
Linear Depth Increase of Lambda Terms
in Leftmost-Outermost Rewrite Sequences

CLEMENS GRABMAYER

Abstract

Accattoli and Dal Lago have recently proved that the number of steps in a leftmost-outermost
�-reduction rewrite sequence to normal form provides an invariant cost model for the Lambda
Calculus. They sketch how to implement leftmost-outermost rewrite sequences on a reasonable
machine, with a polynomial overhead, by using simulating rewrite sequences in the linear explicit
substitution calculus.
I am interested in an implementation that demonstrates this result, but uses graph reduction tech-
niques similar to those that are employed by runtime evaluators of functional programs. As a cru-
cial stepping stone I prove here the following property of leftmost-outermost �-reduction rewrite
sequences in the Lambda Calculus: For every �-term M with depth d it holds that in every step
of a leftmost-outermost �-reduction rewrite sequence starting on M the term depth increases by
at most d, and hence that the depth of the n-th reduct of M in such a rewrite sequence is bounded
by d · (n+ 1).

Dedicated to Albert Visser on the occasion of his retirement,
with much gratitude for my time in his group in Utrecht,

and with my very best wishes for the future!

1 Introduction

Recently Accattoli and Dal Lago [1, 2] have proved that the number of steps in a leftmost-outer-
most rewrite sequence to normal form provides an invariant cost model for the Lambda Calculus.
That is, there is an implementation I on a reasonable machine (e.g., a Turing machine, or a random
access machine) of the partial function that maps a �-term to its normal form whenever that exists
such that I has the following property: there is a bivariate integer polynomial p(x, y) such that if
a �-term M of size m has a leftmost-outermost rewrite sequence of length n to a normal form N ,
then I obtains a compact representation of N from M in time bounded by p(n,m). Accattoli and
Dal Lago first simulate leftmost-outermost rewrite sequences by ‘leftmost-outermost useful’ rewrite
sequences in the linear explicit substitution calculus, using the restriction that only those steps are
performed that facilitate the simulation of leftmost-outermost �-reduction steps. Subsequently they
show that such rewrite sequences can be implemented on a reasonable machine.

I am interested in obtaining a graph rewriting implementation for leftmost-outermost �-reduc-
tion in the Lambda Calculus that demonstrates this result, but that is close in spirit to graph reduction
as it is widely used for the implementation of functional programming languages. In particular, my

126 Clemens Grabmayer

aim is to describe a port graph grammar [7] implementation that is based on TRS (term rewrite
system) representations of �-terms. Such �-term representations correspond closely to supercombi-
nator systems that are obtained by lambda-lifting, or fully-lazy lambda-lifting, as first described by
to Hughes [6].

That such an implementation is feasible by employing subterm sharing is suggested by the
following property of (plain, unshared) leftmost-outermost �-reduction rewrite sequences in the
Lambda Calculus, which will be shown here. The depth increase in the steps of an arbitrarily long
leftmost-outermost rewrite sequence from a �-term M is uniformly bounded by |M |, the depth of
M . As a consequence, for the depth of the n-th reduct Ln of a �-term M in a leftmost-outermost
rewrite sequence it holds: |Ln|  |M | · (n+ 1).

In the terminology of [1, 2] this property shows that leftmost-outermost rewrite sequences do
not cause ‘depth explosion’ in �-terms. General !� rewrite sequences do not enjoy this property,
as along them the depth can increase exponentially, which is shown by the example below.

EXAMPLE 1.1 (‘depth-exploding’ family, from Asperti and Lévy [3]). Consider the following
�-terms:

M
0

:= xx Mi+1

:= two(�x.Mi)x N
0

:= M
0

= xx Ni+1

:= Ni[x := Ni]

where two := �x.�y.x(xy) is the Church numeral for 2. By induction on i it can be verified that:

|Mi| =
(

1 if i = 0

3(i+ 1) if i � 1

)

2 O(i) Mi !4i
� Ni |Ni| = 2

i

and that the syntax tree of Ni is the complete binary application tree of depth |Ni| = 2

i with at depth
2

i occurrences of x. The induction step for the statement on the rewrite sequence can be performed
as follows:

Mi+1

= two(�x.Mi)x !4i
� two(�x.Ni)x = (�x.�y.x(xy))(�x.Ni)x (by the ind. hyp.)

!� (�y.(�x.Ni)((�x.Ni)y))x

!� (�x.Ni)((�x.Ni)x) !� (�x.Ni)Ni !� Ni[x := Ni] = Ni+1

Note that this !� rewrite sequence is not leftmost-outermost, but essentially inside-out. Now let
i � 1. Then for n = 4i and M := Mi we find: M = Mi = L

0

!n
� Ln = Ni with |M | = |Mi| =

3(i + 1)  4i = n and |Ln| = |Ni| = |Ni| = 2

i
= 2

n/4. Such an exponential depth increase
contradicts the depth increase result that we will show for leftmost-outermost rewrite sequences,
since, in the situation here, |Ln|  |M | · (n + 1) would imply that 2n/4  n(n + 1) holds for
infinitely many n.

The result on the linear depth increase of �-terms along leftmost-outermost rewrite sequences
will be shown here for TRS-representations of �-terms, which will be called ‘�-TRSs’. These rep-
resentations of �-terms as orthogonal TRSs correspond to systems of ‘supercombinators’, which are
obtained by the lambda-lifting transformation that is widely used in the implementation of func-
tional programming languages [6]. Lambda-lifting transforms higher-order terms with binding such
as �-terms, or indeed functional programs (which can be viewed as generalized �-terms with case
and letrec constructs) into first-order terms, namely systems of combinator definitions that are called
supercombinators. �-TRSs are TRS-versions of systems of supercombinators. They are well-suited

Linear Depth Increase of Lambda Terms in Leftmost-Outermost Rewrite Sequences 127

for the purpose of showing the linear depth increase result for much of the same reason why super-
combinators are so useful for the evaluation of functional programs: after representing the initial
term by a finite number of first-order rewrite rules (through lambda-lifting), the evaluation proceeds
by repeatedly searching, and then contracting, the next leftmost-outermost redex with respect to one
of these rules. This easy form of the evaluation procedure facilitates a straightforward proof of the
linear depth increase invariant for steps of leftmost-outermost rewrite sequences.

While the linear depth increase statement will be shown for rewrite sequences in a TRS for sim-
ulating leftmost-outermost �-reduction, its transfer to �-terms via a lifting theorem along lambda-
lifting will only be sketched. The lifting and projection statements needed for this part are largely
analogous to proofs for the correctness of fully-lazy lambda-lifting as described by Balabonski [4].

The linear depth increase property for leftmost-outermost rewrite sequences contrasts starkly
with the fact that ‘size explosion’ can actually take place. There are �-terms Mn of size O(n)
(linear size in n) such that Mn reduces in n leftmost-outermost �-reduction steps to a term of size
⌦(2

n
) (proper exponential size in n). As an example Accattoli and Dal Lago [1, 2] exhibit the

family {Mn}n of O(n)-sized �-terms with M
0

= yxx, and Mn+1

= (�x.Mn)M0

for n > 1,
which reduce in n leftmost-outermost �-reduction steps to the corresponding, ⌦(2n)-sized term of
the family {Nn}n with N

0

= M
0

, and Nn+1

= Nn[x := N
0

].

The property of the linear depth increase along leftmost-outermost rewrite sequences suggests
an alternative proof of the result by Accattoli and Dal Lago, now based on a graph rewriting imple-
mentation. The crucial idea is to use (directed acyclic) graph representations of terms in �-TRSs,
which can safeguard that the implementation preserves the linear depth increase property, and to em-
ploy the power of sharing to avoid size explosion of the graph representations.1 If additionally the
overhead for the search and the simulation of the next redex contraction can be bounded polynomi-
ally in the present graph size, then leftmost-outermost rewrite sequences can be simulated efficiently
(first by graph rewrite steps, which subsequently can be implemented efficiently on a reasonable ma-
chine). In Section 4 we sketch the basic idea for a graph implementation in which subterm sharing
guarantees that the size increase of the graph that represents a �-term is polynomial in the number
of simulated leftmost-outermost �-reduction steps.

Notation. By N = {0, 1, 2, . . .} we denote the natural numbers including 0. For term rewriting
systems, terminology and notation from the book [8] is used, shortly summarized here. A signature
⌃ is a set of function symbols together with an arity function. For signature ⌃ we denote by Ter(⌃)
the set of terms over ⌃, and by Ter1(⌃) the set of infinite terms over ⌃. For a term s, |s| denotes
the depth of s, that is, the longest path in the syntax tree of s from the root to a leaf. A term rewriting
system (TRS) is a pair h⌃, Ri consisting of a signature ⌃, and a set R of rules for terms over ⌃
(subject to the usual restrictions). For a TRS with rewrite relation !, the many-step (zero, one or
more step) rewrite relation is denoted by ⇣, and the n step rewrite relation by !n, for n 2 N.
Constrasting with terms in a TRS (first-order terms), �-terms are viewed as ↵-equivalence classes of
pseudo-term representations with names for bound variables. For �-terms, !� denotes �-reduction,
and !lo� leftmost-outermost �-reduction.

1In the proof by Accattoli and Dal Lago the chosen representations are terms in the linear explicit substitution calculus,
and size explosion is avoided by showing that linear size increase holds for ‘leftmost-outermost useful’ rewrite sequences.

128 Clemens Grabmayer

2 Simulation of leftmost-outermost rewrite sequences

We start with the formal definition of first-order representations of �-terms, called �-term rep-
resentations, before describing a TRS for simulating leftmost-outermost �-reduction on �-term rep-
resentations.

DEFINITION 2.1 (�-term representations, denoted �-terms). Let ⌃� := {vj | j 2 N} [{@} [
{(�vj) | j 2 N} be the signature that consists of the variable symbols vj , with j 2 N, which are
constants (nullary function symbols), the binary application symbol @, and the unary named ab-
straction symbols (�vj), for j 2 N.

Now by a �-term representation (a (first-order) representation of a �-term) we mean a closed
term in Ter(⌃�). A �-term representation s denotes, by reading its symbols in the obvious way,
and interpreting occurrences of variable symbols vj that are not bound, as the variable names xj , a
unique �-term JsK�.

EXAMPLE 2.2. (�v
0

)(v
0

), (�v
1

)((�v
2

)(v
1

)), and (�v
0

)((�v
1

)((�v
2

)(@(@(v
0

, v
1

),@(v
1

, v
2

)))))

are �-term representations that denote the �-terms I = �x.x, K = �xy.x, and S = �xyz.xz(yz),
respectively.

The TRS below is designed to enable the simulation on �-term representations of the evaluation
of �-terms according to the leftmost-outermost strategy. We formulate it as a motivation for a similar
simulation TRS on refined �-term representations that is introduced later in Definition 2.10, and
which will be crucial for obtaining the main result. The idea behind the TRS below is as follows.
Applicative terms are uncurried (by steps of rule (search

2

)) until on the spine of the term a variable
or an abstraction is encountered (detected by rules (search

3

) or (search
4

)). If an abstraction occurs,
and the expression contains an argument for this abstraction, then a step corresponding to a �-con-
traction is performed (applying rule (contract)), and the procedure continues similarly from there.
If there is no argument for such an abstraction, then it is part of a head normal form context, and
the evaluation can descend into this abstraction (applying rule (search

3

)) to proceed in a similar
fashion. If a variable occurs on the spine (detected by rule (search

5

), it and the recently uncurried
applications form a head normal form context, and the simulating evaluation can continue (after
applying (search

5

), (search
6

), and repeatedly (search
7

)), possibly in parallel, from any immediate
subterm of one of the recently uncurried applications. The rules:

losim(x) ! losim
0

(x) (search
1

)
losimn(@(x, y), y

1

, . . . , yn) ! losimn+1

(x, y, y
1

, . . . , yn) (search
2

)
losim

0

((�vj)(x)) ! (�vj)(losim
0

(x)) (search
3

)
losimn+1

((�vj)(x), y1, y2, . . . , yn+1

) ! losimn(subst(x, vj , y1), y2, . . . , yn+1

) (contract)
losim

0

(vj) ! vj (search
4

)
losimn+1

(vj , y1, . . . , yn+1

) ! curryn+1

(vj , y1, . . . , yn+1

) (search
5

)
curry

1

(x, y
1

) ! @(x, losim
0

(y
1

)) (search
6

)
curryn+2

(x, y
1

, y
2

, . . . , yn+2

) ! curryn+1

(@(x, losim
0

(y
1

)), y
2

, . . . , yn+2

)

(search
7

)

have to be extended with appropriate rules for subst that implement capture-avoiding substitution,
but which are not provided here. By !subst we denote the rewrite relation induced by these rules for

Linear Depth Increase of Lambda Terms in Leftmost-Outermost Rewrite Sequences 129

subst. By !contract we mean the rewrite relation induced by the rule scheme (contract), which defines
steps that initiate the simulation of a �-reduction step that proceeds with !subst steps for carrying
out the substitution. By !search we designate the rewrite relation induced by the rules labeled with
‘search’, which defines steps that search for the next representation of a leftmost-outermost redex
below the current position. Finally !losim denotes the rewrite relation that is induced by the entire
TRS.

EXAMPLE 2.3. We consider the �-term M = �x.(�y.y)((�z.�w.wz)x). Evaluating M with the
leftmost-outermost rewrite strategy, symbolized by the rewrite relation !lo, gives rise to the rewrite
sequence:

�x.(�y.y)((�z.�w.wz)x) !lo� �x.(�z.�w.wz)x !lo� �x.�w.wx (1)

The term s = (�v
0

)(@((�v
1

)(v
1

),@((�v
2

)((�v
3

)(@(v
3

, v
2

))), v
0

))) denotes M , that is, JsK� =

M ; other variable names are possible modulo ‘↵-conversion’. Simulating this leftmost-outermost
rewrite sequence by means of the simulation TRS above amounts to the following !losim rewrite
sequence starting on losim(s):

losim(s) !search losim
0

((�v
0

)(@((�v
1

)(v
1

),@((�v
2

)((�v
3

)(@(v
3

, v
2

))), v
0

))))

!search (�v
0

)(losim
0

(@((�v
1

)(v
1

),@((�v
2

)((�v
3

)(@(v
3

, v
2

))), v
0

))))

!search (�v
0

)(losim
1

((�v
1

)(v
1

),@((�v
2

)((�v
3

)(@(v
3

, v
2

))), v
0

)))

!contract (�v0)(losim
0

(subst(v
1

, v
1

,@((�v
2

)((�v
3

)(@(v
3

, v
2

))), v
0

))))

!subst (�v
0

)(losim
0

(@((�v
2

)((�v
3

)(@(v
3

, v
2

))), v
0

)))

!search (�v
0

)(losim
1

((�v
2

)((�v
3

)(@(v
3

, v
2

))), v
0

))

!contract (�v0)(losim
0

(subst((�v
3

)(@(v
3

, v
2

)), v
2

, v
0

)))

⇣subst (�v
0

)(losim
0

((�v
3

)(@(v
3

, v
0

))))

!search (�v
0

)((�v
3

)(losim
0

(@(v
3

, v
0

))))

!search (�v
0

)((�v
3

)(losim
1

(v
3

, v
0

)))

!search (�v
0

)((�v
3

)(curry

1

(v
3

, v
0

)))

!search (�v
0

)((�v
3

)(@(v
3

, losim
0

(v
0

))))

!search (�v
0

)((�v
3

)(@(v
3

, v
0

)))

Note that the !contract steps indeed initiate, and the !subst steps complete, the simulation of cor-
responding �-reduction steps in the !lo rewrite sequence on �-terms above, while !search steps
organize the search for the next (�-term representation of a) leftmost-outermost �-redex. The !lo�
rewrite sequence (1) can be viewed as the projection of the !losim rewrite sequence above under an
extension of the denotation operation J·K� on �-term representations yielding �-terms (which works
out substitutions, and interprets uncurried application expressions losimn(s, t1, . . . , tn) appropri-
ately). Along this projection !search and !subst steps vanish, but !contract steps project to !lo�
steps.

While the TRS above facilitates the faithful representation of leftmost-outermost rewrite se-
quences on �-terms (in analogy with Lemma 2.15, see page 134), it does not lend itself well to the

130 Clemens Grabmayer

purpose of proving the linear depth increase result. In particular, it is not readily clear which invari-
ant for reducts t of a term s in rewrite sequences � : s ⇣losim t !losim u could make it possible to
prove that the depth increase in the final step of � is bounded by a constant d that only depends on
the initial term s of the sequence (but not on t). Therefore it is desirable to consider extensions of
first-order �-term representations in which representations of leftmost-outermost �-redexes are built
up from contexts that trace back to contexts in the initial term of the rewrite sequence.

�-TRSs
We now formally define �-TRSs as orthogonal TRSs that are able to represent �-terms. The

basic idea is that, for a �-term M , function symbols that are called ‘scope symbols’ are used to
represent abstractions scopes. Hereby the scope of an abstraction �x.L in M includes the abstraction
�x and all occurrences of the bound variable x, but may leave room for subterms in L without
occurrences of x bound by the abstraction. For example, the �-term �x.zxyx may be denoted, with
the binary scope symbol f that represents the scope of x, as the term f(z, y). (In our formalization
of �-term representations the free variables z and y will be replaced by variable constants, yielding
for example the term f(v

2

, v
1

).) Furthermore, scopes are assumed to be strictly nested. Every
scope symbol defines a rewrite rule that governs the behavior of the application of the scope to an
argument. In the case of the �-term �x.zxyx this leads to the first-order rewrite rule @(f(z, y), x) !
@(@(@(z, x), y), x).

As mentioned earlier, �-TRSs are TRS-representations of systems of supercombinators that are
obtained by the lambda-lifting transformation. I have been familiarized with these �-term represen-
tations by Vincent van Oostrom who pointed me to the studies of optimal reduction for weak �-re-
duction (�-reduction outside of abstractions or in ‘maximal free’ subexpressions) by Blanc, Lévy,
and Maranget [5], and encouraged work by Balabonski [4] on characterizations of optimal-sharing
implementations for weak �-reduction by term labellings, and on the relation with lambda-lifting.

DEFINITION 2.4 (�-TRSs). A �-TRS is a pair L = h⌃, Ri, where ⌃ is a signature containing
the binary application symbol @, and the scope symbols in ⌃

�
:= ⌃ \ {@}, and where R =

{⇢f | f 2 ⌃

�} consists of the defining rules ⇢f for scope symbols f 2 ⌃

� with arity k that are of
the form:

(⇢f) @(f(x
1

, . . . , xk), y) ! F [x
1

, . . . , xk, y]

with F a (k + 1)-ary context that is called the scope context for f . For scope symbols f, g 2 ⌃

�

we say that f depends on the scope symbol g, denoted by f �� g, if g occurs in the scope context F
for f . We say that L is finitely nested if the converse relation of ��, the nested-into relation ��, is
well-founded, or equivalently (using axiom of dependent choice), if there is no infinite chain of the
form f

0

�� f
1

�� f
2

�� . . . on scope symbols f
0

, f
1

, f
2

, . . . 2 ⌃

�.

EXAMPLE 2.5. Let L = h⌃, Ri be the �-TRS with ⌃

�
= {f/2, g/0, h/0, i/1}, and set of rules R

as follows:

(⇢f) @(f(x
1

, x
2

), x) ! @(x
1

,@(x
2

, x)) (⇢h) @(h, x) ! i(x)

(⇢g) @(g, x) ! x (⇢i) @(i(x
1

), x) ! @(x, x
1

)

This finite �-TRS, which will facilitate to denote the �-term M in Example 2.3, is also finitely nested,
as the depends-on relation consists of merely a single link: h �� i.

Linear Depth Increase of Lambda Terms in Leftmost-Outermost Rewrite Sequences 131

In order to explain how �-TRS terms (Definition 2.4) denote �-term representations (Defini-
tion 2.1), we introduce, for every �-TRS L, an expansion TRS that makes use of the defining rules
for the scope symbols in L. Then ‘denoted �-term representations’ are defined as normal forms of
terms in the expansion TRS.

DEFINITION 2.6 (expansion TRS for a �-TRS). Let L = h⌃, Ri be a �-TRS. The expansion
TRS E(L) = h⌃exp, Rexpi for L has the signature ⌃exp := ⌃ [⌃� [⌃expand with ⌃expand :=

{expandi | i 2 N} where expandi is unary for i 2 N, and ⌃

� \ (⌃� [⌃expand) = ?, and its set of
rules Rexp consists of the rules:

expandi(@(x
1

, x
2

)) ! @(expandi(x1

), expandi(x2

))

expandi(f(x1

, . . . , xk)) ! (�vi)(expandi+1

(F [x
1

, . . . , xk, vi])) (where F scope context for f)
expandi(vj) ! vj

By !exp we denote the rewrite relation of E(L).
Since expansion TRSs are orthogonal TRSs, finite or infinite normal forms are unique. Fur-

thermore they are constructor TRSs, i.e. they have rules whose right-hand sides are guarded by
constructors. This can be used to show that all terms in an expansion TRS rewrite to a unique finite
or infinite normal form.

DEFINITION 2.7 (�-term representations denoted by �-TRS-terms). Let L = h⌃, Ri be a �-TRS.
For s 2 Ter(⌃) we denote by JsKL the finite or infinite !exp-normal form of the term expand

0

(s)
in E(L). If it is a �-term representation, we say JsKL is the denoted �-term representation of s, and
write JsKL� for the �-term JJsKLK�.

PROPOSITION 2.8. Let L be a finitely nested �-TRS. Then for every closed term s of L, JsKL is a
finite closed term over ⌃�, hence a �-term representation of the �-term JsKL� .

EXAMPLE 2.9. With the �-TRS L from Example 2.5 the �-term M in Example 2.3 can be denoted
as the term f(g, h) expands to a �-term representation of M (the final ⇣exp step consists of two
parallel !exp steps):

expand
0

(f(g, h)) !exp (�v
0

)(expand
1

(@(g,@(h, v
0

))))

!exp (�v
0

)(@(expand
1

(g), expand
1

(@(h, v
0

))))

!exp (�v
0

)(@((�v
1

)(expand
2

(v
1

)), expand
1

(@(h, v
0

))))

!exp (�v
0

)(@((�v
1

)(v
1

), expand
1

(@(h, v
0

))))

!exp (�v
0

)(@((�v
1

)(v
1

),@(expand
1

(h), expand
1

(v
0

))))

!exp (�v
0

)(@((�v
1

)(v
1

),@(expand
1

(h), v
0

)))

!exp (�v
0

)(@((�v
1

)(v
1

),@((�v
1

)(expand
2

(i(v
1

))), v
0

)))

!exp (�v
0

)(@((�v
1

)(v
1

),@((�v
1

)((�v
2

)(expand
3

(@(v
2

, v
1

)))), v
0

)))

!exp (�v
0

)(@((�v
1

)(v
1

),@((�v
1

)((�v
2

)(@(expand
3

(v
2

), expand
3

(v
1

)))), v
0

)))

⇣exp (�v
0

)(@((�v
1

)(v
1

),@((�v
1

)((�v
2

)(@(v
2

, v
1

))), v
0

)))

Hence Jf(g, h)KL = (�v
0

)(@((�v
1

)(v
1

),@((�v
1

)((�v
2

)(@(v
2

, v
1

))), v
0

))). This �-term repre-
sentation coincides with the term s in Example 2.3 ‘modulo ↵-conversion’, and Jf(g, h)KL� =

�x.(�y.y)((�z.�w.wz)x) = M .

132 Clemens Grabmayer

Simulation of leftmost-outermost rewrite sequences on �-TRS-terms
We adapt the TRS for the simulation of leftmost-outermost !� rewrite sequences on �-term

representations (see page 128) to ‘losim-TRSs’ that facilitate this simulation on terms of �-TRSs.
For every �-TRS L, we introduce a ‘losim-TRS’ with rules that are similar as before but differ for
steps involving abstractions. A simulation starts on a term losim(s) where s is a closed �-TRS
term. Therefore initially all abstractions are represented by scope symbols. During the simulation,
abstraction representations (�vi) are produced in stable parts of the term. The final term in the
simulation of a leftmost-outermost !� rewrite sequence on �-terms will be a �-term representation
(thus with named abstraction symbols, but without scope symbols).

The altered rules concern !search steps that descend into an abstraction, and !contract steps that
simulate the reduction of �-redexes. In both cases before the step the pertaining abstractions are
represented by terms with a scope symbol at the root, and then the expansion of this scope symbol
as stipulated in the expansion TRS is used. Additional substitution rules are not necessary any more,
because the substitution involved in the contraction of a (represented) �-redex can now be carried
out by a single first-order rewrite step. This is because such a step includes the transportation of the
argument of a redex into the scope context that defines the body of the abstraction. An additional
parameter i of the operation symbols losimn, i , curryn, i is used to prevent that any two nested
named abstractions refer to the same variable name, safeguarding that rewrite sequences denote
meaningful reductions on �-terms.

DEFINITION 2.10 (losim-TRS for �-TRSs). Let L = h⌃, Ri be a �-TRS. The losim-TRS (left-
most-outermost reduction simulation TRS) LO(L) = h⌃losim, Rlosimi for L has signature ⌃losim :=

⌃[⌃lored [⌃� with ⌃lored := {losim}[�losimn, i, curryn, i | n, i 2 N

, a signature of operation
symbols (for simulating leftmost-outermost reduction) consisting of the unary symbol losim, and the
symbols losimn, i and curryn, i with arity n+ 1, for n, i 2 N; the rule set Rlosim of LO(L) consists
of the following (schemes of) rules, which are indexed by scope symbols f 2 ⌃

�, and where F is
the scope context for scope symbol f :

losim(x) ! losim
0,0(x) (search)init

losimn, i(@(x, y), y
1

, . . . , yn) ! losimn+1, i(x, y, y1, . . . , yn) (search)@n,i
losim

0, i(f(x1

, . . . , xk)) ! (�vi)(losim
0, i+1

(F [x
1

, . . . , xk, vi]))

(search)f
0,i

losimn+1, i(f(x1

, . . . , xk), y1, y2, . . . , yn+1

) ! losimn, i(F [x
1

, . . . , xk, y1], y2, . . . , yn+1

)

(contract)fn+1,i

losim
0, i(vj) ! vj (search)var

0,i

losimn+1, i(vj , y1, . . . , yn+1

) ! curryn+1, i(vj , y1, . . . , yn+1

) (search)var
n+1,i

curry

1, i(x, y1) ! @(x, losim
0, i(y1)) (search)

1,i

curryn+2, i(x, y1, y2, . . . , yn+2

) ! curryn+1, i(@(x, losim
0, i(y1)), y2, . . . , yn+2

)

(search)n+2,i

By !losim we denote the rewrite relation of LO(L). By !contract we denote the rewrite relation
induced by the rule scheme (contract)f where f 2 ⌃

� varies among scope symbols of L. By
!search we denote the rewrite relation induced by the other rules of LO(L).

Linear Depth Increase of Lambda Terms in Leftmost-Outermost Rewrite Sequences 133

EXAMPLE 2.11. For the �-TRS L in Example 2.5, we reduce the term f(g, h), which denotes the
�-term M in Example 2.3, in the losim-TRS LO(L) for L:

losim(f(g, h)) !search losim
0,0(f(g, h))

!search (�v
0

)(losim
0,1(@(g,@(h, v

0

))))

!search (�v
0

)(losim
1,1(g,@(h, v

0

)))

!contract (�v
0

)(losim
0,1(@(h, v

0

)))

!search (�v
0

)(losim
1,1(h, v0))

!contract (�v
0

)(losim
0,1(i(v0)))

!search (�v
0

)((�v
1

)(losim
0,1(@(v

1

, v
0

))))

!search (�v
0

)((�v
1

)(losim
1,2(v1, v0)))

!search (�v
0

)((�v
1

)(curry

1,2(v1, v0)))

!search (�v
0

)((�v
1

)(@(v
1

, losim
0,2(v0))))

!search (�v
0

)((�v
1

)(@(v
1

, v
0

)))

obtaining an ‘↵-equivalent’ version of the �-term representation at the end of the simulated leftmost-
outermost reduction on �-term representations in Example 2.3.

In order to define how terms in the losim-TRS denote �-term representations we have to extend
the expansion TRS from Definition 2.6 with rules that deal with operation and named-abstraction
symbols.

DEFINITION 2.12 (expansion TRS for losim-TRS-terms). Let L = h⌃, Ri be a �-TRS. The ex-
pansion TRS Elosim(L) = h⌃losim [⌃expand, Rexp [Rexp0i for losim-TRS-terms has as its signature
the union of the signature ⌃losim of LO(L) and the signature ⌃expand of E(L), and as rules the rules
Rexp of E(L) together with the set of rules Rexp0 that consists of:

expandi((�vj)(x)) ! (�vj)(expand
max{i,j}+1

(x))

expandi(losim(x)) ! expandi(x)

expandi(losim
0, j(x)) ! expand

max{i,j}(x)

expandi(losimn+1, j(x, y1, . . . yn+1

))

expandi(curryn+1, j(x, y1, . . . , yn+1

))

�

! @(· · ·@(expandi0(x), expandi0(y1)) . . ., expandi0(yn+1

))

(where i0 = max {i, j})

The rewrite relation of Elosim(L) will again be denoted by !exp.

DEFINITION 2.13 (denoted �-term (representation), extended to losim-TRS-terms). Let L = h⌃, Ri
be a �-TRS. For terms s 2 Ter(⌃losim) in LO(L), we also denote by JsKL the finite or infinite
!exp-normal form of the term expand

0

(s). If it is a �-term representation, then we say that JsKL is
the denoted �-term representation of s, and we again write JsKL� for the �-term JJsKLK�.

We now sketch the relationship between rewrite sequences in losim-TRSs with �-reduction
rewrite sequences on the denoted �-terms. For this we formulate statements about the projections
of !losim steps to steps on �-terms, and about the lifting of leftmost-outermost �-reduction rewrite

134 Clemens Grabmayer

sequences to leftmost-outermost rewrite sequences in losim-TRSs. These statements can be illus-
trated by means of the running example. We do not prove these statements here, as they are closely
analogous to the correctness statement for fully-lazy lambda-lifting, and in particular, to the corre-
spondence between weak �-reduction steps on �-terms and combinator reduction steps on super-
combinator representations obtained by fully-lazy lambda-lifting. The latter result was formulated
and proved by by Balabonski in [4]. The statements below can be established in a very similar
manner.

The first statement concerns the projection of !losim steps to !� or empty steps on �-terms.

LEMMA 2.14 (Projection of !losim steps via J·KL�). Let L = h⌃, Ri be a �-TRS. Let s 2 Ter(⌃losim)

be a closed term in LO(L) such that JsKL� = M for a �-term M . Then the following statements hold
concerning the projection of !losim steps via J·KL� to steps on �-terms, for all s

1

2 Ter(⌃losim):

(i) If s !search s
1

, then JsKL� = Js
1

KL� , that is, the projection of a !search step via J·KL� vanishes.

(ii) If s !contract s1, then JsKL� !� Js
1

KL� , that is, every !contract step projects via J·KL� to a !�

step.

(iii) If s !contract s
1

is actually a leftmost-outermost step, then JsKL� !lo� Js
1

KL� holds, that is,
leftmost-outermost !contract steps project to leftmost-outermost �-reduction steps.

The next lemma states that every leftmost-outermost �-reduction step M !lo� M
1

can be lifted
to a leftmost-outermost many-step s ⇣search · !contract s1 in a losim-TRS, provided that s denotes
M , and s has been obtained by the simulation of a !lo� rewrite sequence.

LEMMA 2.15 (Lifting of !lo� steps to ⇣search · !contract steps w.r.t. J·KL�). Let L = h⌃, Ri be a
�-TRS. Let s 2 Ter(⌃) be a closed term such that JsKL� = M

0

for a �-term M
0

. Furthermore let
u 2 Ter(⌃losim) with JuKL� = M for a �-term M be the final term of a leftmost-outermost rewrite
sequence losim(s) ⇣losim u.

Then for a !lo� step ⇢ : JuKL� =M !lo� M
1

with �-term M
1

as target there are terms u0, u
1

2
Ter(⌃losim) and a leftmost-outermost !losim rewrite sequence ⇢̂ : u ⇣search u0 !contract u1

whose
projection via J·KL� amounts to the step ⇢, and hence, Ju0KL� = M , and Ju

1

KL� = M
1

.

Now by using this lemma in a proof by induction on the length of a !lo� rewrite sequence the
theorem below can be obtained. It justifies the use of losim-TRSs for the simulation of !lo� rewrite
sequences.

THEOREM 2.16 (Lifting of !lo� to leftmost-outermost !losim rewrite sequences). Let L = h⌃, Ri
be a �-TRS. Let s 2 Ter(⌃) be a closed term with JsKL� = M for a �-term M . Then every !lo�
rewrite sequence:

� : M = L
0

!lo� L
1

!lo� · · · !lo� Lk (!lo� Lk+1

!lo� · · ·)
of finite or infinite length l lifts via J·KL� to a leftmost-outermost !losim rewrite sequence:

�̂ : losim(s) = u
0

⇣search · !contract u1

⇣search · · ·
· · · !contract uk (⇣search · !contract uk+1

⇣search · · ·)

with precisely l !contract steps such that furthermore JuiKL� = Li holds for all i 2 {0, 1, . . . , l}.

Linear Depth Increase of Lambda Terms in Leftmost-Outermost Rewrite Sequences 135

3 Linear depth increase

In this section we establish the main result by first deriving bounds for the depth increase of the
denoted �-terms in !losim rewrite sequences in losim-TRSs. In order to reason directly on terms of
the losim-TRS, we define the notion of ‘�-term depth’ for these terms as the depth of the denoted
�-term representations.

DEFINITION 3.1 (�-term depth). Let L = h⌃, Ri be a �-TRS, and let LO(L) be the losim-TRS for
L. For terms s in LO(L), the �-term (representation) depth |s|� of s is defined as the depth of the
�-term representation denoted by s, giving rise to the function |·|� : Ter(⌃lo) ! N [{1} , s 7!
|s|� := |JsKL|.

Since a �-term representation s and the �-term JsK� denoted by it have the same depth, the
�-term depth of a term s that denotes a �-term M is the depth of M .

PROPOSITION 3.2. Let L = h⌃, Ri be a �-TRS, and let LO(L) be the losim-TRS for L. If for a
term s in LO(L) it holds that JsKL� = M for a �-term M , then |s|� = |JsKL| = |JsKL� | = |M |.

The following proposition formulates clauses for the �-term depth depending on the outermost
symbol of a term in a losim-TRS. For finitely nested �-TRSs, these clauses can be read as an induc-
tive definition. They can be proved in a straightforward manner by making use of the definition via
the expansion TRS of the �-term representations JsKL for terms s of the losim-TRS for a �-TRS L.

PROPOSITION 3.3. Let L = h⌃, Ri be a �-TRS, and let LO(L) be the losim-TRS for L. The �-term
depth of terms in LO(L) satisfies the following clauses, for i, j, n 2 N, terms x, t, t

1

, t
2

, s
1

, . . . sk,
and f 2 ⌃

� :

|x|� = 0 (x variable)
|@(t

1

, t
2

)|� = 1 +max {|t
1

|�, |t2|�}
|f(s

1

, . . . , sk)|� = |(�vj)(F [s
1

, . . . , sk, vj])|� (f 2 ⌃

�, F as in the rule ⇢f , vj fresh)
|vj |� = 0 (j 2 N)

|(�vj)(t)|� = 1 + |t|�
|losim(t)|� = |t|�

|losimn, i(s, t1, . . . , tn)|�
|curryn, i(s, t1, . . . , tn)|�

)

= |@(· · ·@(s, t
1

) . . ., tn)|�
= max {|s|� + n, |t

1

|� + n, . . . , |tn|� + 1}
PROPOSITION 3.4. Let L be a finitely nested �-TRS, and let LO(L) be the losim-TRS for L. Then
every term t 2 Ter(⌃lo) has finite �-term depth |t|� 2 N, and hence the �-term depth function on
terms of LO(L) is well-defined of type |·|� : Ter(⌃lo) ! N.

We extend the concept of �-term depth also to scope symbols. Let L be a �-TRS. The �-term
depth |f |� of a scope symbol f 2 ⌃

� with arity k is defined as |f(x
1

, . . . , xk)|� 2 N [{1}, the
�-term depth of the term f(x

1

, . . . , xk). Note that if L is finitely nested, then Proposition 3.4 entails
|f |� = |f(x

1

, . . . , xk)|� 2 N. We also define |L|� := max {|f |� | f 2 ⌃

�} 2 N [{1}, the
maximal �-term depth of a scope symbol in L. Note that if, in addition to being finitely nested, L is
also finite, then it holds that |L|� < 1.

136 Clemens Grabmayer

@

f

s
1

· · ·

sk
t

d

1

d�1

|f |�
F

s
1

· · ·
sk

t

!⇢f

 d�2

 |f |��1

 d�1

 d+(|f |��2)

Figure 3.1. Illustration of the �-term depth increase that is caused by the simulation of a
!�step at the root of a �-term M on a �-TRS-term that denotes M : the depth increase in a step
@(f(s

1

, . . . , sk), t) ! F [s
1

, . . . , sk, t] according to the defining rule ⇢f for the scope symbol f is
at most |f |�� 2. The subterm t could be duplicated in the step and occur several times below F , but
only one such occurrence is displayed.

PROPOSITION 3.5. Let L = h⌃, Ri be a �-TRS, and let LO(L) be the losim-TRS for L. If for a
term s in LO(L) it holds that JsKL� = M for a �-term M , then |L|�  |M |.

For analyzing the depth increase of steps in losim-TRSs, the following two lemmas will be
instrumental. They relate the �-term depth of contexts filled with terms to the �-term depths of
occurring terms.

LEMMA 3.6. Let L = h⌃, Ri be a finitely nested �-TRS. For all unary contexts C over ⌃, terms
s, t 2 Ter(⌃), and d 2 N the following statements hold:

|s|�  |t|� + d) |C[s]|�  |C[t]|� + d , (2)
|s|� = |t|�) |C[s]|� = |C[t]|� . (3)

Proof. Statement (2) can be established by straightforward induction on the structure of the context
C, using the clauses concerning the �-term depth from Proposition 3.3. Statement (3) is an easy
consequence. a
LEMMA 3.7. Let L = h⌃, Ri be a finitely nested �-TRS. Then for all (k + 1)-ary contexts C over
⌃, where k 2 N, and for all terms s

1

, . . . , sk, t 2 Ter(⌃) it holds:

|C[s
1

, . . . , sk, t]|�  max {|C[s
1

, . . . , sk, x]|�, |C[x
1

, . . . , xk+1

]|� + |t|�} .

Proof. By a straightforward induction on the structure of the context C. a
Now we can formulate, and prove, a crucial lemma (Lemma 3.8). Its central statement is that

the depth increase in a !contract step (with respect to a losim-TRS) at the root of a term is bounded by
the depth of the scope context of the scope symbol that is involved in the step. See Figure 3.1 for an
illustration of the underlying intuition for the analogous case of a step according to the defining rule
of a scope symbol. Then we obtain a lemma (Lemma 3.9) concerning the depth increase in general
!contract and !search steps.

Linear Depth Increase of Lambda Terms in Leftmost-Outermost Rewrite Sequences 137

LEMMA 3.8. Let L = h⌃, Ri be a finitely nested �-TRS. Then for every scope symbol f 2 ⌃

� with
arity k and scope context F , and for all terms s

1

, . . . , sk, t 2 Ter(⌃), and all i 2 N, it holds:

(i) |F [s
1

, . . . , sk, t]|�  |@(f(s
1

, . . . , sk), t)|� + |f |� � 2 .

(ii) |losimn, i(F [s
1

, . . . , sk, t1], t2, . . . , tn+1

)|� 
 |losimn+1, i(f(s1, . . . , sk), t1, . . . , tn+1

)|� + |f |� � 2 .

Proof. For all f , F , s
1

, . . . , sk, t, and i as assumed in the statement of the lemma, we find:

|@(f(s
1

, . . . , sk), t)|� � 1 = max {|f(s
1

, . . . , sk)|�, |t|�}
= max {|(�vj)(F [s

1

, . . . , sk, vj])|�, |t|�}
= max {1 + |F [s

1

, . . . , sk, vj]|�, |t|�}

9

>

=

>

;

(4)

|F [x
1

, . . . , xk+1

]|� = |(�vj)(F [s
1

, . . . , sk, vj])|� � 1 = |f(x
1

, . . . , xk)|� � 1 = |f |� � 1 (5)

by using clauses from Proposition 3.3. By applying this inequality, we obtain the statement in
item (i):

|F [s
1

, . . . , sk, t]|�  max {|F [s
1

, . . . , sk, xk+1

]|�, |F [x
1

, . . . , xk, xk+1

]|� + |t|�}
 max {|F [s

1

, . . . , sk, xk+1

]|�, |t|�} + |F [x
1

, . . . , xk, xk+1

]|�
 max {1 + |F [s

1

, . . . , sk, xk+1

]|�, |t|�} + |F [x
1

, . . . , xk, xk+1

]|�
= |@(f(s

1

, . . . , sk), t)|� � 1 + |f |� � 1

= |@(f(s
1

, . . . , sk), t)|� + (|f |� � 2)

where the first step is justified by Lemma 3.7, and the forth step by (4) and (5). For the statement in
item (ii) we first note, using Proposition 3.3 again, that:

|losimn+1, i(f(s1, . . . , sk), t1, t2, . . . , tn+1

)|�
= |@(. . .@(@(f(s

1

, . . . , sk), t1), t2) . . ., tn+1

)|�
= |losimn, i(@(f(s

1

, . . . , sk), t1), t2, . . . , tn+1

)|�

9

>

=

>

;

(6)

holds due to the definition of the �-term depth via !exp steps. With (6) the statement in (ii) follows
by using Lemma 3.6 with item (i), and context C := losimn, i(2, t

2

, . . . , tn+1

), and constant d :=

|f |� � 2. a

LEMMA 3.9. Let L = h⌃, Ri be a finite, and finitely nested �-TRS. Then the following statements
hold concerning the preservation or the increase of the �-term depth in steps of the losim-TRS LO(L)
for L between terms t

1

, t
2

2 Terlo-red(⌃lo):

(i) If t
1

!contract t2 , then |t
2

|�  |t
1

|� + (|f |� � 2) , where f is the scope symbol involved in
the step.

(ii) If t
1

!search t
2

, then |t
1

|� = |t
2

|� .

138 Clemens Grabmayer

Proof. We first establish the inequality in item (i). For !contract steps at the root, which are of the
form:

losimn+1, i(f(s1, . . . , sk), t1, . . . , tn+1

) !contract losimn, i(F [s
1

, . . . , sk, t1], t2, . . . , tn+1

)

the desired inequality follows by using |F [x
1

, . . . , xk+1

]|� = |f(x
1

, . . . , xk+1

)|� � 1  D � 1 from
Lemma 3.8, (ii). For non-root !contract steps this inequality is lifted into a rewriting context by ap-
pealing to Lemma 3.6.

We continue with showing item (ii). By means of the clauses of Proposition 3.3 it is straightfor-
ward to check that !search steps at the root preserve the �-term depth. This can be extended to all
!search steps by Lemma 3.6, (3). a

Using this lemma we now can obtain, quite directly, our main result concerning the depth in-
crease of terms in !losim rewrite sequences.

THEOREM 3.10. Let L = h⌃, Ri be a finite, and finitely nested �-TRS, and let D := |L|�. Then
for all finite or infinite !losim rewrite sequences � with initial term s and length l 2 N[{1}, which
can be construed as:

� : s = u
0

⇣search u0
0

!contract u1

⇣search · · ·
· · · ⇣search u0

k�1

!contract uk (⇣search u0
k !contract · · ·) ,

the following statements hold for all n 2 N with n  l :

(i) |un|� = |u0
n|�, and |un+1

|�  |u0
n|� + (D� 2) if n+1  l, that is more precisely, the �-term

depth remains the same in the !search steps, and it increases by at most D � 2 in the !contract
steps.

(ii) |un|�, |u0
n|�  |s|� + (D � 2) · n , that is, the increase of the �-term depth along � is linear

in the number of !contract steps performed, with (D � 2) as multiplicative constant.

Proof. Statement (i) follows directly from Lemma 3.9, (i) and (ii). Statement (ii) is obtained by
adding up the uniform bound D on the �-term depth increase of each of the n !contract steps in the
rewrite sequence �. a

From this theorem we obtain our main theorem, the linear depth increase result for leftmost-
outermost �-reduction rewrite sequences, by making use of three auxiliary results we have obtained.
Namely first that !lo� rewrite sequences lift to !losim rewrite sequences (Proposition 2.16); second,
that �-term and �-term representation depths coincide (Proposition 3.2), and third, that the depth of
a �-TRS that represents a �-term M is bounded by the depth of M (Proposition 3.5).

THEOREM 3.11 (Linear depth increase in !lo� rewrite sequences). Let M be a �-term. Then for
every finite or infinite leftmost-outermost rewrite sequence � : M = L

0

!lo� L
1

!lo� · · · !lo�
Lk (!lo� Lk+1

!lo� · · ·) from M with length l 2 N [{1} it holds:

(i) |Ln+1

|  |Ln|+ |M | for all n 2 N with n+ 1  l, that is, the depth increase in each step of
� is uniformly bounded by |M |.

(ii) |Ln|  |M |+n · |M | = (n+1) · |M |, and hence |Ln|� |M | 2 O(n), for all n 2 N with n  l,
that is, the depth increase along � to the n-th reduct is linear in n, with |M | as multiplicative
constant.

Linear Depth Increase of Lambda Terms in Leftmost-Outermost Rewrite Sequences 139

4 Idea for a Graph Rewriting Implementation

The linear depth increase result suggests a directed-acyclic-graph implementation of leftmost-
outermost �-reduction that keeps subterms shared as much as possible, particularly in the search for
the representation of the next leftmost-outermost redex. The idea is that steps used in the search for
the next leftmost-outermost redex do not perform any unsharing, but only use markers to organize
the search and keep track of its progress. All such search steps together only increase the size of
the graph by at most a constant multiple. The number of search steps necessary for finding the next
leftmost-outermost redex is linear in the size of the current graph. Unsharing of the graph only takes
place once the next (representation of the) leftmost-outermost redex is found: then the part of the
graph between this redex and the root is unshared (copied), and subsequently the (represented) redex
is contracted.

Since by Theorem 3.11 the depth of the term Ln after n !contract steps in a !losim rewrite se-
quence (and hence after n already performed simulated !lo� steps) is bounded linearly in n, this
also holds for the directed acyclic graph that represents Ln after n simulated !lo� steps on the shar-
ing graphs. Hence unsharing work necessary for the simulation of the (n+ 1)-th !lo� step is linear
in n. This can be used to show that the size increase of the graph after n contractions of (represented)
leftmost-outermost redexes is at most quadratic in n. Since consequently the work for searching and
contracting the n-th leftmost-outermost redex is also quadratic in n, such an implementation can
make it possible to simulate n leftmost-outermost �-reduction steps on sharing graphs in time that
is cubic in n.
Acknowledgement. I want to sincerely thank: Vincent van Oostrom, for familiarizing me with
TRS-representations of �-terms, and with the simulation of weak-� reduction by orthogonal TRSs;
Dimitri Hendriks, for his many comments on my drafts, and for his questions about it that always
helped me; and Jörg Endrullis, for his suggestion about how to typeset Figure 3.1 with TikZ.

BIBLIOGRAPHY
[1] Beniamino Accattoli and Ugo Dal Lago. Beta Reduction is Invariant, Indeed. In Proceedings of the joint conference

CSL-LICS ’14, pages 8:1–8:10, New York, NY, USA, 2014. ACM.
[2] Beniamino Accattoli and Ugo Dal Lago. Beta Reduction is Invariant, Indeed (Long Version). Technical report, arXiv.org,

2014. http://arxiv.org/abs/1405.3311.
[3] Andrea Asperti and Jean-Jacques Levy. The Cost of Usage in the �-Calculus. In Proceedings of LICS 2013, LICS ’13,

pages 293–300, Washington, DC, USA, 2013. IEEE Computer Society.
[4] Thibaut Balabonski. A Unified Approach to Fully Lazy Sharing. In Proceedings of the Symposium POPL ’12, pages

469–480, New York, NY, USA, 2012. ACM.
[5] Tomasz Blanc, Jean-Jacques Lévy, and Luc Maranget. Sharing in the Weak Lambda-Calculus. In Processes, Terms and

Cycles: Steps on the Road to Infinity. Essays dedicated to Jan Willem Klop, number 3838 in LNCS. Springer, 2005.
[6] John Hughes. Graph Reduction with Supercombinators. Technical Report PRG28, Oxford University Computing Labo-

ratory, June 1982.
[7] Charles Stewart. Reducibility between Classes of Port Graph Grammar. Journal of Computer and System Sciences,

65(2):169 – 223, 2002.
[8] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-

sity Press, 2003.

