Part 6: Complexity of Productivity

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Vrije Universiteit Amsterdam - Universiteit Utrecht - Vrije Universiteit Amsterdam

ISR 2010, Utrecht University
July 8, 2010

Overview

1. The arithmetical and analytical hierarchies
2. Complexity of productivity and equivalence for stream spec's
3. Productivity and variant definitions in TRSs
4. Complexity of productivity, and variants, in TRSs
5. Summary and References

Overview

1. The arithmetical and analytical hierarchies
2. Complexity of productivity and equivalence for stream spec's
3. Productivity and variant definitions in TRSs
4. Complexity of productivity, and variants, in TRSs
5. Summary and References

The arithmetical hierarchy

$$
\begin{aligned}
\boldsymbol{\Pi}_{0}^{0}:=\boldsymbol{\Sigma}_{0}^{0}:= & 1^{\text {stt-order arithmetic formulas }} & \boldsymbol{\Sigma}_{n+1}^{0}:=\left\{\exists x_{1} \ldots \exists x_{k} \psi \mid \Psi \in \boldsymbol{\Pi}_{n}^{0}\right\} \\
& \text { with bounded quantifiers } & \boldsymbol{\Pi}_{n+1}^{0}:=\left\{\forall x_{1} \ldots \forall x_{k} \psi \mid \Psi \in \boldsymbol{\Sigma}_{n}^{0}\right\}
\end{aligned}
$$

$\Sigma_{n}^{0}\left(\Pi_{n}^{0}\right):=$ interpretations of formulas in $\Sigma_{n}^{0}\left(\Pi_{n}^{0}\right)$ over $\mathbb{N} \quad \Delta_{n}^{0}:=\Sigma_{n}^{0} \cap \Pi_{n}^{0}$

The analytical hierarchy

Overview

1. The arithmetical and analytical hierarchies
2. Complexity of productivity and equivalence for stream spec's
3. Productivity and variant definitions in TRSs
4. Complexity of productivity, and variants, in TRSs
5. Summary and References

Productivity and equivalence problems

Productivity Problem for class \mathcal{C} of stream spec's Instance: A stream specification $\mathcal{R} \in \mathcal{C}$ with root M_{0} Question: Is \mathcal{R} productive?
(Does $M_{0} \rightarrow u_{0}: u_{1}: u_{2}: u_{3}: \ldots$?)

Equivalence Problem for class \mathcal{C} of stream spec's Instance: Stream specifications $\mathcal{R}_{1}, \mathcal{R}_{2} \in \mathcal{C}$ with roots Question: Do \mathcal{R}_{1} and \mathcal{R}_{2} uniquely define the same stream? * *) E.g. in the case that

Productivity and equivalence problems

Productivity Problem for class \mathcal{C} of stream spec's Instance: A stream specification $\mathcal{R} \in \mathcal{C}$ with root M_{0}
Question: Is \mathcal{R} productive?
(Does $M_{0} \rightarrow u_{0}: u_{1}: u_{2}: u_{3}: \ldots$?)

Equivalence Problem for class \mathcal{C} of stream spec's Instance: Stream specifications $\mathcal{R}_{1}, \mathcal{R}_{2} \in \mathcal{C}$ with roots $\mathrm{M}_{0}^{(1)}, \mathrm{M}_{0}^{(2)}$ Question: Do \mathcal{R}_{1} and \mathcal{R}_{2} uniquely define the same stream? *

Productivity and equivalence problems

Productivity Problem for class \mathcal{C} of stream spec's Instance: A stream specification $\mathcal{R} \in \mathcal{C}$ with root M_{0}
Question: Is \mathcal{R} productive?
(Does $M_{0} \rightarrow u_{0}: u_{1}: u_{2}: u_{3}: \ldots$?)

Equivalence Problem for class \mathcal{C} of stream spec's Instance: Stream specifications $\mathcal{R}_{1}, \mathcal{R}_{2} \in \mathcal{C}$ with roots $\mathrm{M}_{0}^{(1)}, \mathrm{M}_{0}^{(2)}$ Question: Do \mathcal{R}_{1} and \mathcal{R}_{2} uniquely define the same stream? *
$\left.{ }^{\star}\right)$ E.g. in the case that $\mathrm{M}_{0}^{(1)} \rightarrow u_{0}: u_{1}: u_{2}: u_{3}: \ldots \nVdash \mathrm{M}_{0}^{(2)}$.

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]
productive

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	-	Π_{1}^{0}-complete
pure and pure ${ }^{+}$	decidable	Π_{1}^{0}-hard
flat	Π_{2}^{0}-complete	Π_{2}^{0}-complete
general	Π_{2}^{0}-complete ${ }^{\dagger}$	Π_{2}^{0}-complete ${ }^{\star}$

*) G. Roşu (2006).

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	-	Π_{1}^{0}-complete
pure and pure ${ }^{+}$	decidable	Π_{1}^{0}-hard
flat	Π_{2}^{0}-complete	Π_{2}^{0}-complete
general	Π_{2}^{0}-complete ${ }^{\dagger}$	Π_{2}^{0}-complete ${ }^{\star}$

*) G. Roşu (2006).

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	-	Π_{1}-complete
pure and pure ${ }^{+}$	decidable	Π_{9}^{0}-hard
flat	Π_{2}^{0}-complete	Π_{2}^{0}-complete
general	Π_{2}^{0}-complete ${ }^{\dagger}$	Π_{2}^{0}-complete ${ }^{\star}$

*) G. Roşu (2006).
${ }^{\dagger}$) J. Grue Simonsen (2009), E/G/H (2009).

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	-	Π_{1}^{0}-complete
pure and pure ${ }^{+}$	decidable	Π_{1}^{0}-hard
flat	Π_{2}^{0}-complete	Π_{2}^{0}-complete
general	Π_{2}^{0}-complete ${ }^{\dagger}$	Π_{2}^{0}-complete ${ }^{\star}$

*) G. Roşu (2006).
${ }^{\dagger}$) J. Grue Simonsen (2009), E/G/H (2009).

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	-	Π^{0}-complete
pure and pure ${ }^{+}$	decidable	Π_{9}^{0}-hard
flat	Π_{2}^{0}-complete	Π_{2}^{0}-complete
general	Π_{2}^{0}-complete ${ }^{\dagger}$	Π_{2}^{0}-complete ${ }^{\star}$

*) G. Roşu (2006).
${ }^{\dagger}$) J. Grue Simonsen (2009), E/G/H (2009).

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	-	Π_{1}^{0}-complete
pure and pure ${ }^{+}$	decidable	Π_{1}^{0}-hard
flat	Π_{2}^{0}-complete	Π_{2}^{0}-complete
general	Π_{2}^{0}-complete ${ }^{\dagger}$	Π_{2}^{0}-complete ${ }^{\star}$

*) G. Roşu (2006).
${ }^{\dagger}$) J. Grue Simonsen (2009), E/G/H (2009).

Complexity of productivity and equivalence

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	-	Π_{1}^{0}-complete
pure and pure ${ }^{+}$	decidable	Π_{1}^{0}-hard
flat	Π_{2}^{0}-complete	Π_{2}^{0}-complete
general	Π_{2}^{0}-complete ${ }^{\dagger}$	Π_{2}^{0}-complete ${ }^{\star}$

*) G. Roşu (2006).
${ }^{\dagger}$) J. Grue Simonsen (2009), E/G/H (2009).

Productivity of flat stream specifications

Theorem

The productivity problem for flat stream specifications is Π_{2}^{0}-complete.

Π_{2}^{0}-complete: By reducing the uniform halting problem for Turing-machines, which is Π_{0}^{0}-complete, to the productivity p oblem.

Productivity of flat stream specifications

Theorem

The productivity problem for flat stream specifications is Π_{2}^{0}-complete.

Proof.

Contained in Π_{2}^{0} :
A flat stream spec \mathcal{R} with root M_{0} is productive iff
$M_{0} \rightarrow u_{0}: u_{1}: u_{2}: \ldots$,
and iff:
$\forall n \in \mathbb{N} . \exists m \in \mathbb{N} . \exists \rho . \rho$ is rewrite sequence of length m, $\rho: \mathrm{M}_{0} \rightarrow u_{0}: u_{1}: u_{2}: \ldots u_{n}: t$

Π_{2}^{0}-complete: By reducing the uniform halting problem for
Turing-machines, which is Π_{2}^{0}-complete, to the productivity problem.

Productivity of flat stream specifications

Theorem

The productivity problem for flat stream specifications is Π_{2}^{0}-complete.

Proof.

Contained in Π_{2}^{0} :
A flat stream spec \mathcal{R} with root M_{0} is productive iff
$M_{0} \rightarrow u_{0}: u_{1}: u_{2}: \ldots$,
and iff:
$\forall n \in \mathbb{N} . \exists m \in \mathbb{N} . \exists \rho . \rho$ is rewrite sequence of length m, $\left.\rho: M_{0} \rightarrow u_{0}: u_{1}: u_{2}: \ldots u_{n}: t \quad\right\} \in \Pi_{2}^{0}$
Π_{2}^{0}-complete: By reducing the uniform halting problem for Turing-machines, which is Π_{2}^{0}-complete, to the productivity problem.

Productivity of flat stream specifications

Proof (continued).
We show $\{\ulcorner M\urcorner: M$ halts on all inputs $\}=U H P \leq_{m} P R O D(F L A T)$: An instance
halts on x in $\leq y$ steps otherwise

Productivity of flat stream specifications

Proof (continued).

We show $\{\ulcorner M\urcorner: M$ halts on all inputs $\}=U H P \leq_{m} P R O D(F L A T)$: An instance $\ulcorner M\urcorner$ of UHP is transformed into the flat spec \mathcal{R}_{M} :

$$
\begin{aligned}
\mathrm{R}_{M} & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(0,0), 0,0\right) \\
\mathrm{R}(\mathrm{~s}(0), x, y) & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(x, s(y)), x, s(y)\right) \\
\mathrm{R}(0, x, y) & \rightarrow 0: R\left(\operatorname{stops}_{M}(\mathrm{~s}(x), 0), s(x), 0\right) \\
\operatorname{stops}_{M}(x, y) & \rightarrow \begin{cases}0 \ldots & M \text { halts on } x \text { in } \leq y \text { steps } \\
s(0) \ldots & \text { otherwise }\end{cases}
\end{aligned}
$$

Then: \square
$\Longleftrightarrow M$ halts on all inputs

Productivity of flat stream specifications

Proof (continued).

We show $\{\ulcorner M\urcorner: M$ halts on all inputs $\}=U H P \leq_{m} P R O D(F L A T)$: An instance $\ulcorner M\urcorner$ of UHP is transformed into the flat spec \mathcal{R}_{M} :

$$
\begin{aligned}
\mathrm{R}_{M} & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(0,0), 0,0\right) \\
\mathrm{R}(\mathrm{~s}(0), x, y) & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(x, \mathrm{~s}(y)), x, \mathrm{~s}(y)\right) \\
\mathrm{R}(0, x, y) & \rightarrow 0: \mathrm{R}\left(\operatorname{stops}_{M}(\mathrm{~s}(x), 0), \mathrm{s}(x), 0\right) \\
\text { stops }_{M}(x, y) & \rightarrow \begin{cases}0 \ldots & M \text { halts on } x \text { in } \leq y \text { steps } \\
\mathrm{s}(0) \ldots & \text { otherwise }\end{cases}
\end{aligned}
$$

Then: \square
$\Longleftrightarrow M$ halts on all inputs

Productivity of flat stream specifications

Proof (continued).

We show $\{\ulcorner M\urcorner: M$ halts on all inputs $\}=U H P \leq_{m} P R O D(F L A T)$: An instance $\ulcorner M\urcorner$ of UHP is transformed into the flat spec \mathcal{R}_{M} :

$$
\begin{aligned}
\mathrm{R}_{M} & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(0,0), 0,0\right) \\
\mathrm{R}(\mathrm{~s}(0), x, y) & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(x, \mathrm{~s}(y)), x, \mathrm{~s}(y)\right) \\
\mathrm{R}(0, x, y) & \rightarrow 0: \mathrm{R}\left(\operatorname{stops}_{M}(\mathrm{~s}(x), 0), \mathrm{s}(x), 0\right) \\
\text { stops }_{M}(x, y) & \rightarrow \begin{cases}0 \ldots & M \text { halts on } x \text { in } \leq y \text { steps } \\
\mathrm{s}(0) \ldots & \text { otherwise }\end{cases}
\end{aligned}
$$

Then:

is productive (and: $R_{M} \rightarrow$ $\Longleftrightarrow M$ halts on all inputs

Productivity of flat stream specifications

Proof (continued).

We show $\{\ulcorner M\urcorner: M$ halts on all inputs $\}=U H P \leq_{m} P R O D(F L A T)$: An instance $\ulcorner M\urcorner$ of UHP is transformed into the flat spec \mathcal{R}_{M} :

$$
\begin{aligned}
\mathrm{R}_{M} & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(0,0), 0,0\right) \\
\mathrm{R}(\mathrm{~s}(0), x, y) & \rightarrow \mathrm{R}\left(\operatorname{stops}_{M}(x, \mathrm{~s}(y)), x, \mathrm{~s}(y)\right) \\
\mathrm{R}(0, x, y) & \rightarrow 0: \mathrm{R}\left(\operatorname{stops}_{M}(\mathrm{~s}(x), 0), \mathrm{s}(x), 0\right)
\end{aligned}
$$

$$
\operatorname{stops}_{M}(x, y) \rightarrow \begin{cases}0 \ldots & M \text { halts on } x \text { in } \leq y \text { steps } \\ \mathrm{s}(0) \ldots & \text { otherwise }\end{cases}
$$

Then: $\quad \mathcal{R}_{M}$ is productive (and: $\mathrm{R}_{M} \rightarrow 0: 0: \ldots$)
$\Longleftrightarrow M$ halts on all inputs
$\Longleftrightarrow\ulcorner M\urcorner \in U H P$.

Equivalence for productive stream specifications

Theorem
The equivalence problem for productive specifications is Π_{1}^{0}-complete.

Contained in
Productive spec's \mathcal{R}_{1} and \mathcal{R}_{2} with roots \mathbb{V}_{2}, \mathbb{N}_{2}^{2} are equivalent iff
and iff:
are rewrite sequences of length n,

Equivalence for productive stream specifications

Theorem

The equivalence problem for productive specifications is Π_{1}^{0}-complete.
Proof.
Π_{1}^{0}-complete: By reducing $\overline{H P}$, the complement of the halting problem, which is Π_{1}^{0}-complete, to the equivalence problem here.

Productive spec's \mathcal{R}_{1} and \mathcal{R}_{2} with roots

are equivalent iff
and iff:
are rewrite sequences of length n,

Equivalence for productive stream specifications

Theorem

The equivalence problem for productive specifications is Π_{1}^{0}-complete.

Proof.

Π_{1}^{0}-complete: By reducing $\overline{H P}$, the complement of the halting problem, which is Π_{1}^{0}-complete, to the equivalence problem here.

Contained in Π_{1}^{0} :
Productive spec's \mathcal{R}_{1} and \mathcal{R}_{2} with roots $\mathrm{M}_{0}^{(1)}, \mathrm{M}_{0}^{(2)}$ are equivalent iff

$$
\mathrm{M}_{0}^{(1)} \rightarrow u_{0}: u_{1}: u_{2}: u_{3}: \ldots \nVdash \mathrm{M}_{0}^{(2)},
$$

and iff:
$\forall n, m \in \mathbb{N} . \forall \rho_{1}, \rho_{2} . \rho_{1}, \rho_{2}$ are rewrite sequences of length n,

$$
\begin{aligned}
& \rho_{1}: \mathrm{M}_{0}^{(1)} \rightarrow u_{0}^{\prime}: u_{1}^{\prime}: u_{2}^{\prime}: \ldots u_{m}^{\prime}: t^{\prime}, \\
& \rho_{2}: \mathrm{M}_{0}^{(1)} \rightarrow u_{0}^{\prime \prime}: u_{1}^{\prime \prime}: u_{2}^{\prime \prime}: \ldots u_{m}^{\prime \prime}: t^{\prime \prime}, \\
& \Rightarrow \operatorname{nf}\left(u_{0}^{\prime}\right)=\operatorname{nf}\left(u_{0}^{\prime}\right) \wedge \ldots \wedge n f\left(u_{m}^{\prime}\right)=\operatorname{nf}\left(u_{m}^{\prime}\right)
\end{aligned}
$$

Overview

1. The arithmetical and analytical hierarchies
 2. Complexity of productivity and equivalence for stream spec's

3. Productivity and variant definitions in TRSs
4. Complexity of productivity, and variants, in TRSs
5. Summary and References

Productivity and variants

1

$$
\text { zeros } \rightarrow 0 \text { : zeros }
$$

- productive: there is only one maximal rewrite sequence:

$$
\text { zeros } \rightarrow 0: \text { zeros } \rightarrow 0: 0: \text { zeros } \rightarrow \ldots \rightarrow 00: 0: 0: \ldots
$$

- still productive, since for all max. outermost-fair rewrite sequences: zeros \rightarrow 0:0:0

Even for well-behaved spec's (orthogonal TRSs), productivity should be based on a

Productivity and variants

1

$$
\text { zeros } \rightarrow 0 \text { : zeros }
$$

- productive: there is only one maximal rewrite sequence:

$$
\text { zeros } \rightarrow 0: \text { zeros } \rightarrow 0: 0: \text { zeros } \rightarrow \ldots \rightarrow 0: 0: 0: \ldots
$$

2

$$
\text { zeros } \rightarrow 0 \text { : id(zeros) } \quad \operatorname{id}(x s) \rightarrow x s
$$

- zeros $\rightarrow 0$: id(0 : id(0 : id(. . .)))
- still productive, since for all max. outermost-fair rewrite sequences: zeros $\rightarrow 0$ 0:0:0:...

Even for well-behaved spec's (orthogonal TRSs), productivity should be based on a

Productivity and variants

1

$$
\text { zeros } \rightarrow 0 \text { : zeros }
$$

- productive: there is only one maximal rewrite sequence:

$$
\text { zeros } \rightarrow 0 \text { : zeros } \rightarrow 0: 0: \text { zeros } \rightarrow \ldots \rightarrow 0: 0: 0: \ldots
$$

2

$$
\text { zeros } \rightarrow 0 \text { : id(zeros) id }(x s) \rightarrow x s
$$

- zeros $\rightarrow 0$: id(0 $\mathrm{id}(0: i d(\ldots)))$
- still productive, since for all max. outermost-fair rewrite sequences: zeros \rightarrow 0:0:0:...

Even for well-behaved spec's (orthogonal TRSs), productivity should be based on a fair treatment of outermost redexes.

Productivity and variants

3 maybe $\rightarrow 0$: maybe \quad maybe \rightarrow sink \quad sink \rightarrow sink

- productive or not, dependent on the chosen strategy
- 'weakly productive': maybe $\rightarrow 0: 0: 0: \ldots$
- not ‘strongly productive': e.g. maybe \rightarrow sink \rightarrow sink $\rightarrow \ldots$abitstream $\rightarrow 0$: abitstream abitstream $\rightarrow 1$: abitstream
- productive independent of the strategy chosen
- 'weakly' and 'strongly productive'
- infinite normal forms not uniaue

Productivity and variants

3

$$
\text { maybe } \rightarrow 0 \text { : maybe } \quad \text { maybe } \rightarrow \text { sink } \quad \text { sink } \rightarrow \text { sink }
$$

- productive or not, dependent on the chosen strategy
- 'weakly productive': maybe $\rightarrow 0: 0: 0: \ldots$
- not ‘strongly productive': e.g. maybe \rightarrow sink \rightarrow sink $\rightarrow \ldots$

4 abitstream $\rightarrow 0$: abitstream abitstream $\rightarrow 1$: abitstream

- productive independent of the strategy chosen
- 'weakly' and 'strongly productive'
- infinite normal forms not unique

Definition of productivity in general TRSs

With practical purposes in mind, we think:

- For non-well-behaved spec's (non-orthogonal TRSs), productivity has to be defined relative to a given rewrite strategy.
- Strategy-independent variants (strong, weak productivity) are only of theoretical interest.
- Uniqueness of (infinite) normal form UN^{∞} should be considered to be a separate property, independent of productivity. (In orthogonal TRSs, UN^{∞} is guaranteed.)

Productivity w.r.t. computable strategies

Let \mathcal{R} be a TRS.
A strategy for a rewrite relation $\rightarrow_{\mathcal{R}}$ is a relation $\leadsto \subseteq \rightarrow_{\mathcal{R}}$ with the same normal forms as $\rightarrow_{\mathcal{R}}$.

Definition

A term t is called productive w.r.t. a strategy \sim if all maximal \sim-rewrite sequences starting from t end in a constructor normal form.

Strong and weak productivity

Definition

A term t in a TRS \mathcal{R} is called

- strongly productive: all maximal outermost-fair rewrite sequences starting from t end in a constructor normal form.
- weakly productive: if there exists a rewrite sequence starting from t that ends in a constructor normal form.

Overview

> 1. The arithmetical and analytical hierarchies
> 2. Complexity of productivity and equivalence for stream spec's
> 3. Productivity and variant definitions in TRSs
4. Complexity of productivity, and variants, in TRSs
5. Summary and References

Productivity w.r.t. computable strategies

Productivity Problem w.r.t. a family \mathcal{S} of computable strategies Instance: Encodings of a finite TRS \mathcal{R}, a strategy $\leadsto \in \mathcal{S}(\mathcal{R})$, and a term t in \mathcal{R}.
Question: Is t productive w.r.t. \leadsto ?
We say that:

- such a family \mathcal{S} is admissible: if R is orthogonal, $\mathcal{S}(\mathcal{R}) \neq \emptyset$.

Theorem

For every family of admissible, computale strategies \mathcal{S}, the productivity problem w.r.t. \mathcal{S} is Π_{2}^{0}-complete.

In orthogonal TRSs, productivity w.r.t. lazy (outermost-fair) evaluation

Productivity w.r.t. computable strategies

Productivity Problem w.r.t. a family \mathcal{S} of computable strategies Instance: Encodings of a finite TRS \mathcal{R}, a strategy $\leadsto \in \mathcal{S}(\mathcal{R})$, and a term t in \mathcal{R}.
Question: Is t productive w.r.t. \leadsto ?
We say that:

- such a family \mathcal{S} is admissible: if R is orthogonal, $\mathcal{S}(\mathcal{R}) \neq \emptyset$.

Theorem

For every family of admissible, computale strategies \mathcal{S}, the productivity problem w.r.t. \mathcal{S} is Π_{2}^{0}-complete.

Corollary

In orthogonal TRSs, productivity w.r.t. lazy (outermost-fair) evaluation is Π_{2}^{0}-complete.

Strong and weak productivity

Theorem

The recognition problem for

- strong productivity is Π_{1}^{1}-complete;
- weak productivity is Σ_{1}^{1}-complete.

Proof (Idea).

Π_{1}^{1}-hardness (Σ_{1}^{1}-hardness): reducing the

- recognition problem for well-founded (for non-well-founded) binary relations over \mathbb{N}, which is Π_{1}^{1}-complete (Σ_{1}^{1}-complete), to the
- to the recognition problem of strong (weak) productivity.

Uniqueness of infinite normal form

Theorem

The problem of recognising, for TRSs \mathcal{R} and terms t in \mathcal{R}, whether t has a unique (finite or infinite) normal form is Π_{1}^{1}-complete.

Uniqueness of infinite normal form

Theorem

The problem of recognising, for TRSs \mathcal{R} and terms t in \mathcal{R}, whether t has a unique (finite or infinite) normal form is Π_{1}^{1}-complete.

Changes due to adding the condition uniqueness of normal form:
(i) w.r.t. family of strategies:

- uniqueness of normal forms w.r.t. $\sim: \Pi_{2}^{0}$-complete.
- uniqueness of normal forms generally: Π_{1}^{1}-complete.
(ii) strong productivity: Π_{1}^{1}-complete
(iii) weak productivity: now $\left(\Pi_{1}^{1} \cup \Sigma_{1}^{1}\right)$-hard

Overview

> 1. The arithmetical and analytical hierarchies
> 2. Complexity of productivity and equivalence for stream spec's
> 3. Productivity and variant definitions in TRSs
> 4. Complexity of productivity, and variants, in TRSs
5. Summary and References

Complexity of productivity: gathered results

Complexity of productivity: gathered results

- Productivity for pure/pure+ stream specifications is decidable
- Productivity for flat stream specifications is Π_{2}^{0}-complete
- But recall: data-oblivious productivity is decidable for flat spec's.
- Complexity of productivity in TRS's, and variant definitions:
- productivity w.r.t. computable strategies: Π_{2}^{0}-complete
- strong productivity: Π_{1}^{1}-complete
- weak productivity: Σ_{1}^{1}-complete
- unique infinite normal forms: Π_{1}^{1}-complete

References

\square Jörg Endrullis，Clemens Grabmayer，and Dimitri Hendriks．
Complexity of Fractran and Productivity．
In CADE－22，volume 5663 of LNCS，pages 371－387．Springer， 2009.Jakob Grue Simonsen．
The Π_{2}^{0}－Completeness of Most of the Properties of Rewriting Systems You Care About（and Productivity）．
In RTA，volume 5595 of LNCS，pages 335－349．Springer， 2009.
圊 Jörg Endrullis，Herman Geuvers，and Hans Zantema．
Degrees of Undecidability of TRS Properties．
In CSL，volume 5771 of LNCS，pages 255－270．Springer， 2009.
圊 G．Roşu．
Equality of Streams is a Π_{2}^{0}－complete Problem．
In ICFP，pages 184－191， 2006.

