
((1a) ⋅ (ca + a ⋅ (b + ba))∗) ⋅ 0

(1 ⋅ (ca + a ⋅ (b + ba))∗) ⋅ 0

((1(b + ba)) ⋅ (ca + a ⋅ (b + ba))∗) ⋅ 0

aa

a

c

b

b

a

a[1]

c[1]

b

b

The Graph Structure of Process Interpretations
of Regular Expressions

Clemens Grabmayer
https://clegra.github.io

Department of Computer Science

L’Aquila, Italy

IFIP 1.6 Working Group Meeting

Nancy

July 1, 2024

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io
https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Overview

▸ regular expressions (with unary/binary star, under-star-1-free (∗/1))
▸ Milner’s process interpretation P/semantics J⋅KP

▸ P-/J⋅KP-expressible graphs (↝ expressibility question)

▸ axioms for J⋅KP-identity (↝ completeness question)

▸ loop existence and elimination (LEE)

▸ defined by loop elimination rewrite system, its completion

▸ describes interpretations of (∗/1) reg. expr.s (extraction possible)

▸ LEE-witnesses: labelings of process graphs with LEE

▸ LEE is preserved under bisimulation collapse (stepwise collapse)

▸ 1-LEE = sharing via 1-transitions facilitates LEE

▸ describes interpretations of all reg. expr.s (extraction possible)

▸ not preserved under bisimulation collapse (approximation possible)

▸ LEE/1-LEE characterize image of P● (restricted/unrestricted)

▸ where P● a compact (sharing-increased) refinement of P

▸ via refined extraction using LEE/1-LEE

▸ outlook on work-to-do
Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Overview

▸ regular expressions (with unary/binary star, under-star-1-free (∗/1))
▸ Milner’s process interpretation P/semantics J⋅KP

▸ P-/J⋅KP-expressible graphs (↝ expressibility question)

▸ axioms for J⋅KP-identity (↝ completeness question)

▸ loop existence and elimination (LEE)

▸ defined by loop elimination rewrite system, its completion

▸ describes interpretations of (∗/1) reg. expr.s (extraction possible)

▸ LEE-witnesses: labelings of process graphs with LEE

▸ LEE is preserved under bisimulation collapse (stepwise collapse)

▸ 1-LEE = sharing via 1-transitions facilitates LEE

▸ describes interpretations of all reg. expr.s (extraction possible)

▸ not preserved under bisimulation collapse (approximation possible)

▸ LEE/1-LEE characterize image of P● (restricted/unrestricted)

▸ where P● a compact (sharing-increased) refinement of P

▸ via refined extraction using LEE/1-LEE

▸ outlook on work-to-do
Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions

(

under-star-/

1-free)

Definition (

∼Kleene, 1951,

∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary

/ binary

Kleene star:

e, e1, e2 ∶∶= 0 ∣

1 ∣

a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}

▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions

(

under-star-/

1-free)

Definition (

∼Kleene, 1951,

∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary

/ binary

Kleene star:

e, e1, e2 ∶∶= 0 ∣

1 ∣

a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions

(

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣

1 ∣

a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions

(

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions (

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

1-free regular expressions over alphabet A with

unary/

binary Kleene star:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ (f1∗) ⋅ f2 (for a ∈ A),

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⍟f2 (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions (

under-star-/

1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

1-free regular expressions over alphabet A with unary/binary Kleene star:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ (f1∗) ⋅ f2 (for a ∈ A),

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⍟f2 (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Regular Expressions (under-star-/1-free)

Definition (∼Kleene, 1951, ∼Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e∗ (for a ∈ A).

e, e1, e2 ∶∶= 0 ∣ 1 ∣ a ∣ e1 + e2 ∣ e1 ⋅ e2 ∣ e1⍟e2 (for a ∈ A).

▸ symbol 0 instead of ∅, symbol 1 instead of {ϵ}
▸ with unary star ∗: 1 is definable as 0∗

▸ with binary star ⍟: 1 is not definable (in its absence)

Definition (for process interpretation)

The set RExp(1)(A) of 1-free regular expressions over A is defined by:

f, f1, f2 ∶∶= 0 ∣ a ∣ f1 + f2 ∣ f1 ⋅ f2 ∣ f1⋆ ⋅ f2 (for a ∈ A),

the set RExp(∗/1)(A) of under-star-1-free regular expressions over A by:

uf , uf1, uf2 ∶∶= 0 ∣ 1 ∣ a ∣ uf1 + uf2 ∣ uf1 ⋅ uf2 ∣ f⋆ (for a ∈ A).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P of regular expressions (Milner, 1984)

0
Pz→ deadlock δ, no termination

1
Pz→ empty-step process ϵ, then terminate

a
Pz→ atomic action a, then terminate

e1 + e2 Pz→ (choice) execute P(e1) or P(e2)

e1 ⋅ e2 Pz→ (sequentialization) execute P(e1), then P(e2)

e∗
Pz→ (iteration) repeat (terminate or execute P(e))

JeKP ∶= [P(e)]↔ (bisimilarity equivalence class of process P(e))

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P of regular expressions (Milner, 1984)

0
Pz→ deadlock δ, no termination

1
Pz→ empty-step process ϵ, then terminate

a
Pz→ atomic action a, then terminate

e1 + e2 Pz→ (choice) execute P(e1) or P(e2)

e1 ⋅ e2 Pz→ (sequentialization) execute P(e1), then P(e2)

e∗
Pz→ (iteration) repeat (terminate or execute P(e))

JeKP ∶= [P(e)]↔ (bisimilarity equivalence class of process P(e))

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P of regular expressions (Milner, 1984)

0
Pz→ deadlock δ, no termination

1
Pz→ empty-step process ϵ, then terminate

a
Pz→ atomic action a, then terminate

e1 + e2 Pz→ (choice) execute P(e1) or P(e2)

e1 ⋅ e2 Pz→ (sequentialization) execute P(e1), then P(e2)

e∗
Pz→ (iteration) repeat (terminate or execute P(e))

JeKP ∶= [P(e)]↔ (bisimilarity equivalence class of process P(e))

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c a

a
a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c a

a
a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a
aa

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

a

b

b

b

b

a

a

G1

P(

f
³¹¹¹·¹¹¹µ
(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0)

P(a ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))⊛0)

G1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P (formally)

Definition (Transition system specification T)

1⇓
ei⇓

(i ∈ {1,2})
(e1 + e2)⇓

e1⇓ e2⇓
(e1 ⋅ e2)⇓ (e∗)⇓

a
aÐ→ 1

ei
aÐ→ e′i

(i ∈ {1,2})

e1 + e2 aÐ→ e′i

e1
aÐ→ e′1

e1 ⋅ e2 aÐ→ e′1 ⋅ e2
e1⇓ e2

aÐ→ e′2

e1 ⋅ e2 aÐ→ e′2

e
aÐ→ e′

e∗
aÐ→ e′ ⋅ e∗

Definition

The process (graph) interpretation P(e) of a regular expression e :

P(e) ∶= labeled transition graph generated by e by derivations in T .

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P (formally)

Definition (Transition system specification T)

1⇓
ei⇓

(i ∈ {1,2})
(e1 + e2)⇓

e1⇓ e2⇓
(e1 ⋅ e2)⇓ (e∗)⇓

a
aÐ→ 1

ei
aÐ→ e′i

(i ∈ {1,2})

e1 + e2 aÐ→ e′i

e1
aÐ→ e′1

e1 ⋅ e2 aÐ→ e′1 ⋅ e2
e1⇓ e2

aÐ→ e′2

e1 ⋅ e2 aÐ→ e′2

e
aÐ→ e′

e∗
aÐ→ e′ ⋅ e∗

Definition

The process (graph) interpretation P(e) of a regular expression e :

P(e) ∶= labeled transition graph generated by e by derivations in T .

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P (formally)

Definition (Transition system specification T)

1⇓
ei⇓

(i ∈ {1,2})
(e1 + e2)⇓

e1⇓ e2⇓
(e1 ⋅ e2)⇓ (e∗)⇓

a
aÐ→ 1

ei
aÐ→ e′i

(i ∈ {1,2})

e1 + e2 aÐ→ e′i

e1
aÐ→ e′1

e1 ⋅ e2 aÐ→ e′1 ⋅ e2
e1⇓ e2

aÐ→ e′2

e1 ⋅ e2 aÐ→ e′2

e
aÐ→ e′

e∗
aÐ→ e′ ⋅ e∗

Definition

The process (graph) interpretation P(e) of a regular expression e :

P(e) ∶= labeled transition graph generated by e by derivations in T .

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P (formally)

Definition (Transition system specification T)

1⇓
ei⇓

(i ∈ {1,2})
(e1 + e2)⇓

e1⇓ e2⇓
(e1 ⋅ e2)⇓ (e∗)⇓

a
aÐ→ 1

ei
aÐ→ e′i

(i ∈ {1,2})

e1 + e2 aÐ→ e′i

e1
aÐ→ e′1

e1 ⋅ e2 aÐ→ e′1 ⋅ e2
e1⇓ e2

aÐ→ e′2

e1 ⋅ e2 aÐ→ e′2

e
aÐ→ e′

e∗
aÐ→ e′ ⋅ e∗

Definition

The process (graph) interpretation P(e) of a regular expression e :

P(e) ∶= labeled transition graph generated by e by derivations in T .

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process interpretation P (formally)

Definition (Transition system specification T)

1⇓
ei⇓

(i ∈ {1,2})
(e1 + e2)⇓

e1⇓ e2⇓
(e1 ⋅ e2)⇓ (e∗)⇓

a
aÐ→ 1

ei
aÐ→ e′i

(i ∈ {1,2})

e1 + e2 aÐ→ e′i

e1
aÐ→ e′1

e1 ⋅ e2 aÐ→ e′1 ⋅ e2
e1⇓ e2

aÐ→ e′2

e1 ⋅ e2 aÐ→ e′2

e
aÐ→ e′

e∗
aÐ→ e′ ⋅ e∗

Definition

The process (graph) interpretation P(e) of a regular expression e :

P(e) ∶= labeled transition graph generated by e by derivations in T .

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, informally)

a

a

c

c

a

a

a

aa

b

b

b

b

b

a

a

G1

G′1

P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ a)∗) ⋅ 0))

P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ a)∗) ⋅ 0))P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ (a + a))∗) ⋅ 0))

G1 ∈ JfKP

G′1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, formally)

a

a

c

c

a

a
aa

a

bb

b

b

b

aa

G1

G′1

P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ a)∗) ⋅ 0))

P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ a)∗) ⋅ 0))

P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ (a + a))∗) ⋅ 0))

G1 ∈ JfKP

G′1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (example, formally)

a

a

c

c

a

a
aa

a

b

b

b

b

b

a

a

G1

G′1

P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ a)∗) ⋅ 0))P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ a)∗) ⋅ 0))

P(

f
³¹¹¹·¹¹¹µ
a ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ (a + a))∗) ⋅ 0))

G1 ∈ JfKP

G′1 ∈ JfKP

a

a

c

b

b

G2

G2 ∈ JfKP

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (examples)

G3

a b

G4

a1 a2b1
b2

c1

c2

not P-expressible

not J⋅KP-expressible

a

c a
a

bb

a

G1

P-expressible

J⋅KP-expressible

a

a

c

b
b

G2

?

J⋅KP-expressible

Q2: How can P-expressibility and J⋅KP-expressibility be characterized?

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (examples)

G3

a b

G4

a1 a2b1
b2

c1

c2

not P-expressible

not J⋅KP-expressible

a

c a
a

bb

a

G1

P-expressible

J⋅KP-expressible

a

a

c

b
b

G2

?
J⋅KP-expressible

Q2: How can P-expressibility and J⋅KP-expressibility be characterized?

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (examples)

G3

a b

G4

a1 a2b1
b2

c1

c2

not P-expressible

not J⋅KP-expressible

a

c a
a

bb

a

G1

P-expressible

J⋅KP-expressible

a

a

c

b
b

G2

?
J⋅KP-expressible

Q2: How can P-expressibility and J⋅KP-expressibility be characterized?

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (examples)

G3

a b

G4

a1 a2b1
b2

c1

c2

not P-expressible

not J⋅KP-expressible

a

c a
a

bb

a

G1

P-expressible

J⋅KP-expressible

a

a

c

b
b

G2

?
J⋅KP-expressible

Q2: How can P-expressibility and J⋅KP-expressibility be characterized?

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

P-expressibility and J⋅KP-expressibility (examples)

G3

a b

G4

a1 a2b1
b2

c1

c2

not P-expressible

not J⋅KP-expressible

a

c a
a

bb

a

G1

P-expressible

J⋅KP-expressible

a

a

c

b
b

G2

?
J⋅KP-expressible

Q2: How can P-expressibility and J⋅KP-expressibility be characterized?

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process semantics equality =J⋅KP

▸ Fewer identities hold for =J⋅KP
than for =J⋅KL

:

=J⋅KP
⫋ =J⋅KL

.

a

b c

P(a ⋅ (b + c))

a ⋅ (b + c)

a a

b c

P(a ⋅ b + a ⋅ c)

a ⋅ b + a ⋅ c

/↔

/↔

≠J⋅KP

≠J⋅KP

=J⋅KL

=J⋅KL

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process semantics equality =J⋅KP

▸ Fewer identities hold for =J⋅KP
than for =J⋅KL

:

=J⋅KP
⫋ =J⋅KL

.

a

b c

P(a ⋅ (b + c))

a ⋅ (b + c)

a a

b c

P(a ⋅ b + a ⋅ c)

a ⋅ b + a ⋅ c

/↔

/↔

≠J⋅KP

≠J⋅KP

=J⋅KL

=J⋅KL

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process semantics equality =J⋅KP

▸ Fewer identities hold for =J⋅KP
than for =J⋅KL

:

=J⋅KP
⫋ =J⋅KL

.

a

b c

P(a ⋅ (b + c))

a ⋅ (b + c)

a a

b c

P(a ⋅ b + a ⋅ c)

a ⋅ b + a ⋅ c

/↔

/↔

≠J⋅KP

≠J⋅KP

=J⋅KL

=J⋅KL

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process semantics equality =J⋅KP

▸ Fewer identities hold for =J⋅KP
than for =J⋅KL

:

=J⋅KP
⫋ =J⋅KL

.

a

b c

P(a ⋅ (b + c))

a ⋅ (b + c)

a a

b c

P(a ⋅ b + a ⋅ c)

a ⋅ b + a ⋅ c

/↔

/↔

≠J⋅KP

≠J⋅KP

=J⋅KL

=J⋅KL

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Process semantics equality =J⋅KP

▸ Fewer identities hold for =J⋅KP
than for =J⋅KL

: =J⋅KP
⫋ =J⋅KL

.

a

b c

P(a ⋅ (b + c))

a ⋅ (b + c)

a a

b c

P(a ⋅ b + a ⋅ c)

a ⋅ b + a ⋅ c

/↔

/↔

≠J⋅KP

≠J⋅KP

=J⋅KL

=J⋅KL

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Milner’s proof system Mil

Axioms :

(A1) e + (f + g) = (e + f) + g (A7) e = 1 ⋅ e
(A2) e + 0 = e (A8) e = e ⋅ 1
(A3) e + f = f + e (A9) 0 = 0 ⋅ e
(A4) e + e = e (A10) e∗ = 1 + e ⋅ e∗

(A5) e ⋅ (f ⋅ g) = (e ⋅ f) ⋅ g (A11) e∗ = (1 + e)∗

(A6) (e + f) ⋅ g = e ⋅ g + f ⋅ g

But: e ⋅ (f + g) ≠ e ⋅ f + e ⋅ g But: e ⋅ 0 ≠ 0
Inference rules : rules of equational logic plus

e = f ⋅ e + g
RSP∗ (if f does not

terminate immediately)e = f∗ ⋅ g

Milner’s Question (Q1)

Is Mil complete with respect to =J⋅KP
? (Does e =J⋅KP

f Ô⇒ e =Mil f hold?)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Milner’s questions

(Q1) Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2) J⋅KP-Expressibility:
What structural property characterizes

process graphs that are J⋅KP-expressible ?

▸ is decidable (Baeten/Corradini/G, 2007)

▸ partial new answer (G/Fokkink, 2020):

▸ bisimulation collapse has loop existence & elimination property (LEE)
if expressible by under-star-1-free regular expression

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Milner’s questions

(Q1) Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2) J⋅KP-Expressibility:
What structural property characterizes

process graphs that are J⋅KP-expressible ?

▸ is decidable (Baeten/Corradini/G, 2007)

▸ partial new answer (G/Fokkink, 2020):

▸ bisimulation collapse has loop existence & elimination property (LEE)
if expressible by under-star-1-free regular expression

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Milner’s questions

(Q1) Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2) J⋅KP-Expressibility:
What structural property characterizes

process graphs that are J⋅KP-expressible ?

▸ is decidable (Baeten/Corradini/G, 2007)

▸ partial new answer (G/Fokkink, 2020):

▸ bisimulation collapse has loop existence & elimination property (LEE)
if expressible by under-star-1-free regular expression

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Milner’s questions

(Q1) Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2) J⋅KP-Expressibility:
What structural property characterizes

process graphs that are J⋅KP-expressible ?

▸ is decidable (Baeten/Corradini/G, 2007)

▸ partial new answer (G/Fokkink, 2020):

▸ bisimulation collapse has loop existence & elimination property (LEE)
if expressible by under-star-1-free regular expression

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Milner’s questions

(Q1) Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2) J⋅KP-Expressibility:
What structural property characterizes

process graphs that are J⋅KP-expressible ?

▸ is decidable (Baeten/Corradini/G, 2007)

▸ partial new answer (G/Fokkink, 2020):

▸ bisimulation collapse has loop existence & elimination property (LEE)
if expressible by under-star-1-free regular expression

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Question (Q2) specialized

(Q1)0 Complete axiomatization:

Is the proof system Mil complete for =J⋅KP
?

▸ Yes! (G, 2022, proof summary, employing LEE and crystallization)

▸ series of partial completeness results for:

▸ exitless iterations (Fokkink, 1998)
▸ with a stronger fixed-point rule (G, 2006)
▸ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
▸ with 0 but under-star-1-free (G/Fokkink, 2020)

(Q2)0 P-Expressibility and P-(∗/1)-Expressibility:
What structural property characterizes:

▸ process graphs that are P-expressible ?
(. . . in the image of P?)

▸ process graphs that are P-expressible by (∗/1) regular expressions?
(. . . in the image of (∗/1) expressions under P?)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop Existence and Elimination (LEE)

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim
v0

a

v1

a

[1]
c

v2

[2]

b

[3]

b

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

loop chart

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

loop chart

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

loop chart

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

loop chart

v0

v1

v2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

loop chart

v0

v1

v2

loop chart

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

loop chart

v0

v1

v2

loop chart

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop graphs (interpretations of innermost iterations without 1)

Definition

A process graph is a loop graph if:

(L1) There is an infinite path from the start vertex.

(L2) Every infinite path from the start vertex returns to it.

(L3) Termination is only possible at the start vertex.

v0

v1

v2

(L1),(L2) (L1),(L2),(L3)

v0

v1

v2

loop chart

v0

v1

v2

loop subchart

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a

[2]

b

[1]

b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 1)

LEE

a

a[2]b[1]
b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

v0

Ð→prune

LEE

[2]

[1]

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 2)

v0

a

v1

a

a

c

v2b b

LEE-graphLLEE-graph

v0
a

v1

c

elim
v0
a

v1

elim
v0

a

a

v2

aa [1]a [1]

c

[2]
c

[2]
c

v2b

b

b

bLEELEE-witnessLLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim
v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

bLEE-witnessLLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 2)

v0

a

v1

a

a

c

v2b b

LEE-graphLLEE-graph

v0
a

v1

c

elim

v0
a

v1

elim
v0

a

a

v2

aa [1]a [1]

c

[2]
c

[2]
c

v2b

b

b

bLEELEE-witnessLLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim
v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

bLEE-witnessLLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 2)

v0

a

v1

a

a

c

v2b b

LEE-graphLLEE-graph

v0
a

v1

c

elim
v0
a

v1

elim

v0

a

a

v2

aa [1]a [1]

c

[2]
c

[2]
c

v2b

b

b

bLEELEE-witnessLLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim
v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

bLEE-witnessLLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop existence and elimination (example 2)

v0

a

v1

a

a

c

v2b b

LEE-graphLLEE-graph

v0
a

v1

c

elim
v0
a

v1

elim

v0

a

a

v2

a

a [1]a [1]

c

[2]
c

[2]
c

v2b

b

b

bLEELEE-witnessLLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim

v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

bLEE-witnessLLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE

Definition

A chart C satisfies LEE (loop existence and elimination) if:

∃C0 (C Ð→∗elim C0 /Ð→elim

∧ C0 permits no infinite path) .

a

b

LEE

a1 a2b1
b2

c1

c2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE

Definition

A chart C satisfies LEE (loop existence and elimination) if:

∃C0 (C Ð→∗elim C0 /Ð→elim

∧ C0 permits no infinite path) .

a

b

LEE

a1 a2b1
b2

c1

c2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE

v0

a

v1

a

a

c

v2b b

LEE-graphLLEE-graph

v0
a

v1

c

elim
v0
a

v1

elim
v0

a

a

v2

a

a [1]a [1]

c

[2]
c

[2]
c

v2b

b

b

b

LEE

LEE-witnessLLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim

v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

bLEE-witnessLLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE

v0

a

v1

a

a

c

v2b b

LEE-graphLLEE-graph

v0
a

v1

c

elim
v0
a

v1

elim
v0

a

a

v2

a

a [1]

a [1]

c

[2]
c

[2]
c

v2b

b

b

b

LEE

LEE-witnessLLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim
v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

bLEE-witnessLLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE

v0

a

v1

a

a

c

v2b b LEE-graph

LLEE-graph

v0
a

v1

c

elim
v0
a

v1

elim

v0

a

a

v2

aa [1]

a [1]

c

[2]
c

[2]
c

v2

b

b

b

b

LEE

LEE-witness

LLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim

v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

bLEE-witness

LLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE

v0

a

v1

a

a

c

v2b b

LEE-graph

LLEE-graph

v0
a

v1

c

elim
v0
a

v1

elim

v0

a

a

v2

aa [1]

a [1]

c

[2]
c

[2]
c

v2

b

b

b

b

LEELEE-witness

LLEE-witness
layered

v0

a

v1

a

c

v2b b

v0

a

v1

a

v2b b

elim
v0

a

v1

a

v2 b

elim
v0

a

v1

a

v2

elim

v0

a

a

v1

a

a

[1]
c

[1]
c

v2

[2]

b

[2]

b

[3]

b

[3]

b

LEE-witness

LLEE-witness
layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v

[2]

[2]

[2]

[2]
u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

7 LEE-witnesses

C

a

ab

b

v0

v1

v2

[1]b

layered

[2]

[1]

layered

[2][1]

not layered

Ô⇒
make layered

[1]
[2]

layered

[1]
[1]

layered

[2] [1]

not layered

Ô⇒
make layered

[2]
[1]

layered

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop elimination: properties

Ð→elim : eliminate a transition-induced loop by:
▸ removing the loop-entry transition(s)

▸ garbage collection

Ð→prune : remove a transition to a deadlocking state

Lemma

(i) Ð→elim ∪Ð→prune is terminating.

(ii) Ð→elim ∪Ð→prune is decreasing

,

and so due to (i) locally confluent.

(iii) Ð→elim ∪Ð→prune is confluent.

elim

elim

elim

=
prune

∗

elim=

prune∗

prune

elim

prune

=

elim

prune

prune

prune

=

prune=

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop elimination: properties

Ð→elim : eliminate a transition-induced loop by:
▸ removing the loop-entry transition(s)

▸ garbage collection

Ð→prune : remove a transition to a deadlocking state

Lemma

(i) Ð→elim ∪Ð→prune is terminating.

(ii) Ð→elim ∪Ð→prune is decreasing

,

[Van Oostrom, de Bruijn]

(iii) Ð→elim ∪Ð→prune is confluent.

elim

elim

elim

=
prune

∗

elim=

prune∗

prune

elim

prune

=

elim

prune

prune

prune

=

prune=

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

prune

prune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop elimination, and properties

Ð→elim : eliminate a transition-induced loop by:
▸ removing the loop-entry transition(s)

▸ garbage collection

Ð→prune : remove a transition to a deadlocking state

Lemma

(i) Ð→elim ∪Ð→prune is terminating.

(ii) Ð→elim ∪Ð→prune is decreasing, and so due to (i) locally confluent.

(iii) Ð→elim ∪Ð→prune is confluent.

elim

elim

elim

=
prune

∗

elim=

prune∗

prune

elim

prune

=

elim

prune

prune

prune

=

prune=

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Loop elimination, and properties

Ð→elim : eliminate a transition-induced loop by:
▸ removing the loop-entry transition(s)

▸ garbage collection

Ð→prune : remove a transition to a deadlocking state

Lemma

(i) Ð→elim ∪Ð→prune is terminating.

(ii) Ð→elim ∪Ð→prune is decreasing, and so due to (i) locally confluent.

(iii) Ð→elim ∪Ð→prune is confluent.

elim

elim

elim

=
prune

∗

elim=

prune∗

prune

elim

prune

=

elim

prune

prune

prune

=

prune=

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Structure property LEE

LEE(G) ∶⇐⇒ ∃G0 (GÐ→∗elim G0 /Ð→elim

∧ G0 has no infinite trace) .

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

(i) LEE(G).
(ii) There is an Ð→elim normal form without an infinite trace.

(iii) There is an Ð→elim,prune normal form without an infinite trace.

(iv) Every Ð→elim normal form is without an infinite trace.

(v) Every Ð→elim,prune normal form is without an infinite trace.

Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Structure property LEE

LEE(G) ∶⇐⇒ ∃G0 (GÐ→∗elim G0 /Ð→elim

∧ G0 has no infinite trace) .

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

(i) LEE(G).
(ii) There is an Ð→elim normal form without an infinite trace.

(iii) There is an Ð→elim,prune normal form without an infinite trace.

(iv) Every Ð→elim normal form is without an infinite trace.

(v) Every Ð→elim,prune normal form is without an infinite trace.

Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Structure property LEE

LEE(G) ∶⇐⇒ ∃G0 (GÐ→∗elim G0 /Ð→elim

∧ G0 has no infinite trace) .

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

(i) LEE(G).
(ii) There is an Ð→elim normal form without an infinite trace.

(iii) There is an Ð→elim,prune normal form without an infinite trace.

(iv) Every Ð→elim normal form is without an infinite trace.

(v) Every Ð→elim,prune normal form is without an infinite trace.

Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Structure property LEE

LEE(G) ∶⇐⇒ ∃G0 (GÐ→∗elim G0 /Ð→elim

∧ G0 has no infinite trace) .

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

(i) LEE(G).
(ii) There is an Ð→elim normal form without an infinite trace.

(iii) There is an Ð→elim,prune normal form without an infinite trace.

(iv) Every Ð→elim normal form is without an infinite trace.

(v) Every Ð→elim,prune normal form is without an infinite trace.

Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences with LEE
(⇐ G/Fokkink 2020, G 2021)

(Int)
(∗/1)

P : P-(∗/1)-expressible graphs have the structural property LEE.

Process interpretations P(e) of (∗/1) regular expressions e
are finite process graphs that satisfy LEE.

(Extr)P: LEE implies J⋅KP-expressibility
From every finite process graph G with LEE

a regular expression e can be extracted such that G↔ P(e).

(Coll): LEE is preserved under collapse

The class of finite process graphs with LEE

is closed under bisimulation collapse.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences with LEE
(⇐ G/Fokkink 2020, G 2021)

(Int)
(∗/1)

P : P-(∗/1)-expressible graphs have the structural property LEE.

Process interpretations P(e) of (∗/1) regular expressions e
are finite process graphs that satisfy LEE.

(Extr)P: LEE implies J⋅KP-expressibility
From every finite process graph G with LEE

a regular expression e can be extracted such that G↔ P(e).

(Coll): LEE is preserved under collapse

The class of finite process graphs with LEE

is closed under bisimulation collapse.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ aa

/ aa

/

cc

/bb

/bb

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ aa

/ aa

/

cc

/bb

/bb

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ aa

/ aa

/

cc

/bb

/bb

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ a

a

/ aa

/

cc

/bb

/bb

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ a

a

/ aa

/

cc

/bb

/bb

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ a

a

/ aa

/

cc

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ a

a

/ aa

/

cc

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((

c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))

)∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2

≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Expression extraction using LLEE (G/Fokkink 2020, G 2021/22)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ
(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅0)

(c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗ ⋅ 0

(b ⋅ 1 + b ⋅ (a ⋅ 1)) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0)

/ a

a

/ a

a

/

c

c

/b

b

/b

b

P(e)→ G2 ≄ P(e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

aa

cc aa

aa

aa

cc

bb

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

a

a

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

cc aa

aa

aa

cc

bb

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c

a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c aa

aa

aa

cc

bb

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c a

a

aa

aa

cc

bb

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c

a

a

a

a

aa

cc

bb

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c

a

a

a

a

a

a

cc

bb

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c

a

a

a

a

a

a

c

c

bb

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c

a

a

a

a

a

a

c

c

b

b

bb

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c

a

a

a

a

a

a

c

c

b

b

b

b

P(e) = G′2

→ G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c

a

a

a

a

a

a

c

c

b

b

b

b

P(e) = G′2 → G2

≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation of extracted expression

aa

c a

a

a

c

b

b

G′2

(a ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

e
³¹¹·¹¹¹µ

(1 ⋅ 1) ⋅ ((c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗⋅ 0)

((1 ⋅ (a ⋅ 1)) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0

((1 ⋅ 1) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗)⋅ 0)

((1 ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1))) ⋅ (c ⋅ (a ⋅ 1) + a ⋅ (b ⋅ 1 + b ⋅ (a ⋅ 1)))∗) ⋅ 0

a

a

c

c

a

a

a

a

a

a

c

c

b

b

b

b

P(e) = G′2 → G2 ≄ G′2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE under bisimulation

Observation

▸ LEE is not invariant under bisimulation.

▸ LEE is not preserved by converse functional bisimulation.

a

LEE ¬LEE

a a

a

a aa

a

a

a

LEE ¬LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE under bisimulation

Observation

▸ LEE is not invariant under bisimulation.

▸ LEE is not preserved by converse functional bisimulation.

a

LEE ¬LEE

a a

a

a aa

a

a

a

LEE ¬LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE under bisimulation

Observation

▸ LEE is not invariant under bisimulation.

▸ LEE is not preserved by converse functional bisimulation.

a

LEE ¬LEE

a a

a

a aa

a

a

a

LEE ¬LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

LEE(G1) ∧ G1 → G2 Ô⇒ LEE(G2) .

(ii) LEE is preserved from a process graph to its bisimulation collapse:

LEE(G) ∧ C is bisimulation collapse of G Ô⇒ LEE(C) .

Proof (Idea).

Use loop elimination in G1 to carry out loop elimination in G2.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Collapsing LEE-witnesses

a

aa[1]

a[1]

b

b

a

P(a(a(b + ba))∗ ⋅ 0)

a

aa[1]

a[1]
b

b

a

a[2] a[2]

a

b

b

b[1] b[1]

aa[2] a[2]

a

bb[1] b[1]

b

a

P((aa(ba)∗ ⋅ b)∗ ⋅ 0)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Collapsing LEE-witnesses

a

a

a[1]

a[1]

b

b

a

P(a(a(b + ba))∗ ⋅ 0)

a

a

a[1]

a[1]

b

b

aa[2]

a[2]

a

b

bb[1]

b[1]

aa[2]

a[2]

a

bb[1]

b[1]

b

a

P((aa(ba)∗ ⋅ b)∗ ⋅ 0)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

LEE(G1) ∧ G1 → G2 Ô⇒ LEE(G2) .

(ii) LEE is preserved from a process graph to its bisimulation collapse:

LEE(G) ∧ G has bisimulation collapse C Ô⇒ LEE(C) .

Idea of Proof for (i)

Use loop elimination in G1 to carry out loop elimination in G2.

▸ images of loop subcharts in G1 under → are loop subcharts of G2.

▸ eliminating a loop subchart from G2 amounts, via →, to eliminating
a transition induced subgraph from G1.

▸ LEE is preserved by dropping transition-induced subgraphs.

Due to LEE(G1), then such loop elimination in G2 terminates in a graph
without an infinite trace. This establishes LEE(G2).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3]

[3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Reduced bisimilarity redundancies in LLEE-graphs (no 1-trans.!)

(G/Fokkink, LICS’20)

(C1) (C2) (C3)

w1,w2 in different scc’s w1,w2 in the same scc

‘nested’ ‘orthogonal’

(C1.1)

w1 w2

w1, w2 not normed
///

(C1.2)

b̄1

///

///

///

w1 w2

w1, w2 normed
///

w1

b̄2

w2

v

w1 b̄2///

w2

Lemma

Every not collapsed LLEE-graph contains bisimilar vertices w1 ≠ w2 of
kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy ⟨w1, w2⟩):

Lemma

Every reduced bisimilarity redundancy in a LLEE-graph can be eliminated
LLEE-preservingly.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Reduced bisimilarity redundancies in LLEE-graphs (no 1-trans.!)

(G/Fokkink, LICS’20)

(C1) (C2) (C3)

w1,w2 in different scc’s w1,w2 in the same scc

‘nested’ ‘orthogonal’

(C1.1)

w1 w2

w1, w2 not normed
///

(C1.2)

b̄1

///

///

///

w1 w2

w1, w2 normed
///

w1

b̄2

w2

v

w1 b̄2///

w2

Lemma

Every not collapsed LLEE-graph contains bisimilar vertices w1 ≠ w2 of
kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy ⟨w1, w2⟩):

Lemma

Every reduced bisimilarity redundancy in a LLEE-graph can be eliminated
LLEE-preservingly.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3][3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3][3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3][3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3][3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3][3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3][3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3]

[3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3]

[3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS’20)

(no 1-transitions!)

a

v0

[3]a[3]
c

v1
a

v′0

[2]b

b

v2

a

v′′0

[1]
c

a

v′1

a

v′′′0

(C1.1)

[3][3]

v1

v′0

[2]
v2

v′′0

[1] v
′

1
v′′′0

(I)
(v0)
v′′0

(C2)

[2]

[2]

v2

[3]

[3]

v′′0

[1] v
′

1v′′′0

(II)
(v1)
v′1

[3]

[3]

v2

[3]

[1] v
′

1
v′′′0

(III)
(v′′0)
v′′′0

(C3)

v′′′0

a

v′1
a

[1]
c

v2

[3]

b

[3]

b

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Properties of LEE-charts

Theorem (⇐ G/Fokkink, 2020)

A process graph G

is J⋅KP-expressible by an under-star-1-free regular expression

(i.e. P-expressible modulo bisimilarity by an (1/∗) reg. expr.)
if and only if

the bisimulation collapse of G satisfies LEE.

Hence J⋅KP-expressible ∣not J⋅KP-expressible by 1-free regular expressions:

a

g1

a

c

g2b b

LEE
a2

a3

a1

a3
a1 a2

LEE

a

b

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Properties of LEE-charts

Theorem (⇐ G/Fokkink, 2020)

A process graph G

is J⋅KP-expressible by an under-star-1-free regular expression

(i.e. P-expressible modulo bisimilarity by an (1/∗) reg. expr.)
if and only if

the bisimulation collapse of G satisfies LEE.

Hence J⋅KP-expressible ∣not J⋅KP-expressible by 1-free regular expressions:

a

g1

a

c

g2b b

LEE
a2

a3

a1

a3
a1 a2

LEE

a

b

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE
∧
= sharing via 1-transitions facilitates LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Failure of LEE in general (example)

e

P((a∗ ⋅ b∗)∗)

(a∗ ⋅ b∗)∗ not (∗/1) !

a b

e1a

b

e2 b

a

LEE

e

a b

e1

b

e2 b

a

elim

e

a b

e1

b

e2

a

elim

no loop subchart,

but infinite paths

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Failure of LEE in general (example)

e

P((a∗ ⋅ b∗)∗)

(a∗ ⋅ b∗)∗ not (∗/1) !

a b

e1a

b

e2 b

a

LEE

e

a b

e1

b

e2 b

a

elim

e

a b

e1

b

e2

a

elim

no loop subchart,

but infinite paths

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Failure of LEE in general (example)

e

P((a∗ ⋅ b∗)∗)

(a∗ ⋅ b∗)∗ not (∗/1) !

a b

e1a

b

e2 b

a

LEE

e

a b

e1

b

e2 b

a

elim

e

a b

e1

b

e2

a

elim

no loop subchart,

but infinite paths

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Failure of LEE in general (example)

e

P((a∗ ⋅ b∗)∗)

(a∗ ⋅ b∗)∗ not (∗/1) !

a b

e1a

b

e2 b

a

LEE

e

a b

e1

b

e2 b

a

elim

e

a b

e1

b

e2

a

elim

no loop subchart,

but infinite paths

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Failure of LEE in general (example)

e

P((a∗ ⋅ b∗)∗)

(a∗ ⋅ b∗)∗ not (∗/1) !

a b

e1a

b

e2 b

a

LEE

e

a b

e1

b

e2 b

a

elim

e

a b

e1

b

e2

a

elim

no loop subchart,

but infinite paths

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1

1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→

v2

=̂

v1

(a]
ÐÐ→

v2

induced a-transitions, for a ∈ A

v

1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂

v

⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

a

a

b

b

a

(G1] = (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→ v2 =̂ v1

(a]
ÐÐ→ v2 induced a-transitions, for a ∈ A

v
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂ v⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

a

a

b

b

a

(G1] = (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→ v2 =̂ v1

(a]
ÐÐ→ v2 induced a-transitions, for a ∈ A

v
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂ v⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

a

a

b

b

a

(G1] = (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→ v2 =̂ v1

(a]
ÐÐ→ v2 induced a-transitions, for a ∈ A

v
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂ v⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

a

a

b

b

a

(G1]

= (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→ v2 =̂ v1

(a]
ÐÐ→ v2 induced a-transitions, for a ∈ A

v
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂ v⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

a

a

b

b

a

(G1]

= (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→ v2 =̂ v1

(a]
ÐÐ→ v2 induced a-transitions, for a ∈ A

v
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂ v⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

a

a

b

b

a

(G1]

= (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→ v2 =̂ v1

(a]
ÐÐ→ v2 induced a-transitions, for a ∈ A

v
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂ v⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

aa

b

b

a

(G1] = (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-Graphs and induced graphs

Definition

v1
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ aÐ→ v2 =̂ v1

(a]
ÐÐ→ v2 induced a-transitions, for a ∈ A

v
1Ð→ ⋅ ⋯ ⋅ 1Ð→ ⋅ ⇓ =̂ v⇓(((1))) induced termination.

Definition

The induced (process) graph of a 1-graph G = ⟨V,A,1, vs,→,⇓⟩ is:

(G] = ⟨V,A, vs,
(⋅]

Ð→,⇓(((1)))⟩ .

a b1 1

G1

a b

b

b

a

a

a

b

b

a

(G1] = (G2]

a b

a

1

b

1

1 1

G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE

Definition

1-LEE(G) holds for a graph G,

if G = (G] for some weakly-guarded 1-graph G with LEE(G).

a b1 1

G1

LEE

a b

a

b

b

a

(G1] = (G2]

LEE

1-LEE

a b

a

1

b

1

1 1

G2

LEE

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

1-LEE(P((a∗ ⋅ b∗)∗))

1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

1-LEE(P((a∗ ⋅ b∗)∗))

1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

1-LEE(P((a∗ ⋅ b∗)∗))

1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

1-LEE(P((a∗ ⋅ b∗)∗))

1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE holds for process interpretations

Lemma

There is a 1-graph interpretation P of reg. expression e as 1-graphs P(e)
such that for all e ∈ RExp : (i): LEE(P(e)), (ii): (P(e)] = P(e).

Theorem

1-LEE(P(e)) holds for all regular expressions e.

a b1 1

LEE

a b

a

b

b

a

LEE 1-LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

1-LEE(P((a∗ ⋅ b∗)∗))

1-LEE(P((b∗ ⋅ a∗)∗))

a b

a

1

b

1

1 1

LEE

P((a∗ ⋅ b∗)∗)

P((b∗ ⋅ a∗)∗)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences with 1-LEE
(⇐ G 2021/22/23)

(Int)P: P-expressible graphs have the structural property 1-LEE

Process interpretations P(e) of regular expressions e
are finite process graphs that satisfy 1-LEE.

(Extr)P: 1-LEE implies J⋅KP-expressibility
From every finite 1-process-graph G with 1-LEE

a regular expression e can be extracted such that G↔ P(e).

(Coll): 1-LEE is not preserved under collapse

The class of finite process graphs with 1-LEE

is not closed under bisimulation collapse.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences with 1-LEE
(⇐ G 2021/22/23)

(Int)P: P-expressible graphs have the structural property 1-LEE

Process interpretations P(e) of regular expressions e
are finite process graphs that satisfy 1-LEE.

(Extr)P: 1-LEE implies J⋅KP-expressibility
From every finite 1-process-graph G with 1-LEE

a regular expression e can be extracted such that G↔ P(e).

(Coll): 1-LEE is not preserved under collapse

The class of finite process graphs with 1-LEE

is not closed under bisimulation collapse.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE/ LEE characterize

the un-/restricted image of compact version P● of P

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Image of P is not closed under bisimulation collapse
not even for (∗/1) regular expressions (example)

a b

P(uf)

a ba

a

b

b

uf ∶= a ⋅

ufa
³¹¹·¹¹µ
(a ⋅ (a + a ⋅ 0))∗ + b ⋅

ufb
³¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(b ⋅ (b + b ⋅ 0))∗

a b

1 ⋅ ufa ⇓
a

1 ⋅ uf b⇓
b

(1 ⋅ (a + a ⋅ 0)) ⋅ ufa

a

a

(1 ⋅ (b + b ⋅ 0)) ⋅ uf b

b

b

(1 ⋅ 0) ⋅ ufa (1 ⋅ 0) ⋅ uf b

P(uf)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Compact process interpretation P●

Definition (Transition system specification T)

1⇓
ei⇓

(i ∈ {1,2})
(e1 + e2)⇓

e1⇓ e2⇓
(e1 ⋅ e2)⇓ (e∗)⇓

a
aÐ→ 1

ei
aÐ→ e′i

(i ∈ {1,2})

e1 + e2 aÐ→ e′i

e1
aÐ→ e′1

e1 ⋅ e2 aÐ→ e′1 ⋅ e2
e1⇓ e2

aÐ→ e′2

e1 ⋅ e2 aÐ→ e′2

e
aÐ→ e′

e∗
aÐ→ e′ ⋅ e∗

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Compact process interpretation P●

Definition (Transition system specification T)

e1
aÐ→ e′1

(if e′1 is normed)

e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)

e∗
aÐ→ e′ ⋅ e∗

e
aÐ→ e′

(if e′ is not normed)
e∗

aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T)

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗

e
aÐ→ e′

(if e′ is not normed)
e∗

aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T)

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗
e

aÐ→ e′
(if e′ is not normed)

e∗
aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T)

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗
e

aÐ→ e′
(if e′ is not normed)

e∗
aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Compact process interpretation P●

Definition (Transition system specification T ●, changed rules w.r.t. T)

e1
aÐ→ e′1

(if e′1 is normed)
e1 ⋅ e2 aÐ→ e′1 ⋅ e2

e1
aÐ→ e′1

(if e′1 is not normed)
e1 ⋅ e2 aÐ→ e′1

e
aÐ→ e′

(if e′ is normed)
e∗

aÐ→ e′ ⋅ e∗
e

aÐ→ e′
(if e′ is not normed)

e∗
aÐ→ e′

Definition

The compact process (graph) interpretation P●(e) of a reg. expr’s e :

P●(e) ∶= labeled transition graph generated by e by derivations in T ●.

Lemma (P● increases sharing; P●, P have same bisimulation semantics)

(i) P(e)→ P●(e) for all regular expressions e.
(ii) (G is J⋅KP●-expressible ⇐⇒ G is J⋅KP-expressible) for all graphs G.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Image of P restricted to (∗/1) regular expressions

. . . contains all of its bisimulation collapses (example)

a b

P●(uf)

a ba

a

b

b

uf ∶= a ⋅

ufa
³¹¹·¹¹µ
(a ⋅ (a + a ⋅ 0))∗ + b ⋅

ufb
³¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(b ⋅ (b + b ⋅ 0))∗

a b

1 ⋅ ufa
a

⇓ 1 ⋅ uf b
b

⇓

(1 ⋅ (a + a ⋅ 0)) ⋅ ufa

a

a

(1 ⋅ (b + b ⋅ 0)) ⋅ uf b

b

b

1 ⋅ 0

P●(uf)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation correspondence of P● with LEE

(Int)
(∗/1)

P● : By under-star-1-free expressions P●-expressible graphs satisfy LEE:

Compact process interpretations P●(uf)
of under-star-1-free regular expressions uf

are finite process graphs that satisfy LEE.

(Extr)(∗/1)P● : LEE implies J⋅KP-expressibility by under-star-1-free reg. expr’s:
From every finite process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G→ P(uf).

From every finite collapsed process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G ≃ P(uf).

(ImColl)(∗/1)P● : The image of P●,

restricted to under-star-1-free regular expressions,

is closed under bisimulation collapse.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

aa

aa

cc

bb

bb

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

aa

aa

cc

bb

bb

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

aa

aa

cc

bb

bb

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

aa

cc

bb

bb

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

aa

cc

bb

bb

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

aa

cc

b

b

b

b

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

aa

cc

b

b

b

b

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

a

a

c

c

b

b

b

b

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (

c ⋅ a + a ⋅ (b + b ⋅ a)

)∗) ⋅ 0

a

a

a

a

c

c

b

b

b

b

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

a

a

a

a

c

c

b

b

b

b

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

a

a

a

a

c

c

b

b

b

b

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Refined extraction expression (example)

a

a

a[1]

c

c[1]

b

b

G2

Ĝ2

((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

uf
³¹¹¹·¹¹µ
((1 ⋅ a) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

(1 ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

((1 ⋅ (b + b ⋅ a)) ⋅ (c ⋅ a + a ⋅ (b + b ⋅ a))∗) ⋅ 0

a

a

a

a

c

c

b

b

b

b

P●(uf) = P(uf) ≃ G2

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences of P● with LEE

(Int)
(∗/1)

P● : By under-star-1-free expressions P●-expressible graphs satisfy LEE:

Compact process interpretations P●(uf)
of under-star-1-free regular expressions uf

are finite process graphs that satisfy LEE.

(Extr)(∗/1)P● : LEE implies J⋅KP-expressibility by under-star-1-free reg. expr’s:
From every finite process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G→ P●(uf).

From every finite collapsed process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G ≃ P●(uf).

(ImColl)(∗/1)P● : The image of P●,

restricted to under-star-1-free regular expressions,

is closed under bisimulation collapse.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences of P● with LEE

(Int)
(∗/1)

P● : By under-star-1-free expressions P●-expressible graphs satisfy LEE:

Compact process interpretations P●(uf)
of under-star-1-free regular expressions uf

are finite process graphs that satisfy LEE.

(Extr)(∗/1)P● : LEE implies J⋅KP-expressibility by under-star-1-free reg. expr’s:
From every finite process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G→ P●(uf).

From every finite collapsed process graph G with LEE

an under-star-1-free regular expression uf can be extracted
such that G ≃ P●(uf).

(ImColl)(∗/1)P● : The image of P●,

restricted to under-star-1-free regular expressions,

is closed under bisimulation collapse.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences of P● with 1-LEE

(Int)P● : P●-expressible graphs satisfy 1-LEE:

Compact process interpretations P●(e) of regular expressions e
are finite process graphs that satisfy 1-LEE.

(Extr)P● : LEE implies J⋅KP-expressibility:
From every finite process graph G with 1-LEE

an regular expression e can be extracted
such that G→ P●(e).

From every finite collapsed process graph G with 1-LEE

a regular expression e can be extracted
such that G ≃ P●(e).

(ImColl)P● : The image of P● is not closed under bisimulation collapse .

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Interpretation/extraction correspondences of P● with 1-LEE

(Int)P● : P●-expressible graphs satisfy 1-LEE:

Compact process interpretations P●(e) of regular expressions e
are finite process graphs that satisfy 1-LEE.

(Extr)P● : LEE implies J⋅KP-expressibility:
From every finite process graph G with 1-LEE

an regular expression e can be extracted
such that G→ P●(e).

From every finite collapsed process graph G with 1-LEE

a regular expression e can be extracted
such that G ≃ P●(e).

(ImColl)P● : The image of P● is not closed under bisimulation collapse .

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

LEE
∧

= image of P● ∣RExp(∗/1)

Theorem

For every process graph G TFAE:

(i) LEE(G).
(ii) G is P●-expressible by an (∗/1) regular expression

(i.e. G ≃ P●(e) for some e ∈ RExp(∗/1)).
(iii) G is isomorphic to a graph in the image of P● on (∗/1) reg. expr’s

(i.e. G ≃ G′ for some G′ ∈ im(P● ∣RExp(∗/1))).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Adapted (refined) extraction from LLEE-graph

vs

a
v1

c
[1]

a
[1]

v11

a

v12

bb

v121

a

(1 ⋅ (a + (a + a))) ⋅ ((c ⋅ a + a ⋅ (b + b ⋅ (a + a)))∗ ⋅ 0) =∶ uf

(1 ⋅ (c ⋅ a + a ⋅ (b + b ⋅ (a + a)))∗) ⋅ 0

((1 ⋅ a) ⋅ (. . .)∗) ⋅ 0 ((1 ⋅ (b + b ⋅ (a + a))) ⋅ (. . .)∗) ⋅ 0

((1 ⋅ (a + a)) ⋅ (. . .)∗) ⋅ 0

a

c aa

bb

a

G1 / Ĝ1 P●(uf) = P(uf) ≃ G1

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

1-LEE
∧

= image of P●

Theorem

For every process graph G TFAE:

(i) 1-LEE(G)
(i.e. G = (G] for some 1-transition-process-graph G with LEE(G)).

(ii) G is P●-expressible by a regular expression

(i.e. G ≃ P●(e) for some e ∈ RExp).
(iii) G is isomorphic to a graph in the image of P●

(i.e. G ≃ G′ for some G′ ∈ im(P●)).

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Summary

▸ process interpretation P/semantics J⋅KP of regular expressions

▸ expressibility and completeness questions

▸ loop existence and elimination (LEE)

▸ loop elimination rewrite system can be completed

▸ interpretation/extraction correspondences with (∗/1) reg. expr.s

▸ LEE-witnesses: labelings of graphs with LEE

▸ stepwise LEE-preserving bisimulation collapse

▸ 1-LEE = sharing via 1-transitions facilitates LEE

▸ interpretation/extraction correspondences with all regular expressions

▸ not preserved under bisim. collapse (approximation possible)

▸ Characterizations of the image of P● (refinement of P):

▸ LEE
∧

= image of P● ∣RExp(∗/1) ⫌ image of P ∣RExp(∗/1)

▸ 1-LEE
∧

= image of P● ⫌ image of P

▸ outlook on work-to-do

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Summary

▸ process interpretation P/semantics J⋅KP of regular expressions

▸ expressibility and completeness questions

▸ loop existence and elimination (LEE)

▸ loop elimination rewrite system can be completed

▸ interpretation/extraction correspondences with (∗/1) reg. expr.s

▸ LEE-witnesses: labelings of graphs with LEE

▸ stepwise LEE-preserving bisimulation collapse

▸ 1-LEE = sharing via 1-transitions facilitates LEE

▸ interpretation/extraction correspondences with all regular expressions

▸ not preserved under bisim. collapse (approximation possible)

▸ Characterizations of the image of P● (refinement of P):

▸ LEE
∧

= image of P● ∣RExp(∗/1) ⫌ image of P ∣RExp(∗/1)

▸ 1-LEE
∧

= image of P● ⫌ image of P

▸ outlook on work-to-do

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

My next aims

Completeness problem, solution:

A1: graph structure of regular expression processes (LEE/1-LEE)

A2: motivation of crystallization

A4: details of crystallization procedure,
and completeness of Milner’s proof system

Expressibility problem

A3: LEE is decidable in polynomial time.

Q: Is 1-LEE decidable in polynomial time?

P: Is expressibility by a regular expression, for a finite process graph,
decidable in polynomial time/fixed-parameter tractable time?

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Resources

▸ Slides/abstract on clegra.github.io

▸ slides: . . . /lf/IFIP-1 6-2024.pdf

▸ abstract: . . . /lf/abstract-IFIP-1 6-2024.pdf

▸ CG: Closing the Image of the Process Interpretation
of 1-Free Regular Expressions Under Bisimulation Collapse
▸ TERMGRAPH 2024, extended abstract.

▸ CG: The Image of the Process Interpretation of Regular Expressions
is Not Closed under Bisimulation Collapse,

▸ arXiv:2303.08553, 2021/2023.

▸ CG: Milner’s Proof System for
Regular Expressions Modulo Bisimilarity is Complete,
▸ LICS 2022, arXiv:2209.12188, poster.

▸ CG, Wan Fokkink: A Complete Proof System for
1-Free Regular Expressions Modulo Bisimilarity,

▸ LICS 2020, arXiv:2004.12740, video on youtube.

▸ CG: Modeling Terms by Graphs with Structure Constraints,

▸ TERMGRAPH 2018, EPTCS 288, arXiv:1902.02010.

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io
https://clegra.github.io/lf/IFIP-1_6-2024.pdf
https://clegra.github.io/lf/IFIP-1_6-2024.pdf
https://clegra.github.io/lf/IFIP-1_6-2024.pdf
https://clegra.github.io/lf/abstract-IFIP-1_6-2024.pdf
https://clegra.github.io/lf/closing-bc-i-pi-us1f.pdf
http://arxiv.org/abs/2303.08553
https://arxiv.org/abs/2209.12188
https://clegra.github.io/lf/poster-lics-2022.pdf
http://arxiv.org/abs/2004.12740
https://www.youtube.com/watch?v=i8HF2xihx3s
https://arxiv.org/html/1902.01510
http://arxiv.org/abs/1902.02010
https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Language semantics J⋅KL of reg. expr’s (Copi–Elgot–Wright, 1958)

0
Lz→ empty language ∅

1
Lz→ {ϵ} (ϵ the empty word)

a
Lz→ {a}

e1 + e2 Lz→ union of L(e1) and L(e2)

e1 ⋅ e2 Lz→ element-wise concatenation of L(e1) and L(e2)

e∗
Lz→ set of words formed by concatenating words in L(e),

and adding the empty word ϵ

JeKL ∶= L(e) (language defined by e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Language semantics J⋅KL of reg. expr’s (Copi–Elgot–Wright, 1958)

0
Lz→ empty language ∅

1
Lz→ {ϵ} (ϵ the empty word)

a
Lz→ {a}

e1 + e2 Lz→ union of L(e1) and L(e2)

e1 ⋅ e2 Lz→ element-wise concatenation of L(e1) and L(e2)

e∗
Lz→ set of words formed by concatenating words in L(e),

and adding the empty word ϵ

JeKL ∶= L(e) (language defined by e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Language semantics J⋅KL of reg. expr’s (Copi–Elgot–Wright, 1958)

0
Lz→ empty language ∅

1
Lz→ {ϵ} (ϵ the empty word)

a
Lz→ {a}

e1 + e2 Lz→ union of L(e1) and L(e2)

e1 ⋅ e2 Lz→ element-wise concatenation of L(e1) and L(e2)

e∗
Lz→ set of words formed by concatenating words in L(e),

and adding the empty word ϵ

JeKL ∶= L(e) (language defined by e)

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]

u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u
[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v
[2]

[2]

[2]

[2]

u
[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v

[2]

[2]

[2]

[2]
u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v

[2]

[2]

[2]

[2]
u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v

[2]

[2]

[2]

[2]
u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v

[2]

[2]

[2]

[2]
u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

Layered LEE-witness (LLEE-witness)

v

u

w1

w2

v

[1]
u

[2]

w1

[3]

w2

LLEE-witness
not layered

v

u

w1

w2

v

[2]

[2]

[2]

[2]
u

[1]

w1

w2

layered
LLEE-witness

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

pruneprune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

pruneprune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

prune

prune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

prune

prune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

ov reg-expr proc-int Mil-Qs loop LEE LEE-wit LLEE(-wit) confl extr coll 1-LEE twd-char’s cp-proc-int refd-extr char’s summ aims res +

‘Critical pair’: bi-loop elimination

elim

elim

elim

prune

prune
*

elim

prune

prune*

Clemens Grabmayer clegra.github.io The Graph Structure of Process Interpretations of Regular Expressions

https://clegra.github.io

	Overview
	Regular Expressions
	Process Interpretation
	Milner's Questions
	Loop graphs
	LEE
	LEE-witness
	LLEE-witness
	Confluence of Loop Elimination
	Extraction
	Collapse
	1-LEE
	Towards the image characterizations
	Compact process interpretation
	Refined extraction
	Characterizations of the image of the compact process interpretation
	Summary
	Aims
	Resources and publications
	Addenda

