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Overview

▸ regular expressions (with unary/binary star, under-star-1-free (∗/1))
▸ Milner’s process interpretation P/semantics J⋅KP

▸ P-/J⋅KP-expressible graphs (↝ expressibility question)

▸ axioms for J⋅KP-identity (↝ completeness question)

▸ loop existence and elimination (LEE)

▸ defined by loop elimination rewrite system, its completion

▸ describes interpretations of (∗/1) reg. expr.s (extraction possible)

▸ LEE-witnesses: labelings of process graphs with LEE

▸ LEE is preserved under bisimulation collapse (stepwise collapse)

▸ 1-LEE = sharing via 1-transitions facilitates LEE

▸ describes interpretations of all reg. expr.s (extraction possible)

▸ not preserved under bisimulation collapse (approximation possible)

▸ LEE/1-LEE characterize image of P● (restricted/unrestricted)

▸ where P● a compact (sharing-increased) refinement of P

▸ via refined extraction using LEE/1-LEE

▸ outlook on work-to-do
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Regular Expressions

(

under-star-/

1-free)

Definition (

∼Kleene, 1951,

∼Copi–Elgot–Wright, 1958 )

Regular expressions over alphabet A with unary

/ binary

Kleene star:

e, e1, e2 ∶∶= 0 ∣

1 ∣

a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}

▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions

(

under-star-/

1-free)

Definition (

∼Kleene, 1951,

∼Copi–Elgot–Wright, 1958 )

Regular expressions over alphabet A with unary

/ binary

Kleene star:

e, e1, e2 ∶∶= 0 ∣

1 ∣

a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions

(

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958 )

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣

1 ∣

a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions

(

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958 )

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions (

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958 )

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

1-free regular expressions over alphabet A with

unary/

binary Kleene star:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ (f1∗) ⋅ f2 (for a ∈ A),

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⍟f2 (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions (

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958 )

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

1-free regular expressions over alphabet A with unary/binary Kleene star:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ (f1∗) ⋅ f2 (for a ∈ A),

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⍟f2 (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions (under-star-/1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958 )

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P of regular expressions (Milner, 1984)

0
Pz→ deadlock δ, no termination

1
Pz→ empty-step process ϵ, then terminate

a
Pz→ atomic action a, then terminate

e1 + e2 Pz→ (choice) execute P(e1) or P(e2)

e1 ⋅ e2 Pz→ (sequentialization) execute P(e1), then P(e2)

e∗
Pz→ (iteration) repeat (terminate or execute P(e))

JeKP ∶= [P(e)]↔ (bisimilarity equivalence class of process P(e))
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P-expressibility and J⋅KP-expressibility (example, informally)
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a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0 )

P( a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP
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Definition

The process (graph) interpretation P(e) of a regular expression e :

P(e) ∶= labeled transition graph generated by e by derivations in T .
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Milner’s proof system Mil

Axioms :

(A1) e + (f + g) = (e + f) + g (A7) e = 1 ⋅ e
(A2) e + 0 = e (A8) e = e ⋅ 1
(A3) e + f = f + e (A9) 0 = 0 ⋅ e
(A4) e + e = e (A10) e∗ = 1 + e ⋅ e∗

(A5) e ⋅ (f ⋅ g) = (e ⋅ f) ⋅ g (A11) e∗ = (1 + e)∗

(A6) (e + f) ⋅ g = e ⋅ g + f ⋅ g

But: e ⋅ (f + g) ≠ e ⋅ f + e ⋅ g But: e ⋅ 0 ≠ 0
Inference rules : rules of equational logic plus

e = f ⋅ e + g
RSP∗ (if f does not

terminate immediately)e = f∗ ⋅ g

Milner’s Question (Q1)

Is Mil complete with respect to =J⋅KP
? (Does e =J⋅KP

f Ô⇒ e =Mil f hold?)
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Milner’s questions

(Q1) Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2) J⋅KP-Expressibility:
What structural property characterizes

process graphs that are J⋅KP-expressible ?

▸ is decidable (Baeten/Corradini/G, 2007)

▸ partial new answer (G/Fokkink, 2020):

▸ bisimulation collapse has loop existence & elimination property (LEE)
if expressible by under-star-1-free regular expression
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Question (Q2) specialized

(Q1)0 Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2)0 P-Expressibility and P-(∗/1)-Expressibility:
What structural property characterizes:

▸ process graphs that are P-expressible ?
(. . . in the image of P?)

▸ process graphs that are P-expressible by (∗/1) regular expressions?
(. . . in the image of (∗/1) expressions under P?)
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Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.
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Loop elimination: properties

Ð→elim : eliminate a transition-induced loop by:
▸ removing the loop-entry transition(s)

▸ garbage collection

Ð→prune : remove a transition to a deadlocking state

Lemma

(i) Ð→elim ∪Ð→prune is terminating.

(ii) Ð→elim ∪Ð→prune is decreasing

,

and so due to (i) locally confluent.

(iii) Ð→elim ∪Ð→prune is confluent.
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[Van Oostrom, de Bruijn]
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‘Critical pair’: bi-loop elimination
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Structure property LEE

LEE(G) ∶⇐⇒ ∃G0 (GÐ→∗elim G0 /Ð→elim

∧ G0 has no infinite trace ) .

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

(i) LEE(G).
(ii) There is an Ð→elim normal form without an infinite trace.

(iii) There is an Ð→elim,prune normal form without an infinite trace.

(iv) Every Ð→elim normal form is without an infinite trace.

(v) Every Ð→elim,prune normal form is without an infinite trace.

Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.
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Interpretation/extraction correspondences with LEE
(⇐ G/Fokkink 2020, G 2021)

(Int)
(∗/1)

P : P-(∗/1)-expressible graphs have the structural property LEE.

Process interpretations P(e) of (∗/1) regular expressions e
are finite process graphs that satisfy LEE.

(Extr)P: LEE implies J⋅KP-expressibility
From every finite process graph G with LEE

a regular expression e can be extracted such that G↔ P(e).

(Coll): LEE is preserved under collapse

The class of finite process graphs with LEE

is closed under bisimulation collapse.
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Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)
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LEE under bisimulation

Observation

▸ LEE is not invariant under bisimulation.

▸ LEE is not preserved by converse functional bisimulation.

a

LEE ¬LEE

a a

a

a aa

a
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a

LEE ¬LEE
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ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

LEE(G1) ∧ G1 → G2 Ô⇒ LEE(G2) .

(ii) LEE is preserved from a process graph to its bisimulation collapse:

LEE(G) ∧ C is bisimulation collapse of G Ô⇒ LEE(C) .

Proof (Idea).

Use loop elimination in G1 to carry out loop elimination in G2.
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Collapsing LEE-witnesses
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b
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a

b

b

b[1] b[1]
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a

bb[1] b[1]

b

a

P((aa(ba)∗ ⋅ b)∗ ⋅ 0)
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ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

LEE(G1) ∧ G1 → G2 Ô⇒ LEE(G2) .

(ii) LEE is preserved from a process graph to its bisimulation collapse:

LEE(G) ∧ G has bisimulation collapse C Ô⇒ LEE(C) .

Idea of Proof for (i)

Use loop elimination in G1 to carry out loop elimination in G2.

▸ images of loop subcharts in G1 under → are loop subcharts of G2.

▸ eliminating a loop subchart from G2 amounts, via →, to eliminating
a transition induced subgraph from G1.

▸ LEE is preserved by dropping transition-induced subgraphs.

Due to LEE(G1), then such loop elimination in G2 terminates in a graph
without an infinite trace. This establishes LEE(G2).
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LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a
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v1
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[2]
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[1] v
′

1
v′′′0

(I)
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[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3]

[3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0 )
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b
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b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.
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ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Reduced bisimilarity redundancies in LLEE-graphs (no 1-trans.!)

(G/Fokkink, LICS’20)

(C1) (C2) (C3)

w1,w2 in different scc’s w1,w2 in the same scc

‘nested’ ‘orthogonal’

(C1.1)

w1 w2

w1, w2 not normed
///

(C1.2)

b̄1

///

///

///

w1 w2

w1, w2 normed
///

w1

b̄2

w2

v

w1 b̄2///

w2

Lemma

Every not collapsed LLEE-graph contains bisimilar vertices w1 ≠ w2 of
kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy ⟨w1, w2⟩):

Lemma

Every reduced bisimilarity redundancy in a LLEE-graph can be eliminated
LLEE-preservingly.
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Properties of LEE-charts

Theorem (⇐ G/Fokkink, 2020)

A process graph G

is J⋅KP-expressible by an under-star-1-free regular expression

(i.e. P-expressible modulo bisimilarity by an (1/∗) reg. expr.)
if and only if

the bisimulation collapse of G satisfies LEE.

Hence J⋅KP-expressible ∣not J⋅KP-expressible by 1-free regular expressions:
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1-LEE
∧
= sharing via 1-transitions facilitates LEE
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Failure of LEE in general (example)
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no loop subchart,

but infinite paths
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1-Graphs and induced graphs

Definition

v1

1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→

v2

=̂

v1

(a]
ÐÐ→

v2

induced a-transitions, for a ∈ A

v

1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂

v

⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1
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a b

b
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a
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b
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(G1] = (G2]
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1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)
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1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)
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1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

1-LEE(P((a∗ ⋅ b∗)∗))

1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

1-LEE(P((a∗ ⋅ b∗)∗))

1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)
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Interpretation/extraction correspondences with 1-LEE
(⇐ G 2021/22/23)

(Int)P: P-expressible graphs have the structural property 1-LEE

Process interpretations P(e) of regular expressions e
are finite process graphs that satisfy 1-LEE.

(Extr)P: 1-LEE implies J⋅KP-expressibility
From every finite 1-process-graph G with 1-LEE

a regular expression e can be extracted such that G↔ P(e).

(Coll): 1-LEE is not preserved under collapse

The class of finite process graphs with 1-LEE

is not closed under bisimulation collapse.
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Interpretation/extraction correspondences with 1-LEE
(⇐ G 2021/22/23)

(Int)P: P-expressible graphs have the structural property 1-LEE

Process interpretations P(e) of regular expressions e
are finite process graphs that satisfy 1-LEE.

(Extr)P: 1-LEE implies J⋅KP-expressibility
From every finite 1-process-graph G with 1-LEE

a regular expression e can be extracted such that G↔ P(e).

(Coll): 1-LEE is not preserved under collapse

The class of finite process graphs with 1-LEE

is not closed under bisimulation collapse.
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1-LEE/ LEE characterize

the un-/restricted image of compact version P● of P
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Image of P is not closed under bisimulation collapse
not even for (∗/1) regular expressions (example)

a b

P(uf )

a ba

a

b

b

uf ∶= a ⋅

ufa
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a ⋅ (a + a ⋅ 0))∗ + b ⋅

ufb
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(b ⋅ (b + b ⋅ 0))∗

a b

1 ⋅ ufa ⇓
a

1 ⋅ uf b⇓
b

(1 ⋅ (a + a ⋅ 0)) ⋅ ufa

a

a

(1 ⋅ (b + b ⋅ 0)) ⋅ uf b

b

b

(1 ⋅ 0) ⋅ ufa (1 ⋅ 0) ⋅ uf b

P(uf )
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Compact process interpretation P●

Definition (Transition system specification T )

1⇓
ei⇓

(i ∈ {1,2})
(e1 + e2)⇓

e1⇓ e2⇓
(e1 ⋅ e2)⇓ (e∗)⇓

a
aÐ→ 1

ei
aÐ→ e′i

(i ∈ {1,2})

e1 + e2 aÐ→ e′i

e1
aÐ→ e′1

e1 ⋅ e2 aÐ→ e′1 ⋅ e2
e1⇓ e2

aÐ→ e′2

e1 ⋅ e2 aÐ→ e′2

e
aÐ→ e′

e∗
aÐ→ e′ ⋅ e∗

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Compact process interpretation P●

Definition (Transition system specification T )

e1
aÐ→ e′1

(if e′1 is normed)

e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)

e∗
aÐ→ e′ ⋅ e∗

e
aÐ→ e′

(if e′ is not normed)
e∗

aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.
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Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T )

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗

e
aÐ→ e′

(if e′ is not normed)
e∗

aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.
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Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T )

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗
e

aÐ→ e′
(if e′ is not normed)

e∗
aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.
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Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T )

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗
e

aÐ→ e′
(if e′ is not normed)

e∗
aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.
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Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T )

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗
e

aÐ→ e′
(if e′ is not normed)

e∗
aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.
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Image of P restricted to (∗/1) regular expressions

. . . contains all of its bisimulation collapses (example)

a b

P●(uf )

a ba

a

b

b

uf ∶= a ⋅

ufa
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a ⋅ (a + a ⋅ 0))∗ + b ⋅

ufb
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(b ⋅ (b + b ⋅ 0))∗

a b

1 ⋅ ufa
a

⇓ 1 ⋅ uf b
b

⇓

(1 ⋅ (a + a ⋅ 0)) ⋅ ufa

a

a

(1 ⋅ (b + b ⋅ 0)) ⋅ uf b

b

b

1 ⋅ 0

P●(uf )
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Interpretation correspondence of P● with LEE

(Int)
(∗/1)

P● : By under-star-1-free expressions P●-expressible graphs satisfy LEE:

Compact process interpretations P●(uf )
of under-star-1-free regular expressions uf

are finite process graphs that satisfy LEE.

(Extr)(∗/1)P● : LEE implies J⋅KP-expressibility by under-star-1-free reg. expr’s:
From every finite process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G→ P(uf ).

From every finite collapsed process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G ≃ P(uf ).

(ImColl)(∗/1)P● : The image of P●,

restricted to under-star-1-free regular expressions,

is closed under bisimulation collapse.
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Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

aa

aa

cc

bb

bb

P●(uf ) = P(uf ) ≃ G2
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Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

aa

aa

cc

bb

bb

P●(uf ) = P(uf ) ≃ G2
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Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

aa

aa

cc

bb

bb

P●(uf ) = P(uf ) ≃ G2
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Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

aa

cc

bb

bb

P●(uf ) = P(uf ) ≃ G2
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Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

aa

cc

bb

bb

P●(uf ) = P(uf ) ≃ G2
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Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

aa

cc

b

b

b

b

P●(uf ) = P(uf ) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io


ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2
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Interpretation/extraction correspondences of P● with LEE

(Int)
(∗/1)

P● : By under-star-1-free expressions P●-expressible graphs satisfy LEE:

Compact process interpretations P●(uf )
of under-star-1-free regular expressions uf

are finite process graphs that satisfy LEE.

(Extr)(∗/1)P● : LEE implies J⋅KP-expressibility by under-star-1-free reg. expr’s:
From every finite process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G→ P●(uf ).

From every finite collapsed process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G ≃ P●(uf ).

(ImColl)(∗/1)P● : The image of P●,

restricted to under-star-1-free regular expressions,

is closed under bisimulation collapse.
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Interpretation/extraction correspondences of P● with 1-LEE

(Int)P● : P●-expressible graphs satisfy 1-LEE:

Compact process interpretations P●(e) of regular expressions e
are finite process graphs that satisfy 1-LEE.

(Extr)P● : LEE implies J⋅KP-expressibility:
From every finite process graph G with 1-LEE

an regular expression e can be extracted
such that G→ P●(e).

From every finite collapsed process graph G with 1-LEE

a regular expression e can be extracted
such that G ≃ P●(e).

(ImColl)P● : The image of P● is not closed under bisimulation collapse .
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LEE
∧

= image of P● ∣RExp(∗/1)

Theorem

For every process graph G TFAE:

(i) LEE(G).
(ii) G is P●-expressible by an (∗/1) regular expression

(i.e. G ≃ P●(e) for some e ∈ RExp(∗/1)).
(iii) G is isomorphic to a graph in the image of P● on (∗/1) reg. expr’s

(i.e. G ≃ G′ for some G′ ∈ im(P● ∣RExp(∗/1))).
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Adapted (refined) extraction from LLEE-graph

vs

a
v1

c
[1]

a
[1]

v11

a

v12

bb

v121

a

(1 ⋅ (a + (a + a))) ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ (a + a)))∗ ⋅ 0) =∶ uf

(1 ⋅ (c ⋅ a + a ⋅ (b + b ⋅ (a + a)))∗) ⋅ 0

((1 ⋅ a) ⋅ (. . .)∗) ⋅ 0 ((1 ⋅ (b + b ⋅ (a + a))) ⋅ (. . .)∗) ⋅ 0

((1 ⋅ (a + a)) ⋅ (. . .)∗) ⋅ 0

a

c aa

bb

a

G1 / Ĝ1 P●(uf ) = P(uf ) ≃ G1
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1-LEE
∧

= image of P●

Theorem

For every process graph G TFAE:

(i) 1-LEE(G)
(i.e. G = (G] for some 1-transition-process-graph G with LEE(G)).

(ii) G is P●-expressible by a regular expression

(i.e. G ≃ P●(e) for some e ∈ RExp).
(iii) G is isomorphic to a graph in the image of P●

(i.e. G ≃ G′ for some G′ ∈ im(P●)).
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Summary

▸ process interpretation P/semantics J⋅KP of regular expressions

▸ expressibility and completeness questions

▸ loop existence and elimination (LEE)

▸ loop elimination rewrite system can be completed

▸ interpretation/extraction correspondences with (∗/1) reg. expr.s

▸ LEE-witnesses: labelings of graphs with LEE

▸ stepwise LEE-preserving bisimulation collapse

▸ 1-LEE = sharing via 1-transitions facilitates LEE

▸ interpretation/extraction correspondences with all regular expressions

▸ not preserved under bisim. collapse (approximation possible)

▸ Characterizations of the image of P● (refinement of P):

▸ LEE
∧

= image of P● ∣RExp(∗/1) ⫌ image of P ∣RExp(∗/1)

▸ 1-LEE
∧

= image of P● ⫌ image of P

▸ outlook on work-to-do
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My next aims

Completeness problem, solution:

A1: graph structure of regular expression processes (LEE/1-LEE)

A2: motivation of crystallization

A4: details of crystallization procedure,
and completeness of Milner’s proof system

Expressibility problem

A3: LEE is decidable in polynomial time.

Q: Is 1-LEE decidable in polynomial time?

P: Is expressibility by a regular expression, for a finite process graph,
decidable in polynomial time/fixed-parameter tractable time?
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Resources

▸ Slides/abstract on clegra.github.io

▸ slides: . . . /lf/IFIP-1 6-2024.pdf

▸ abstract: . . . /lf/abstract-IFIP-1 6-2024.pdf

▸ CG: Closing the Image of the Process Interpretation
of 1-Free Regular Expressions Under Bisimulation Collapse
▸ TERMGRAPH 2024, extended abstract.

▸ CG: The Image of the Process Interpretation of Regular Expressions
is Not Closed under Bisimulation Collapse,

▸ arXiv:2303.08553, 2021/2023.

▸ CG: Milner’s Proof System for
Regular Expressions Modulo Bisimilarity is Complete,
▸ LICS 2022, arXiv:2209.12188, poster.

▸ CG, Wan Fokkink: A Complete Proof System for
1-Free Regular Expressions Modulo Bisimilarity,

▸ LICS 2020, arXiv:2004.12740, video on youtube.

▸ CG: Modeling Terms by Graphs with Structure Constraints,

▸ TERMGRAPH 2018, EPTCS 288, arXiv:1902.02010.
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Language semantics J⋅KL of reg. expr’s (Copi–Elgot–Wright, 1958)

0
Lz→ empty language ∅

1
Lz→ {ϵ} (ϵ the empty word)

a
Lz→ {a}

e1 + e2 Lz→ union of L(e1) and L(e2)

e1 ⋅ e2 Lz→ element-wise concatenation of L(e1) and L(e2)

e∗
Lz→ set of words formed by concatenating words in L(e),

and adding the empty word ϵ

JeKL ∶= L(e) (language defined by e)
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