The Graph Structure of Process Interpretations of Regular Expressions

Clemens Grabmayer

<https://clegra.github.io>

IFIP 1.6 Working Group Meeting **Nancy** July 1, 2024

Overview

- ► regular expressions (with unary/binary star, under-star-1-free $(*/4)$)
- \triangleright Milner's process interpretation P/ semantics $\lbrack \cdot \rbrack_P$
	- \triangleright P-/[\cdot]_P-expressible graphs (\rightsquigarrow expressibility question)
	- ▶ axioms for $\lbrack \cdot \rbrack_P$ -identity (\rightsquigarrow completeness question)
- ▸ loop existence and elimination (LEE)
	- ▶ defined by loop elimination rewrite system, its completion
	- \triangleright describes interpretations of $(\ast/4)$ reg. expr.s (extraction possible)
	- ► LEE-witnesses: labelings of process graphs with LEE
	- ▶ LEE is preserved under bisimulation collapse (stepwise collapse)
- \triangleright 1-LEE = sharing via 1-transitions facilitates LEE
- EE/1-LEE characterize image of P^{\bullet} (restricted/unrestricted)
	- \triangleright where P^* a compact (sharing-increased) refinement of P
- ▸ outlook on work-to-do

Overview

- ► regular expressions (with unary/binary star, under-star-1-free $(*/4)$)
- \triangleright Milner's process interpretation P/ semantics $\lbrack \cdot \rbrack_P$
	- \triangleright P-/[\cdot]_P-expressible graphs (\rightsquigarrow expressibility question)
	- ▶ axioms for $\lbrack \cdot \rbrack_P$ -identity (\rightsquigarrow completeness question)
- ▶ loop existence and elimination (LEE)
	- ▶ defined by loop elimination rewrite system, its completion
	- \triangleright describes interpretations of $(\ast/4)$ reg. expr.s (extraction possible)
	- ► LEE-witnesses: labelings of process graphs with LEE
	- ▶ LEE is preserved under bisimulation collapse (stepwise collapse)
- \triangleright 1-LEE = sharing via 1-transitions facilitates LEE
	- \triangleright describes interpretations of all reg. expr.s (extraction possible)
	- ▸ not preserved under bisimulation collapse (approximation possible)
- EE/1-LEE characterize image of P^{\bullet} (restricted/unrestricted)
	- \triangleright where P^* a compact (sharing-increased) refinement of P
	- ▸ via refined extraction using LEE/1-LEE
- ▸ outlook on work-to-do

▶ symbol 0 instead of \emptyset , symbol 1 instead of $\{\epsilon\}$

▶ symbol 0 instead of \emptyset , symbol 1 instead of $\{\epsilon\}$

▸ with unary star **[∗]** : 1 is definable as 0 **∗**

Definition (∼ Kleene, 1951, ∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

 e_1, e_2 := 0 | a | $e_1 + e_2$ | $e_1 \cdot e_2$ | e^* (for $a \in A$). $e, e_1, e_2 := 0 | 1 | a | e_1 + e_2 | e_1 \cdot e_2 | e_1^{\circledast} e_2$ (for $a \in A$).

► symbol 0 instead of \emptyset , symbol 1 instead of $\{\epsilon\}$

- ▸ with unary star **[∗]** : 1 is definable as 0 **∗**
- ighthrow vith binary star $\frac{1}{2}$: 1 is not definable (in its absence)

Definition (∼ Kleene, 1951, ∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

 e, e_1, e_2 := 0 | 1 | a | $e_1 + e_2$ | $e_1 \cdot e_2$ | e^* (for $a \in A$). $e, e_1, e_2 := 0 | 1 | a | e_1 + e_2 | e_1 \cdot e_2 | e_1^{\circledast} e_2$ (for $a \in A$).

▶ symbol 0 instead of \emptyset , symbol 1 instead of $\{\epsilon\}$

- ▸ with unary star **[∗]** : 1 is definable as 0 **∗**
- ighthrow vith binary star $\frac{1}{2}$: 1 is not definable (in its absence)

1-free)

Definition (∼ Kleene, 1951, ∼Copi–Elgot–Wright, 1958) Regular expressions over alphabet A with unary / binary Kleene star: $e, e_1, e_2 \coloneqq 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$ (for $\mathbf{a} \in A$). $e, e_1, e_2 := 0 | 1 | a | e_1 + e_2 | e_1 \cdot e_2 | e_1^{\circledast} e_2$ (for $a \in A$).

▶ symbol 0 instead of \emptyset , symbol 1 instead of $\{\epsilon\}$

- ▸ with unary star **[∗]** : 1 is definable as 0 **∗**
- ighthrow vith binary star $\frac{1}{2}$: 1 is not definable (in its absence)

Definition (for process interpretation)

1-free regular expressions over alphabet A with binary Kleene star:

 $f, f_1, f_2 \coloneqq \mathbf{0} | \mathbf{a} | f_1 + f_2 | f_1 \cdot f_2 | f_1^{\mathbf{\Phi}}$ (for $\mathbf{a} \in A$).

1-free)

Definition (∼ Kleene, 1951, ∼Copi–Elgot–Wright, 1958) Regular expressions over alphabet A with unary / binary Kleene star: $e, e_1, e_2 \coloneqq 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$ (for $\mathbf{a} \in A$). $e, e_1, e_2 \coloneqq 0 | 1 | a | e_1 + e_2 | e_1 \cdot e_2 | e_1^{\circ}$ (for $a \in A$).

▶ symbol 0 instead of \emptyset , symbol 1 instead of $\{\epsilon\}$

- ▸ with unary star **[∗]** : 1 is definable as 0 **∗**
- ighthrow vith binary star $\frac{1}{2}$: 1 is not definable (in its absence)

Definition (for process interpretation)

1-free regular expressions over alphabet A with unary/binary Kleene star:

 $f, f_1, f_2 \coloneqq \mathbf{0} | \mathbf{a} | f_1 + f_2 | f_1 \cdot f_2 | (f_1^*$ (for $a \in A$), $f, f_1, f_2 \coloneqq \mathbf{0} | \mathbf{a} | f_1 + f_2 | f_1 \cdot f_2 | f_1^{\mathbf{\Phi}}$ (for $\boldsymbol{a} \in A$).

Regular Expressions (under-star-/1-free)

Definition (∼ Kleene, 1951, ∼Copi–Elgot–Wright, 1958) Regular expressions over alphabet A with unary / binary Kleene star: $e, e_1, e_2 \coloneqq 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$ (for $\mathbf{a} \in A$). $e, e_1, e_2 := 0 | 1 | a | e_1 + e_2 | e_1 \cdot e_2 | e_1^{\circledast} e_2$ (for $a \in A$).

► symbol 0 instead of \emptyset , symbol 1 instead of $\{\epsilon\}$

- ▸ with unary star **[∗]** : 1 is definable as 0 **∗**
- ighthrow vith binary star $\frac{1}{2}$: 1 is not definable (in its absence)

Definition (for process interpretation)

The set $\mathit{RExp}^{(+)}(A)$ of 1-free regular expressions over A is defined by:

f, f₁, f₂ ::= 0 | a | f₁ + f₂ | f₁ ⋅ f₂ | f₁^{*} ⋅ f₂ (for a ∈ A),

the set $\mathit{RExp}^{(*/4)}(A)$ of under-star-1-free regular expressions over A by:

 $uf, uf_1, uf_2 := 0 | 1 | a | uf_1 + uf_2 | uf_1 · uf_2 | f[∗]$ (for $a ∈ A$).

Process interpretation P of regular expressions (Milner, 1984)

- $0 \longrightarrow$ deadlock δ , no termination
- $1 \stackrel{P}{\longmapsto}$ empty-step process ϵ , then terminate
- $a \mapsto$ atomic action a, then terminate

Process interpretation P of regular expressions (Milner, 1984)

$$
0 \quad \xrightarrow{P} \quad \text{deadlock } \delta, \text{ no termination}
$$

 \mathbf{p}

 \triangleright

1
$$
\rightarrow
$$
 empty-step process ϵ , then terminate

$$
a \xrightarrow{P}
$$
 atomic action *a*, then terminate

$$
e_1 + e_2 \xrightarrow{P} (choice) execute P(e_1) or P(e_2)
$$

\n
$$
e_1 \cdot e_2 \xrightarrow{P} (sequentialization) execute P(e_1), then P(e_2)
$$

\n
$$
e^* \xrightarrow{P} (iteration) repeat (terminate or execute P(e))
$$

Process interpretation P of regular expressions (Milner, 1984)

$$
0 \quad \xrightarrow{P} \quad \text{deadlock} \ \delta, \text{ no termination}
$$

 \mathbf{p}

 \triangleright

1
$$
\rightarrow
$$
 empty-step process ϵ , then terminate

$$
a \xrightarrow{P}
$$
 atomic action *a*, then terminate

$$
e_1 + e_2 \xrightarrow{P} (choice) execute P(e_1) or P(e_2)
$$

\n
$$
e_1 \cdot e_2 \xrightarrow{P} (sequentialization) execute P(e_1), then P(e_2)
$$

\n
$$
e^* \xrightarrow{P} (iteration) repeat (terminate or execute P(e))
$$

 $\llbracket e \rrbracket_P := [P(e)]_{\leftrightarrow}$ (bisimilarity equivalence class of process $P(e)$)

$$
P\left(\overbrace{(a \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0}^{P\left(a \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0}\right)
$$

$$
G_1 \in [[f]]_P
$$

Definition (Transition system specification \mathcal{T})

$$
\frac{e_i \stackrel{a}{\rightarrow} e'_i}{a \stackrel{a}{\rightarrow} 1} \qquad \frac{e_i \stackrel{a}{\rightarrow} e'_i}{e_1 + e_2 \stackrel{a}{\rightarrow} e'_i} (i \in \{1, 2\})
$$

$$
\begin{array}{c|c}\n\hline\n\text{a} & 1 \\
\hline\n\text{a} & 1\n\end{array}\n\quad\n\begin{array}{c}\n\text{e}_i \xrightarrow{a} \text{e}'_i \\
\text{e}_1 + \text{e}_2 \xrightarrow{a} \text{e}'_i \\
\hline\n\text{e}^i \xrightarrow{a} \text{e}'\n\end{array}\n\quad\n\begin{array}{c}\n\text{(i} \in \{1, 2\}) \\
\text{e} & \xrightarrow{a} \text{e}'\n\end{array}
$$

Definition

The process (graph) interpretation $P(e)$ of a regular expression e:

 $P(e)$:= labeled transition graph generated by e by derivations in T .

P-expressible [|·]_P-expressible [|·]_P-expressible

P-expressible [|·]_P-expressible [|·]_P-expressible ?
P-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples)

not P-expressible not $\lbrack \cdot \rbrack_P$ -expressible P-expressible [|·]_P-expressible [|·]_P-expressible ?

P-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples)

P-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples)

not P-expressible not $\lbrack \cdot \rbrack_P$ -expressible P-expressible [|·]_P-expressible [|·]_P-expressible ?

 $Q2$: How can P-expressibility and $\Vert \cdot \Vert_P$ -expressibility be characterized?

► Fewer identities hold for $=$ _{[-]p} than for $=$ _{[-]_L:}

► Fewer identities hold for $=$ _{[-]p} than for $=$ _{[-]_L:}

► Fewer identities hold for $=$ _{[-]p} than for $=$ _{[-]_L:}

► Fewer identities hold for $=$ _{[-]p} than for $=$ _{[-]_L:}

Fewer identities hold for $=_{[\cdot]_P}$ than for $=_{[\cdot]_L}$: $=_{[\cdot]_P}$ \subsetneq $=_{[\cdot]_L}$.

Milner's proof system Mil

 $Axioms$

(A1) $e + (f + g) = (e + f) + g$	(A7) $e = 1 \cdot e$	
(A2) $e + 0 = e$	(A8) $e = e \cdot 1$	
(A3) $e + f = f + e$	(A9) $0 = 0 \cdot e$	
(A4) $e + e = e$	(A10) $e^* = 1 + e \cdot e^*$	
(A5) $e \cdot (f \cdot g) = (e \cdot f) \cdot g$	(A11) $e^* = (1 + e)^*$	
(A6) $(e + f) \cdot g = e \cdot g + f \cdot g$	But: $e \cdot (f + g) \neq e \cdot f + e \cdot g$	But: $e \cdot 0 \neq 0$

Inference rules: rules of equational logic plus

$$
\frac{e = f \cdot e + g}{e = f^* \cdot g}
$$
 RSP* (if f does not
terminate immediately)

Milner's Question (Q1) Is Mil complete with respect to $=_{\mathbb{I} \cdot \mathbb{I}_P}$? (Does $e =_{\mathbb{I} \cdot \mathbb{I}_P} f \Longrightarrow e =_{\mathsf{Mil}} f$ hold?)

(Q1) Complete axiomatization:

Is the proof system Mil complete for $=_{\mathbb{I} \cdot \mathbb{I}_P}$?

$(Q2)$ $\lbrack \cdot \rbrack_P$ -Expressibility:

What structural property characterizes process graphs that are $\lbrack \cdot \rbrack_P$ -expressible ?

(Q1) Complete axiomatization:

Is the proof system Mil complete for $=_{\mathbb{I} \cdot \mathbb{I}_P}$?

$(Q2)$ $\lbrack \cdot \rbrack_P$ -Expressibility:

What structural property characterizes process graphs that are $\lbrack \cdot \rbrack_P$ -expressible ?

 \triangleright is decidable (Baeten/Corradini/G, 2007)

(Q1) Complete axiomatization:

Is the proof system Mil complete for $=_{\mathbb{I} \cdot \mathbb{I}_P}$?

$(Q2)$ $\lbrack \cdot \rbrack_P$ -Expressibility:

What structural property characterizes process graphs that are $\lbrack \cdot \rbrack_P$ -expressible ?

- \triangleright is decidable (Baeten/Corradini/G, 2007)
- ▸ partial new answer (G/Fokkink, 2020):
	- ▸ bisimulation collapse has loop existence & elimination property (LEE) if expressible by under-star-1-free regular expression

(Q1) Complete axiomatization:

Is the proof system Mil complete for $=_{\mathbb{I} \cdot \mathbb{I}_P}$?

- ▸ series of partial completeness results for:
	- ▶ exitless iterations (Fokkink, 1998)
	- \triangleright with a stronger fixed-point rule (G, 2006)
	- ▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
	- ▸ with 0 but under-star-1-free (G/Fokkink, 2020)

$(Q2)$ $\lbrack \cdot \rbrack_P$ -Expressibility:

What structural property characterizes

process graphs that are $\lbrack \cdot \rbrack_P$ -expressible ?

- \triangleright is decidable (Baeten/Corradini/G, 2007)
- **•** partial new answer $(G/Fokkink, 2020)$:
	- \triangleright bisimulation collapse has loop existence & elimination property (LEE) if expressible by under-star-1-free regular expression

(Q1) Complete axiomatization:

Is the proof system Mil complete for $=_{\mathbb{I} \cdot \mathbb{I}_P}$?

- ▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)
- ▸ series of partial completeness results for:
	- ▶ exitless iterations (Fokkink, 1998)
	- \triangleright with a stronger fixed-point rule (G, 2006)
	- ▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
	- ▸ with 0 but under-star-1-free (G/Fokkink, 2020)

$(Q2)$ $\lbrack \cdot \rbrack_P$ -Expressibility:

What structural property characterizes

process graphs that are $\lbrack \cdot \rbrack_P$ -expressible ?

- \triangleright is decidable (Baeten/Corradini/G, 2007)
- **•** partial new answer $(G/Fokkink, 2020)$:
	- \triangleright bisimulation collapse has loop existence & elimination property (LEE) if expressible by under-star-1-free regular expression

Question (Q2) specialized

 $(Q2)$ ⁰ P-Expressibility and P- $(*/4)$ -Expressibility:

What structural property characterizes:

- ▸ process graphs that are P-expressible ? $($... in the image of P?)
- ▶ process graphs that are P-expressible by $(*/4)$ regular expressions? (... in the image of $(*/4)$ expressions under P?)

Loop Existence and Elimination (LEE)

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- $(L2)$ Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- $(L2)$ Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- $(L2)$ Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

(L1),(L2)

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

(L1),(L2)

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- $(L2)$ Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

 $(L1)$, $(L2)$

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- $(L2)$ Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

 $(L1)$, $(L2)$

Definition

- $(L1)$ There is an infinite path from the start vertex.
- $(L2)$ Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- $(L2)$ Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- $(L1)$ There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart C satisfies LEE (loop existence and elimination) if:

$$
\exists \mathcal{C}_0 \left(\mathcal{C} \longrightarrow_{\mathrm{elim}}^* \mathcal{C}_0 \longrightarrow_{\mathrm{elim}} \right.
$$

 \wedge \mathcal{C}_0 permits no infinite path).

Definition

A chart C satisfies LEE (loop existence and elimination) if:

$$
\exists\, \mathcal{C}_0\,\big(\,\mathcal{C} \longrightarrow_{\mathsf{elim}}^* \mathcal{C}_0 \longrightarrow_{\mathsf{elim}}
$$

 \wedge \mathcal{C}_0 permits no infinite path).

Layered LEE

Layered LEE-witness (LLEE-witness)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

7 LEE-witnesses

Loop elimination: properties

- \rightarrow _{elim} : eliminate a transition-induced loop by:
	- \triangleright removing the loop-entry transition(s)
	- ▸ garbage collection

 \rightarrow _{prune}: remove a transition to a deadlocking state

Lemma $(i) \rightarrow_{\text{elim}} \cup \rightarrow_{\text{prune}}$ is terminating.

Loop elimination: properties

- $\rightarrow_{\mathsf{elim}}$: eliminate a transition-induced loop by:
	- \triangleright removing the loop-entry transition(s)
	- ▸ garbage collection
- \rightarrow _{prune}: remove a transition to a deadlocking state

'Critical pair': bi-loop elimination

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Loop elimination, and properties

- $\rightarrow_{\mathsf{elim}}$: eliminate a transition-induced loop by:
	- \triangleright removing the loop-entry transition(s)
	- ▸ garbage collection
- \rightarrow _{prune} : remove a transition to a deadlocking state

Lemma

(i)
$$
\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}
$$
 is terminating.

(ii) \rightarrow _{elim} ∪ \rightarrow _{prune} is decreasing, and so due to [\(i\)](#page-101-1) locally confluent.

Loop elimination, and properties

- \rightarrow _{elim} : eliminate a transition-induced loop by:
	- \triangleright removing the loop-entry transition(s)
	- ▸ garbage collection
- \rightarrow _{prune}: remove a transition to a deadlocking state

Lemma $(i) \rightarrow_{\text{elim}} \cup \rightarrow_{\text{prune}}$ is terminating. (ii) \rightarrow _{elim} ∪ \rightarrow _{prune} is decreasing, and so due to [\(i\)](#page-101-1) locally confluent. (iii) \longrightarrow _{elim} ∪ \longrightarrow _{prune} is confluent.

Structure property LEE

$$
\mathsf{LEE}(G) \; : \iff \exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \longrightarrow_{\mathsf{elim}}^* G_0 \right)
$$
\n
$$
\land \; G_0 \text{ has no infinite trace} \right).
$$

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

 (i) LEE (G) . (ii) There is an \rightarrow _{elim} normal form without an infinite trace.

Structure property LEE

 $\mathsf{LEE}(G) \, : \, \Longleftrightarrow \, \exists\, G_0\,\big(\,G \longrightarrow_{\mathsf{elim}}^* G_0 \longrightarrow_{\mathsf{elim}}^*$ \wedge G_0 has no infinite trace).

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

 (i) LEE (G) .

(ii) There is an \rightarrow _{elim} normal form without an infinite trace.

(iii) There is an \rightarrow _{elim, prune} normal form without an infinite trace.
Structure property LEE

 $\mathsf{LEE}(G) \, : \, \Longleftrightarrow \, \exists\, G_0\,\big(\,G \longrightarrow_{\mathsf{elim}}^* G_0 \longrightarrow_{\mathsf{elim}}^*$ \wedge G_0 has no infinite trace).

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

 (i) LEE (G) . (ii) There is an \rightarrow _{elim} normal form without an infinite trace. (iii) There is an \rightarrow _{elim, prune} normal form without an infinite trace. (iv) Every \longrightarrow _{elim} normal form is without an infinite trace. (v) Every \rightarrow _{elim, prune} normal form is without an infinite trace.

Structure property LEE

 $\mathsf{LEE}(G) \, : \, \Longleftrightarrow \, \exists\, G_0\,\big(\,G \longrightarrow_{\mathsf{elim}}^* G_0 \longrightarrow_{\mathsf{elim}}^*$ \wedge G_0 has no infinite trace).

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

 (i) LEE (G) . (ii) There is an \rightarrow _{elim} normal form without an infinite trace. (iii) There is an \rightarrow _{elim, prune} normal form without an infinite trace. (iv) Every \longrightarrow _{elim} normal form is without an infinite trace. (v) Every \rightarrow _{elim, prune} normal form is without an infinite trace.

Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.

Interpretation/extraction correspondences with LEE (⇐ G/Fokkink 2020, G 2021)

 $(\mathsf{Int})_P^{(*)}$: $P-(*/\pm)$ -expressible graphs have the structural property LEE. Process interpretations $P(e)$ of $(*/4)$ regular expressions e are finite process graphs that satisfy LEE.

 $(Extr)_{P}$: LEE implies $\left[\cdot\right]_{P}$ -expressibility

From every finite process graph G with LEE a regular expression e can be extracted such that $G \leftrightarrow P(e)$.

Interpretation/extraction correspondences with LEE (⇐ G/Fokkink 2020, G 2021)

 $(\mathsf{Int})_P^{(*)}$: $P-(*/\pm)$ -expressible graphs have the structural property LEE. Process interpretations $P(e)$ of $(*/4)$ regular expressions e are finite process graphs that satisfy LEE.

$(Extr)_{P}$: LEE implies $\left[\cdot\right]_{P}$ -expressibility

From every finite process graph G with LEE a regular expression e can be extracted such that $G \leftrightarrow P(e)$.

(Coll): LEE is preserved under collapse

The class of finite process graphs with LEE is closed under bisimulation collapse.

 $G₂$

$$
G'_{2}
$$
\n
$$
P(e) = G'_{2}
$$
\n
$$
\underbrace{e}_{(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)}
$$

 \int_a

 G'_{2}

$$
P(e) = G'_2
$$

$$
(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$

\n
$$
\downarrow a
$$

\n
$$
(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$

a

 G'_{2}

c

$$
P(e) = G_2'
$$

$$
(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$

\n
$$
\downarrow a
$$

\n
$$
(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$

\n
$$
\downarrow c
$$

\n
$$
((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^*) \cdot 0
$$

 G'_{2}

k,

J.

$$
P(e) = G_2'
$$

$$
\begin{pmatrix}\n e \\
a \\
a \\
a \\
\end{pmatrix}
$$
\n
$$
(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$
\n
$$
(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$
\n
$$
(1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^*) \cdot 0
$$
\n
$$
(1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^*) \cdot 0
$$

 G'_{2}

$$
P(e) = G_2'
$$

$$
\begin{pmatrix}\n e \\
a \\
a \\
b \\
c \\
a \\
\end{pmatrix}
$$
\n
$$
(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$
\n
$$
(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)
$$
\n
$$
(1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^*) \cdot 0
$$
\n
$$
(a \cdot (1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^*) \cdot 0)
$$
\n
$$
(1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^*) \cdot 0
$$

 G'_{2}

×.

.

$$
P(e) = G_2'
$$

a c a a a (^a [⋅] ¹) [⋅] ((^c [⋅] (^a [⋅] ¹) ⁺ ^a [⋅] (^b [⋅] ¹ ⁺ ^b [⋅] (^a [⋅] ¹))) ∗ ⋅ 0) e ³¹¹¹· ¹¹¹µ (¹ [⋅] ¹) [⋅] ((^c [⋅] (^a [⋅] ¹) ⁺ ^a [⋅] (^b [⋅] ¹ ⁺ ^b [⋅] (^a [⋅] ¹))) ∗ ⋅ 0) ((¹ [⋅] (^a [⋅] ¹)) [⋅] (^c [⋅] (^a [⋅] ¹) ⁺ ^a [⋅] (^b [⋅] ¹ ⁺ ^b [⋅] (^a [⋅] ¹))) ∗)⋅ 0 ((¹ [⋅] ¹) [⋅] (^c [⋅] (^a [⋅] ¹) ⁺ ^a [⋅] (^b [⋅] ¹ ⁺ ^b [⋅] (^a [⋅] ¹))) ∗)[⋅] ⁰) ((¹ [⋅] (^b [⋅] ¹ ⁺ ^b [⋅] (^a [⋅] ¹))) [⋅] (^c [⋅] (^a [⋅] ¹) ⁺ ^a [⋅] (^b [⋅] ¹ ⁺ ^b [⋅] (^a [⋅] ¹))) ∗) [⋅] ⁰ a c a a a

$$
G'_{2}
$$
\n
$$
P(e) = G'_{2}
$$
\n
$$
\vdots
$$
\n
$$
(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)
$$
\n
$$
\downarrow a
$$
\n
$$
(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)
$$
\n
$$
\downarrow c
$$
\n
$$
\downarrow c
$$
\n
$$
\downarrow c
$$
\n
$$
(1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0
$$
\n
$$
\downarrow a
$$
\n
$$
((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0
$$
\n
$$
\downarrow a
$$
\n
$$
((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0
$$

b

$$
G'_{2}
$$
\n
$$
P(e) = G'_{2}
$$
\n
$$
\downarrow
$$
\n
$$
(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)
$$
\n
$$
\downarrow a
$$
\n
$$
(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)
$$
\n
$$
\downarrow c
$$
\n
$$
(1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0
$$
\n
$$
\downarrow a
$$
\n
$$
(1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0
$$
\n
$$
\downarrow a
$$
\n
$$
(1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0
$$

LEE under bisimulation

Observation

 \triangleright LEE is not invariant under bisimulation.

LEE under bisimulation

Observation

 \triangleright LEE is not invariant under bisimulation.

LEE under bisimulation

Observation

- ▶ LEE is not invariant under bisimulation.
- ▶ LEE is not preserved by converse functional bisimulation.

[ov](#page-1-0) [reg-expr](#page-3-0) [proc-int](#page-10-0) [Mil-Qs](#page-45-0) [loop](#page-52-0) [LEE](#page-72-0) [LEE-wit](#page-97-0) [LLEE\(-wit\)](#page-98-0) [confl](#page-101-0) [extr](#page-110-0) [coll](#page-139-0) [1-LEE](#page-162-0) [twd-char's](#page-189-0) [cp-proc-int](#page-190-0) [refd-extr](#page-198-0) [char's](#page-215-0) [summ](#page-218-0) [aims](#page-220-0) [res](#page-221-0) [+](#page-222-0)

LEE under functional bisimulation

Lemma (i) LEE is preserved by functional bisimulations:

```
LEE(G<sub>1</sub>) \land G<sub>1</sub> \Rightarrow G<sub>2</sub> \Longrightarrow LEE(G<sub>2</sub>).
```
Proof (Idea).

Use loop elimination in G_1 to carry out loop elimination in G_2 .

Collapsing LEE-witnesses

 $P(a(a(b+ba))^* \cdot 0)$
Collapsing LEE-witnesses

 $P(a(a(b+ba))^* \cdot 0)$

 $P((aa(ba)^* \cdot b)^* \cdot 0)$

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$
\mathsf{LEE}(G_1) \land G_1 \simeq G_2 \implies \mathsf{LEE}(G_2).
$$

(ii) LEE is preserved from a process graph to its bisimulation collapse:

LEE(G) \land G has bisimulation collapse $C \implies$ LEE(C).

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Reduced bisimilarity redundancies in LLEE-graphs (no 1-trans.!) (G/Fokkink, LICS'20)

Lemma

Every not collapsed LLEE-graph contains bisimilar vertices $w_1 \neq w_2$ of kind [\(C1\)](#page-147-3), [\(C2\)](#page-147-1), or [\(C3\)](#page-147-2) (a reduced bisimilarity redundancy (w_1, w_2)):

Reduced bisimilarity redundancies in LLEE-graphs (no ¹-trans.!) (G/Fokkink, LICS'20)

Lemma

Every not collapsed LLEE-graph contains bisimilar vertices $w_1 \neq w_2$ of kind [\(C1\)](#page-147-3), [\(C2\)](#page-147-1), or [\(C3\)](#page-147-2) (a reduced bisimilarity redundancy (w_1, w_2)):

Lemma

Every reduced bisimilarity redundancy in a LLEE-graph can be eliminated LLEE-preservingly.

[ov](#page-1-0) [reg-expr](#page-3-0) [proc-int](#page-10-0) [Mil-Qs](#page-45-0) [loop](#page-52-0) [LEE](#page-72-0) [LEE-wit](#page-97-0) [LLEE\(-wit\)](#page-98-0) [confl](#page-101-0) [extr](#page-110-0) [coll](#page-139-0) [1-LEE](#page-162-0) [twd-char's](#page-189-0) [cp-proc-int](#page-190-0) [refd-extr](#page-198-0) [char's](#page-215-0) [summ](#page-218-0) [aims](#page-220-0) [res](#page-221-0) [+](#page-222-0)

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS'20) (no 1-transitions!)

[\(C1.1\)](#page-147-0)

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

[\(C1.1\)](#page-147-0)

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Properties of LEE-charts

```
Theorem (\Leftarrow G/Fokkink, 2020)
A process graph Gis \lVert \cdot \rVert_P-expressible by an under-star-1-free regular expression
      (i.e. P-expressible modulo bisimilarity by an (1+\) reg. expr.)
  if and only if
the bisimulation collapse of G satisfies LEE.
```
Properties of LEE-charts

Theorem (\Leftarrow G/Fokkink, 2020) A process graph G is $\lVert \cdot \rVert_P$ -expressible by an under-star-1-free regular expression (i.e. P-expressible modulo bisimilarity by an $(1)*$) reg. expr.) if and only if the bisimulation collapse of G satisfies LEE.

Hence $\|\cdot\|_P$ -expressible | **not** $\|\cdot\|_P$ -expressible by 1-free regular expressions:

 $\stackrel{\scriptscriptstyle \triangle}{=}$ sharing via 1-transitions facilitates LEE

no loop subchart, but infinite paths

[ov](#page-1-0) [reg-expr](#page-3-0) [proc-int](#page-10-0) [Mil-Qs](#page-45-0) [loop](#page-52-0) [LEE](#page-72-0) [LEE-wit](#page-97-0) [LLEE\(-wit\)](#page-98-0) [confl](#page-101-0) [extr](#page-110-0) [coll](#page-139-0) [1-LEE](#page-162-0) [twd-char's](#page-189-0) [cp-proc-int](#page-190-0) [refd-extr](#page-198-0) [char's](#page-215-0) [summ](#page-218-0) [aims](#page-220-0) [res](#page-221-0) [+](#page-222-0)

Definition

Definition

Definition

Definition

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

$1-1$ FF

Definition

1-LEE(G) holds for a graph G , if $G = (G)$ for some weakly-guarded 1-graph G with LEE(G).

Definition

1-LEE(G) holds for a graph G , if $G = (G]$ for some weakly-guarded 1-graph G with LEE(G).

Definition

1-LEE(G) holds for a graph G , if $G = (G]$ for some weakly-guarded 1-graph G with LEE(G).

Definition

1-LEE(G) holds for a graph G , if $G = (G]$ for some weakly-guarded 1-graph G with LEE(G).

1-LEE

Definition

1-LEE(G) holds for a graph G , if $G = (G]$ for some weakly-guarded 1-graph G with LEE(G).

1-LEE

Definition

1-LEE(G) holds for a graph G , if $G = (G)$ for some weakly-guarded 1-graph G with LEE(G).

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs $P(e)$ such that for all $e \in RExp$: (i): LEE($P(e)$), (ii): $(P(e)) = P(e)$.

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs $P(e)$ such that for all $e \in RExp$: (i): LEE($P(e)$), (ii): $(P(e)) = P(e)$.

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs $P(e)$ such that for all $e \in RExp$: (i): LEE($P(e)$), (ii): $(P(e)) = P(e)$.

Theorem

1-LEE($P(e)$) holds for all regular expressions e.

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs $P(e)$ such that for all $e \in RExp$: (i): LEE($P(e)$), (ii): $(P(e)) = P(e)$.

Theorem

1-LEE($P(e)$) holds for all regular expressions e.

Interpretation/extraction correspondences with 1-LEE $($ \Leftarrow G 2021/22/23)

 $(\mathsf{Int})_P$: P-expressible graphs have the structural property 1-LEE Process interpretations $P(e)$ of regular expressions e are finite process graphs that satisfy 1-LEE.

 $(Extr)_{P}: 1$ -LEE implies $\left\lVert \cdot \right\rVert_{P}$ -expressibility

From every finite 1-process-graph G with 1-LEE a regular expression e can be extracted such that $G \leftrightarrow P(e)$.

Interpretation/extraction correspondences with 1-LEE $($ \Leftarrow G 2021/22/23)

 $(\mathsf{Int})_P$: P-expressible graphs have the structural property 1-LEE Process interpretations $P(e)$ of regular expressions e are finite process graphs that satisfy 1-LEE.

$(Extr)_{P}: 1$ -LEE implies $\left\lVert \cdot \right\rVert_{P}$ -expressibility

From every finite 1-process-graph G with 1-LEE a regular expression e can be extracted such that $G \leftrightarrow P(e)$.

(Coll): 1-LEE is not preserved under collapse

The class of finite process graphs with 1-LEE is not closed under bisimulation collapse.

1-LEE/ LEE characterize

the un-/restricted image of compact version P^{\bullet} of P

Image of P is **not closed** under bisimulation collapse not even for $(*/4)$ regular expressions (example)

Definition (Transition system specification \mathcal{T})

$$
e_1 \stackrel{a}{\rightarrow} e'_1
$$

\n
$$
e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1 \cdot e_2
$$

\n
$$
e \stackrel{a}{\rightarrow} e'
$$

\n
$$
e^* \stackrel{a}{\rightarrow} e' \cdot e^*
$$

Definition (Transition system specification \mathcal{T}^\bullet , changed rules w.r.t. $\mathcal{T})$

$$
e_1 \xrightarrow{a} e'_1
$$

\n
$$
e_1 \cdot e_2 \xrightarrow{a} e'_1 \cdot e_2
$$
 (if e'_1 is normed)
\n
$$
e \xrightarrow{a} e'
$$

\n
$$
e^* \xrightarrow{a} e' \cdot e^*
$$
 (if e' is normed)

Definition (Transition system specification \mathcal{T}^\bullet , changed rules w.r.t. $\mathcal{T})$

$$
\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1 \cdot e_2}
$$
 (if e'_1 is normed)
$$
\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1}
$$
 (if e'_1 is not normed)

$$
\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*}
$$
 (if e' is normed)
$$
\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'}
$$
 (if e' is not normed)

Definition (Transition system specification \mathcal{T}^\bullet , changed rules w.r.t. $\mathcal{T})$

$$
\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1 \cdot e_2}
$$
 (if e'_1 is normed)
$$
\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1}
$$
 (if e'_1 is not normed)

$$
\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*}
$$
 (if e' is normed)
$$
\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'}
$$
 (if e' is not normed)

Definition

The compact process (graph) interpretation $P^{\bullet}(e)$ of a reg. expr's e : $P^{\bullet}(e)$:= labeled transition graph generated by e by derivations in \mathcal{T}^{\bullet} .

Definition (Transition system specification \mathcal{T}^\bullet , changed rules w.r.t. $\mathcal{T})$

$$
\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1 \cdot e_2}
$$
 (if e'_1 is normed)
$$
\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1}
$$
 (if e'_1 is not normed)

$$
\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*}
$$
 (if e' is normed)
$$
\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'}
$$
 (if e' is not normed)

Definition

The compact process (graph) interpretation $P^{\bullet}(e)$ of a reg. expr's e : $P^{\bullet}(e)$:= labeled transition graph generated by e by derivations in \mathcal{T}^{\bullet} . Lemma (P^{\bullet} increases sharing; P^{\bullet} , P have same bisimulation semantics)

\n- (i)
$$
P(e) \Rightarrow P^*(e)
$$
 for all regular expressions e .
\n- (ii) $(G \text{ is } [\cdot]_P \cdot \text{expressible} \iff G \text{ is } [\cdot]_P \cdot \text{expressible}$ for all graphs G .
\n

Image of P restricted to $(*/4)$ regular expressions . . . contains all of its bisimulation collapses (example)

Interpretation correspondence of P^{\bullet} with LEE

 $(\mathsf{Int})_{P^{\bullet}}^{(*)}$: By under-star-1-free expressions P^{\bullet} -expressible graphs satisfy LEE: Compact process interpretations $P^{\bullet}(uf)$ of under-star-1-free regular expressions uf are finite process graphs that satisfy LEE.

 $(\textsf{Extr})_{P^{\bullet}}^{(*)}$: LEE implies $\llbracket \cdot \rrbracket_{P}$ -expressibility by under-star-1-free reg. expr's: From every finite process graph G with LEE an under-star-1-free regular expression uf can be extracted such that $G \Rightarrow P(uf)$.

Interpretation/extraction correspondences of P^{\bullet} with LEE

 $(\mathsf{Int})_{P^{\bullet}}^{(*)}$: By under-star-1-free expressions P^{\bullet} -expressible graphs satisfy LEE: Compact process interpretations $P^{\bullet}(uf)$ of under-star-1-free regular expressions uf are finite process graphs that satisfy LEE.

 $(\textsf{Extr})_{P^{\bullet}}^{(*)}$: LEE implies $\llbracket \cdot \rrbracket_{P}$ -expressibility by under-star-1-free reg. expr's: From every finite process graph G with LEE an under-star-1-free regular expression uf can be extracted such that $G \rightharpoonup P^{\bullet}(uf)$. From every finite collapsed process graph G with LEE an under-star-1-free regular expression uf can be extracted such that $G \simeq P^{\bullet}(uf)$.

Interpretation/extraction correspondences of P^{\bullet} with LEE

 $(\mathsf{Int})_{P^{\bullet}}^{(*)}$: By under-star-1-free expressions P^{\bullet} -expressible graphs satisfy LEE: Compact process interpretations $P^{\bullet}(uf)$ of under-star-1-free regular expressions uf are finite process graphs that satisfy LEE.

 $(\textsf{Extr})_{P^{\bullet}}^{(*)}$: LEE implies $\llbracket \cdot \rrbracket_{P}$ -expressibility by under-star-1-free reg. expr's: From every finite process graph G with LEE an under-star-1-free regular expression uf can be extracted such that $G \rightharpoonup P^{\bullet}(uf)$. From every finite collapsed process graph G with LEE an under-star-1-free regular expression uf can be extracted such that $G \simeq P^{\bullet}(uf)$.

 $(\text{ImColl})_{P^{\bullet}}^{(*/+)}$: The image of P^{\bullet} , restricted to under-star-1-free regular expressions, is closed under bisimulation collapse.

Interpretation/extraction correspondences of P^{\bullet} with 1-LEE

 $(\mathsf{Int})_{P^{\bullet}}$: P^{\bullet} -expressible graphs satisfy 1-LEE:

Compact process interpretations $P^{\bullet}(e)$ of regular expressions e are finite process graphs that satisfy 1-LEE.

 $(Extr)_{P^*}$: LEE implies $\lbrack \cdot \rbrack_P$ -expressibility:

From every finite process graph G with 1-LEE an regular expression e can be extracted such that $G \rightrightarrows P^{\bullet}(e)$.

From every finite collapsed process graph G with 1-LEE a regular expression e can be extracted such that $G \simeq P^{\bullet}(e)$.

Interpretation/extraction correspondences of P^{\bullet} with 1-LEE

 $(\mathsf{Int})_{P^{\bullet}}$: P^{\bullet} -expressible graphs satisfy 1-LEE:

Compact process interpretations $P^{\bullet}(e)$ of regular expressions e are finite process graphs that satisfy 1-LEE.

 $(Extr)_{P^*}$: LEE implies $\lbrack \cdot \rbrack_P$ -expressibility:

From every finite process graph G with 1-LEE an regular expression e can be extracted such that $G \rightrightarrows P^{\bullet}(e)$. From every finite collapsed process graph G with 1-LEE a regular expression e can be extracted such that $G \simeq P^{\bullet}(e)$.

 $(\text{ImColl})_{\mathcal{P}^{\bullet}}$: The image of P^{\bullet} is not closed under bisimulation $\text{{\bf collapse}}$.

[ov](#page-1-0) [reg-expr](#page-3-0) [proc-int](#page-10-0) [Mil-Qs](#page-45-0) [loop](#page-52-0) [LEE](#page-72-0) [LEE-wit](#page-97-0) [LLEE\(-wit\)](#page-98-0) [confl](#page-101-0) [extr](#page-110-0) [coll](#page-139-0) [1-LEE](#page-162-0) [twd-char's](#page-189-0) [cp-proc-int](#page-190-0) [refd-extr](#page-198-0) [char's](#page-215-0) [summ](#page-218-0) [aims](#page-220-0) [res](#page-221-0) [+](#page-222-0)

LEE \triangleq image of $P^{\bullet}|_{RExp^{(*/4)}}$

Theorem

For every process graph G TFAE:

 (i) LEE (G) .

(ii) G is P^{\bullet} -expressible by an $(*/4)$ regular expression

(i.e. $G \simeq P^{\bullet}(e)$ for some $e \in RExp^{(*)}$).

(iii) G is isomorphic to a graph in the image of P^{\bullet} on $(*/4)$ reg. expr's (i.e. $G \simeq G'$ for some $G' \in im(P^*|_{RExp^{(*/+)}})$).
Adapted (refined) extraction from LLEE-graph

[ov](#page-1-0) [reg-expr](#page-3-0) [proc-int](#page-10-0) [Mil-Qs](#page-45-0) [loop](#page-52-0) [LEE](#page-72-0) [LEE-wit](#page-97-0) [LLEE\(-wit\)](#page-98-0) [confl](#page-101-0) [extr](#page-110-0) [coll](#page-139-0) [1-LEE](#page-162-0) [twd-char's](#page-189-0) [cp-proc-int](#page-190-0) [refd-extr](#page-198-0) [char's](#page-215-0) [summ](#page-218-0) [aims](#page-220-0) [res](#page-221-0) [+](#page-222-0)

1-LEE \triangleq image of P^{\bullet}

Theorem

For every process graph G TFAE:

 (i) 1-LEE (G) (i.e. $G = (G)$ for some 1-transition-process-graph G with $LEE(G)$). (ii) G is P^{\bullet} -expressible by a regular expression (i.e. $G \simeq P^{\bullet}(e)$ for some $e \in RExp$). (iii) G is isomorphic to a graph in the image of P^{\bullet} (i.e. $G \simeq G'$ for some $G' \in im(P^{\bullet})$).

Summary

- ▶ Characterizations of the image of P^{\bullet} (refinement of P):
	- ► LEE \triangleq image of $P^{\bullet}|_{RExp^{(*/+)}} \ncong$ image of $P|_{RExp^{(*/+)}}$
	- ► 1-LEE \triangleq image of $P^{\bullet} \supsetneq$ image of P

Summary

- **►** process interpretation P / semantics $\llbracket \cdot \rrbracket_P$ of regular expressions
	- ▸ expressibility and completeness questions
- ▸ loop existence and elimination (LEE)
	- ▶ loop elimination rewrite system can be completed
	- \triangleright interpretation/extraction correspondences with $(*/4)$ reg. expr.s
	- ▸ LEE-witnesses: labelings of graphs with LEE
	- ▸ stepwise LEE-preserving bisimulation collapse
- \triangleright 1-LEE = sharing via 1-transitions facilitates LEE
	- ▸ interpretation/extraction correspondences with all regular expressions
	- ▸ not preserved under bisim. collapse (approximation possible)
- ▶ Characterizations of the image of P^{\bullet} (refinement of P):
	- ► LEE \triangleq image of $P^{\bullet}|_{RExp^{(*/+)}} \ncong$ image of $P|_{RExp^{(*/+)}}$
	- ► 1-LEE \triangleq image of $P^{\bullet} \supsetneq$ image of P

▸ outlook on work-to-do

My next aims

Completeness problem, solution:

- A1: graph structure of regular expression processes (LEE/1-LEE)
- A2: motivation of crystallization
- A4: details of crystallization procedure, and completeness of Milner's proof system

Expressibility problem

- A3: LEE is decidable in polynomial time.
	- Q: Is 1-LEE decidable in polynomial time?
	- **P:** Is expressibility by a regular expression, for a finite process graph, decidable in polynomial time/fixed-parameter tractable time?

Resources

- \triangleright Slides/abstract on clegra.github.io
	- ▸ [slides:](https://clegra.github.io/lf/IFIP-1_6-2024.pdf) . . . /lf/IFIP-1 [6-2024.pdf](https://clegra.github.io/lf/IFIP-1_6-2024.pdf)
	- ▸ [abstract:](https://clegra.github.io/lf/IFIP-1_6-2024.pdf) . . . [/lf/abstract-IFIP-1](https://clegra.github.io/lf/abstract-IFIP-1_6-2024.pdf) 6-2024.pdf
- ▶ CG: Closing the Image of the Process Interpretation of 1-Free Regular Expressions Under Bisimulation Collapse
	- ▸ TERMGRAPH 2024, [extended abstract.](https://clegra.github.io/lf/closing-bc-i-pi-us1f.pdf)
- ▶ CG: The Image of the Process Interpretation of Regular Expressions is Not Closed under Bisimulation Collapse,
	- ▸ [arXiv:2303.08553,](http://arxiv.org/abs/2303.08553) 2021/2023.
- ▶ CG: Milner's Proof System for
	- Regular Expressions Modulo Bisimilarity is Complete,
	- ▸ LICS 2022, [arXiv:2209.12188,](https://arxiv.org/abs/2209.12188) [poster.](https://clegra.github.io/lf/poster-lics-2022.pdf)
- ▶ CG, Wan Fokkink: A Complete Proof System for
	- 1-Free Regular Expressions Modulo Bisimilarity,
	- ▸ LICS 2020, [arXiv:2004.12740,](http://arxiv.org/abs/2004.12740) [video on youtube.](https://www.youtube.com/watch?v=i8HF2xihx3s)
- ▶ CG: Modeling Terms by Graphs with Structure Constraints,
	- ▸ TERMGRAPH 2018, [EPTCS 288,](https://arxiv.org/html/1902.01510) [arXiv:1902.02010.](http://arxiv.org/abs/1902.02010)

Language semantics $\lVert \cdot \rVert_L$ of reg. expr's (Copi–Elgot-Wright, 1958)

- 0 $\stackrel{L}{\longmapsto}$ empty language ∅
- 1 $\stackrel{L}{\longrightarrow} {\{\epsilon\}}$ (ϵ the empty word)
- $a \mapsto \{a\}$

Language semantics $\lbrack \cdot \rbrack$ of reg. expr's (Copi–Elgot–Wright, 1958)

- 0 $\stackrel{L}{\longmapsto}$ empty language ∅ 1 $\stackrel{L}{\longrightarrow} {\{\epsilon\}}$ (ϵ the empty word)
- $a \mapsto \{a\}$

 $e_1 + e_2 \longrightarrow \text{union of } L(e_1) \text{ and } L(e_2)$ $e_1 \cdot e_2 \quad \stackrel{L}{\longmapsto} \quad$ element-wise concatenation of $L(e_1)$ and $L(e_2)$ e^* \mapsto set of words formed by concatenating words in *L*(*e*), and adding the empty word ϵ

Language semantics $\lbrack \cdot \rbrack$ of reg. expr's (Copi–Elgot–Wright, 1958)

- 0 $\stackrel{L}{\longmapsto}$ empty language ∅
- 1 $\stackrel{L}{\longrightarrow} {\{\epsilon\}}$ (ϵ the empty word) $a \mapsto \{a\}$

$$
e_1 + e_2 \xrightarrow{L} \text{union of } L(e_1) \text{ and } L(e_2)
$$
\n
$$
e_1 \cdot e_2 \xrightarrow{L} \text{element-wise concatenation of } L(e_1) \text{ and } L(e_2)
$$
\n
$$
e^* \xrightarrow{L} \text{set of words formed by concatenating words in } L(e),
$$
\n
$$
\text{and adding the empty word } e
$$

 $\lbrack\lbrack e\rbrack\rbrack$:= $L(e)$ (language defined by e)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

Clemens Grabmayer clegra.github.io [The Graph Structure of Process Interpretations of Regular Expressions](#page-0-0)

