-contraction rule is used for doing this.

Y(D[E,..., Ey] for formulas Fi, ..., E, and a derivation D means the derivation that results from the
addition of the formulas FE, ..., E, to the antecedent of every sequent in @)

5 The derivations D™, if P were read for C, correspond (in the case of the untyped system — G3mi
here it is better to say: relate) to the derivation-term :, used by Vestergaard, which in the setting of the
system G1 is defined on p. 28; more precisely, ®o(D,, ) equals D™ if P in ®¢(D,,) is exchanged by C'
and D,, is the gj -derivation corresponding to .

in
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C-CC=C CC=C
(=00=C C,0=C

C>CC0=C C,.C=C
- C5C.0=C

(with n applications of L—). The first cut-elimination step in D,, is a fork-reduction step:

Do
AB,CC—-C=B
23 B,C,C—-C=A—>10B A—- B ACC—-C=A Doo
CMABLQW%OV:A A,B,C,C - C=B p{W
A,B%C3(C > C)P= B B,A,C,C »C=C
Cut A2 B2,C(C = O =C
A B,C? (C—(0)?=C
Then an axiomatic cut-reduction step follows:
C—>CCAB=C CCAB=B
A, B,C%(C = O = A CSC.CAB=B L= p{")
Cut o ABLC(C=CP =B B,AC.C—C=C

A2 B2.CL(C = ) = C
A,B,C?,(C - C)?=C

Next a permutation-reduction step of the topmost cut over L—, followed by two axiomatic
cut-reductions yield:

C—C,(C—C)%C3AB=C CC3(C—C)?%AB =B i

. AB2C3 (C—C)?P=B8 B,A,C,C —-(C=C
A2 B2.Ct(C > O =C
A B,C? (C—0)?=C

The following derivation is the result of a permutation-step of Cut over L—:

L—
Cu

Dy
C—=C(C—=C)P?CAB*=C  (0,C%(C—C)?%AB=B B,ACC—C=C .
C—C(C— 03,04 A% B> = C C.ON(C—CP 2B =0 4
%

A2 BN (C SO = O
A,B,C*(C—0)?=C
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We then reach the following cut-free derivation through the application of an axiomatic
cut-reduction (and by an axiomatic multiple-weakening reduction):
DM[A2 B2, C4, (C — C)?
C—C,(C—0)30*A%2, B> = C C,C— C,C* (C— C)?2 A% B?>=C
A2 B2 ot (C— O =C L
A B,C? (C—(0)?=C

_)

({AB,C2,(C=C)?)

If now all contractions are permuted upwards over L— simultaneously (in the analogous
sense as on derivation-terms multiple-contraction is permuted upwards in a GT-derivation
according to the contraction rewrite-rule E.c, second case), inversion has to be used for
the treatment of the left premise. This leads to:

DA%, B, C4,(C — C)?
C = C,C,C% (C— O)2, A%, B> = C
_ _C—=C(C—=0)30YA2 B2=C Co(C— )AL B2=C
C{A.B,C?,(C—C)?} C{A.B,C3,C—C}
C = C,C—=CC%AB=C €,C~C.CLAB=C =
(C = C)2,C2,A,B= C

Inve oo

If now inversion is permuted upwards, almost all of DM [A2 B2 C*, (C — C)?] gets lost
(with the exception of the axiom in the bottom-most application of L— in it):

‘ C—=C(C—=0)3cA2B2=C C,C% (C— 0)? A%, B?> = C
C{AB.C? (C=0)?) (H{AB.C? C—C)

C—C,0C—C,C*AB=C C,C - C,C*AB=C .
(C—C)?C% A B=C

—

Two axiomatic multiple-contraction reductions lead to:

C=C.C»CC*AB=>C  CC=CCLAB=C |
(C— C)?,C%A,B=C

H

This result D’ of the cut-elimination procedure performed at D,, is now clearly independent
of n.

For all n € N derivations D,, (given on page 32 in the form of corresponding G-
derivation-terms #,,) paralleling D,, in the typed system G+, D,, correspond to the natural-
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deduction derivation ®q(D,,)

(C—=C)yp  C
(C =) C
C

—E

—E

(C = C)° C
C

—E

(with n applications of —E), whereas the result D’ (relating to D’) of the (usual) cut-
elimination-procedure applied to D,, (largely paralleling in G the above reductions in
untyped —G3mi) corresponds just to the natural-deduction image ®¢(D’) of trivial shape

c*.

This is what constitutes an “anomaly” here.

The drawback at this my example is, that if contractions were not permuted upwards in
the gathered form of a multiple-contraction but as single contractions, the example would
not result in an “anomaly”. Although it accounts for an a bit more careful formulation of
one reduction-rule (for reductions on derivation-terms this is the contraction rewrite-rule
E.c), the example does not cover the most general possible situation.

I do think that with a bit more effort an “anomaly” could also be constructed if the
typed system allowed only single-contractions (the proof of cut-elimination is then still
possible in the way I gave it). But I have no example for this most general situation, yet.
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