
Submitted to:
DCM 2023

© C. Grabmayer
This work is licensed under the
Creative Commons Attribution License.

From Compactifying Lambda-Letrec Terms
to Recognizing Regular-Expression Processes

(Extended Abstract and Literature)

Clemens Grabmayer
Department of Computer Science

Gran Sasso Science Institute
L’Aquila, Italy

clemens.grabmayer@gssi.it

As a supplement to my talk at the workshop, this extended abstract motivates and summarizes my
work with co-authors on problems in two separate areas: first, in the λ -calculus with letrec, a uni-
versal model of computation, and second, on Milner’s process interpretation of regular expression, a
proper subclass of the finite-state processes. The aim of my talk was to motivate a transferal of ideas
for workable concepts of structure-constrained graphs: from the problem of finding compact graph
representations for terms in the λ -calculus with letrec to the problem of recognizing finite process
graphs that can be expressed by regular expressions. In both cases the construction of structure-con-
strained graphs was expedient in order to enable to go back and forth easily between, in the first case,
λ -terms and term graphs, and in the second case, regular expressions and process graphs.

The main focus is on providing pointers to my work with co-authors, in both areas separately. A
secondary focus is on explaining directions of my present projects, and describing research questions
of possibly general interest that have developed out of my work in these two areas.

1 Introduction

The purpose of this extended abstract is to supplement my talk at the workshop [3] with a brief description
of my work with co-authors in two areas, including ample references. While my workshop-presentation
covered similar topics as my talk [1] at TERMGRAPH 2018, and while the proceedings article [2] for that
workshop remains a useful resource, this article is a rewritten account with a detailed update on results
that have been obtained in the meantime, and with an outlook on remaining challenging problems.

My talk [3] at the workshop aimed at motivating a fruitful transferal of ideas between two areas on
which I worked in the (a bit removed, and more recent) past: λ -calculus, and the implementation of func-
tional programming languages (2009–2014), and the process theory of finite-state processes (from 2016).
My intention was to show, informally and supported by many pictures: How a solution to the problem
of finding adequate graph representations for terms in the λ -calculus with letrec, a universal model of
computation, turned out to be very helpful in understanding process graphs that can be expressed by
regular expressions (via Milner’s process interpretation), a proper subclass of finite-state processes.

In both cases the definition of an adequate notion of structure-constrained (term or process) graph
was the key to solve a specific practical, and respectively theoretical problem. It was central that the
structure-constrained graphs facilitate to go back and forth easily between, on the one hand, terms in
the λ -calculus with letrec and term graphs, and on the other hand, regular expressions and process
graphs. The graph representations respect the appertaining operational semantics, but were conceived
with specific purposes in mind: to optimize functional programs in the Lambda Calculus with letrec; and

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

respectively, to reason with process graphs denoted by regular expressions, and to decide recognizability
of these graphs. For a detailed comparison of the similarities and differences of the structure-constrained
graphs as defined in the term graph semantics of terms in the λ -calculus with letrec (see Section 2), and
the process (graph) semantics of regular expressions (see Section 3), we want to refer to Section 4 of [2].

Section 2 summarizes work by Jan Rochel and myself that led us to the definition, and efficient im-
plementation of maximal sharing for the higher-order terms in the λ -calculus with letrec. Specifically we
formulated a representation-pipeline: Higher-order terms can be represented by, appropriately defined,
higher-order term graphs, then these can be encoded as first-order term graphs, and subsequently those
can in turn be represented as deterministic finite-state automata (DFAs). Via these correspondences and
DFA minimization, maximal shared forms of higher-order terms can be computed.

Section 3 gives an overview of my work, in crucial parts done together with Wan Fokkink, on two
non-trivial problems concerning the process semantics of regular expression. In Milner’s process seman-
tics, regular expressions are interpreted as nondeterministic finite-state automata (NFAs) whose equality
is studied modulo bisimulation. Unlike for the standard language interpretation, not every NFA can be
expressed by a regular expression. This raised a non-trivial recognition (or expression) problem, which
was formulated by Milner (1984) next to a completeness problem for an equational proof system. In
Section 3 I report on the crucial steps that have led me to a solution of the completeness problem.

Finally Section 4 reports on my present projects, and lists research questions that have developed out
of my work in these two areas.

References

[1] Clemens Grabmayer (2018): Modeling Terms by Graphs with Structure Constraints (Two Illustrations). In-
vited talk at the FSCD/FLoC Workshop TERMGRAPH 2018, Oxford, UK, July 7. Slides are available at
https://clegra.github.io/lf/TERMGRAPH-2018-invited-talk.pdf.

[2] Clemens Grabmayer (2019): Modeling Terms by Graphs with Structure Constraints (Two Illustrations).
In Maribel Fernández & Ian Mackie, editors: Proceedings Tenth International Workshop on Computing
with Terms and Graphs, TERMGRAPH@FSCD 2018, Oxford, UK, 7th July 2018, EPTCS 288, pp. 1–13,
doi:10.4204/EPTCS.288.1.

[3] Clemens Grabmayer (2023): From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression
Processes. Invited talk at the 13th International Workshop on Developments in Computational Models, affil-
iated with the conference FSCD, Sapienza Università, Rome, July 2. Slides available at https://clegra.
github.io/lf/DCM-2023-invited-talk.pdf.

2 Compactifying Lambda-Letrec Terms

This section gives an overview about work that Jan Rochel and I did in the framework of the NWO-
project Realizing Optimal Sharing (ROS) at Utrecht University (2009–2014).1 It eventually led us to the
definition and practical implementation of maximal sharing for terms in the λ -calculus with letrec, the
Core language for the compilation of functional programming languages.

We started with the intention to study phenomena that arise practically for optimal-sharing imple-
mentations of the λ -calculus (by graph-transformation schemes by Lamping [18], and Kathail [17], and
later interaction-net formalizations by Gonthier, Abadi, Lèvy [6], and also van Oostrom, van de Looij,

1This project was headed jointly by Vincent van Oostrom (rewriting and λ -calculus) and Doitse Swierstra (implementation
of functional languages). The project was concluded successfully in June 2016 with Jan Rochel’s defense of his thesis [22].

https://clegra.github.io/lf/TERMGRAPH-2018-invited-talk.pdf
https://doi.org/10.4204/EPTCS.288.1
https://clegra.github.io/lf/DCM-2023-invited-talk.pdf
https://clegra.github.io/lf/DCM-2023-invited-talk.pdf

C. Grabmayer 3

Zwitserlood [20]), which are implementations of optimal or parallel β -reduction (due to Lèvy [19]). For
this purpose Rochel wrote an impressive visualization and animation tool [21] for transforming graphs by
reducing graph-rewrite redexes per mouse-click. It produces beautifully rendered graphs that slowly float
over the screen like bacteria in a liquid under a microscope. This animation tool provided us with much
room for experimentation. We first tried to understand whether optimal implementations could render the
so-called static-argument transformation unnecessary. When we could not establish that, we first tried
to understand in how far the static-argument transformation changes the evaluation of programs with re-
spect to usual scope-preserving graph evaluation. As a consequence, we partly turned our attention away
from optimal evaluation (in the hope that we would later come back to it with a better understanding).

We started by generalizing the static-argument transformation to more general optimizations.

Parameter-dropping optimization transformations
In [23] we described an optimization transformation for the compilation of functional programs that
drops parameters that are passed along unchanged between a number of recursive functions from the
definitions of these functions. We used higher-order rewrite rules to describe this generalization of
the static-argument transformation that permits the avoidance of repetitive evaluation patters [23]. We
discovered later a close connection with Lambda Dropping due to Danvy and Schultz [5].

Realizing that we had moved on to terrain for which a strong theory had already been established,
we set ourselves more ambitious goals: First, to understand formally and conceptually the relationship
between terms in the λ -calculus with letrec (λ letrec) and the infinite λ -terms they represent (in λ

∞, the
infinitary λ -calculus). Second, to find term graph representations of λ letrec-terms that are preserved
under homomorphism (functional bisimularity). Finally third, we wanted to use possible answers for
these two points to define maximally-shared representations of arbitrary λ letrec-terms. Below we report
on our results concerning these three goals.

1. Expressibility of infinite λ -terms by terms in λ letrec (and in λµ).
We studied the question: Which infinite λ -terms are (infinite) unfoldings of terms in λ letrec, the
λ -calculus with letrec, or (equivalent, but formally easier) in λµ , the λ -calculus with µ? Clearly,
such infinite λ -terms have to be regular in the sense that their syntax-trees have only finitely
many subtrees modulo α-conversion. However, while regularity is necessary for expressibility
by a λletrec-term under infinite unfolding, it is not sufficient. What is missing is, intuitively, that
the abstraction scopes in regular infinite λ -terms are not infinitely entangled. We formulated this
requirement in two different ways: that the infinite (regular) λ -term in question (i) has only finitely
many ‘generated subterms’ that are generated by a certain decomposition rewrite system that uses
eager scope closure, (ii) does not contain infinite ‘binding–capturing chains’. Both conditions
delineate the strongly regular infinite λ -terms among the regular ones. For this concept we showed
that an infinite λ -term M is the unfolding of a term in λ letrec (resp. a term in λµ) if and only if
M is strongly regular. For λ letrec-expressibility we showed that in [9], and for λµ -expressibility in
[11, 12]; slides with many suggestive illustrations can be found in [7].
Part of [9], and described separately in [24], is a non-trivial proof of confluence of a higher-
order rewriting system that defines the unfolding semantics for λ letrec-terms. Furthermore in [10]
we showed confluence of let-floating operations on λletrec-terms, obtaining a unique-normal-form
result for let-floating, by using a higher-order rewriting system for the formalization of let-floating.

2. Term graph representations of cyclic λ -terms.

In [13, 16] we systematically investigated a range of natural options for faithfully representing the

4 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

λ -higher-order term graph, version 1:
term graph with scope sets

as structure constraints

λ -higher-order term graph, version 2:
term graph with abstraction prefix function

as structure constraint

λ

λ

@

@

0

0

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

Figure 1: Translation of the λ letrec-term L0 ∶= λx.λ f . let r = f r x in r into a λ -higher-order term graph
with scope sets à la Blom (left), and a λ -h-o term graph JL0KH with an abstraction-prefix function (right).
Note that the inner scope has been chosen minimally here, applying eager scope closure. (Non-eager
scope λ -ho-term-graphs can be defined as well, but are not expedient for maximal sharing.)

first-order term graph with
scope vertices with backlinks (+ scope sets)

λ -term graph: first-order term graph
with scope vertices with backlinks

λ

λ

@

@

0 S

0

λ

λ

@

@

0 S

0

Figure 2: Translation of the λ letrec-term L0 ∶= λx.λ f . let r = f r x in r into a λ -term-graph JL0KT by
adding a scope vertex delimiting the inner scope to the λ -higher-order term graphs in Fig. 1, and by
then dropping the scope sets (which now can be reconstructed as well as a corresponding abstraction
prefix function). While the backlink from the left variable vertex to its binding abstraction vertex is
drawn suggestively along the scope border, it does not target the scope-delimiting vertex, but continues
invisibly below the backlink of that scope-delimiting vertex onwards to the commonly targeted abstrac-
tion vertex. (While not relevant for maximal sharing, relaxing the condition of eager scope closure for
λ -ho-term-graphs can be dealt with by an adapted encoding as first-order term graph.)

cyclic λ -terms in λ letrec by higher-order term graphs (first-order term graphs with additional fea-
tures that describe scopes), and by first-order term graphs (with specific scope-delimiting vertices).

As the result of this analysis we arrived at a natural class of higher-order term graphs (of ‘λ -ho-

C. Grabmayer 5

term-graphs’, see below) that can be implemented faithfully as first-order term graphs (‘λ -term-
graphs’, see below). The basis of the higher-order term graphs (as well as of their first-order im-
plementations) for representing λ letrec-terms are first-order term graphs with three different kinds
of vertex labels:

• unary symbols λ for abstraction vertices,

• binary symbols @ for application vertices, and

• unary symbols 0 for nameless variable vertices that enable backlinks to the binding abstrac-
tion vertices.

The first-order λ -term-graphs also permit:

• binary symbols S for scope-delimiting vertices that facilitate backlinks to the abstraction
vertices whose scope they close.

With this preparations we can now explain the higher-order λ -ho-term-graphs and first-order
λ -term-graphs in more detail. For the precise definitions and statements we refer to [13, 16, 14].

λ -ho-term-graphs appear in two versions:

λ -ho-term-graphs with scope-sets are extensions of first-order term graphs with vertex labels
λ , @, and 0 by adding, to each abstraction vertex w, a scope set that consists of all vertices
in the scope of w. The scope sets of abstraction vertices in a λ -ho-term-graph satisfy a
number of conditions that safeguard that (i) scopes are nested, (ii) scopes arise by eager
scope closure, and (iii) each variable vertex is contained in the scope of the abstraction
vertex to which its backlink points to. In this way, scope sets aggregate scope information
that is available locally at the abstraction vertices.
λ -term-graphs with scope sets are an adaptation of Blom’s of higher-order term graphs with
scope sets [4] to representing the cyclic λ -terms in λ letrec (and the strongly regular infinite
λ -terms in λ

∞). For an example, see Figure 1 on the left for the translation of a (variant)
fixed-point combinator into a λ -ho-term-graph with (eager-scope) scope sets.

λ -ho-term-graphs with abstraction-prefix function are extensions of first-order term graphs with
vertex labels λ , @, and 0 by adding an abstraction prefix function: That function assigns,
to each vertex w, an abstraction prefix (v1 . . .vn) consisting of a word of abstraction vertices
that lists those abstractions (from the top down) for which w is in their ‘extended scope’
(transitive closure of scope relation) as obtained by eager scope closure. Abstraction pre-
fixes aggregate scope information that then is locally available at individual vertices.
See Figure 1 on the right for the translation of a (variant) fixed-point combinator into a
λ -ho-term-graph with abstraction prefixes (obtained by eager scope closure).

In both versions of λ -ho-term-graph, the added constraints guarantee that each variable
vertex (with label 0) has a backlink to the binding λ -abstraction vertex. A bijective corre-
spondence can be shown to exist between both versions of λ -ho-term-graphs (see [13, 16]).

λ -term-graphs are first-order term graphs that represent λ -ho-term-graphs of both kinds as above.
Scopes are delimited, again by using eager scope closure, by scope-delimiting vertices (with
label S) that have backlinks to the abstraction vertex whose scope they declare closed. Vari-
able vertices (with label 0) have backlinks to the binding λ -abstraction vertex.
See Figure 2 for the encoding of the λ -ho-term-graphs in Figure 1 into a λ -term-graph. For
this purpose a scope-delimiter vertex with label S is used to represent the (eager) closure of
the inner scope.

6 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λ f . let r = f (f r) in r

λ

@

0 @

0

λ f . let r = f r in r
λ

@

0

λ f . f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

(1) term graph interpretations J⋅K⋅ of λ letrec-term L as:

a. higher-order term graph G = JLKH
b. first-order term graph G = JLKT

(2) bisimulation collapse |↓ of first-order term graph G with as result G0

(3) readback rb of first-order term graph G0 yielding λ letrec-term L0 = rb(G0).

Figure 3: Schematic representation of the maximal sharing method, and its application to a toy example:
Maximal sharing of a λ letrec-term L proceeds via three steps: (1) interpretation of L as a λ -term-graph
G = JLKT , (2) collapse of G via bisimilarity to λ -term-graph G0, and (3) readback of λ letrec-term L0 from
G0. On the top right these steps are illustrated for a redundant λ letrec-term formulation of a fixed-point
combinator, yielding an efficient representation of fixed-point combinator as λ letrec-term.

The conditions underlying λ -ho-term-graphs and λ -term-graphs (see [13, 16]) guarantee that they
represent finite or infinite closed λ -terms; that is, they do not contain meaningless parts. Both
λ -ho-term-graphs (all two versions) and λ -term-graphs induce appropriate concepts of homomor-
phism (functional bisimulation) and bisimulation. Homomorphisms increase sharing, and intro-
duce a sharing (partial) order. Bisimulations preserve the unfolding semantics (as do homomor-
phisms). We established in [13, 16] a bijective correspondence between λ -ho-term-graphs and
λ -term-graphs that preserves and reflects homomorphisms, and hence the sharing (partial) order.
These results form the basis of the maximal-sharing method, see below.

The property that is of the most central importance for the maximal-sharing method is that homo-
morphisms (functional bisimulations) between first-order term graphs preserve λ -term-graphs: if
G1 is a λ -term-graph, and G1→G2 for a term graph G2 (there is a homomorphism from G1 to G2),
then also G2 is a λ -term-graph. For this property to hold, eager scope closure is crucial.2

2While that is not relevant for the maximal-sharing method (for which use of eager scope closure is essential), we mention
as an aside that this restriction can be circumnavigated: a generalization of the preservation property can also be shown for a
different kind of encoding of (also non-eager-scope) λ -ho-term-graphs into first-order term graphs (see Remark 7.10 in [16]).

C. Grabmayer 7

3. Maximal sharing in λ letrec.

For defining maximally shared versions of terms in λ letrec in a natural way we defined a ‘represen-
tation pipeline’ in [14, 15] (see Figure 3 for a suggestive illustration): First we linked λ letrec-terms
by an interpretation function J⋅KH to the classH of λ -ho-term-graphs that we formulated earlier in
[13, 16]. Then we extended J⋅KH by using the representation of λ -ho-term-graphs as λ -term-graphs
(first-order term graphs) from [13, 16] to define an interpretation function J⋅KT of λ letrec-terms to
the class T of λ -term-graphs. For this representation pipeline we showed that unfolding equiva-
lence =J⋅Kλ∞

of λ letrec-terms is faithfully represented by bisimulation equivalence↔ on λ -ho-term-
graphs, and equally, by bisimulation equivalence↔ on λ -term-graphs.

Then we defined a readback operation rb on λ -term-graphs in the class T (see also in Figure 3)
with the property that the interpretation operation J⋅KT is a left-inverse of rb on T :

J⋅KT ○ rb = idT (modulo isomorphism).

These three operations facilitate to compute, for any given λ letrec-term L, a maximally shared form
L0, by the following three-step procedure (see Figure 3):

(interpret) from L its interpretation JLKT as λ -term-graph is obtained,

(collapse) from the λ -term-graph JLKT its bisimulation collapse G0 is computed, which is again a
λ -term-graph in T (due to preservation of λ -term-graphs along functional bisimulations),

(readback) from the collapsed λ -term-graph G0 its readback rb(G0) is computed, thereby obtain-
ing the term L0 ∶= rb(G0) as a maximally shared form L with L0 =J⋅Kλ∞

L (and hence so that
L0 has the same infinite unfolding as L).

This procedure permits an efficient implementation. We could derive its complexity as (at about)
quadratic in the size of the input λletrec-term.

See Figure 4 for an example of the collapse step on the λ -term-graph interpretation JLKT of an
inefficient version L of a (slight variation of a) fixed-point combinator to obtain the λ -term-graph
interpretation JL0KH that obtains a more efficient and compact version L0 of such a combinator.

A straightforward adaptation of this procedure permits to obtain also an efficient algorithm for
deciding unfolding-semantics equality =J⋅Kλ∞

of any two given λ letrec-terms L1 and L2 by the fol-
lowing two-step procedure:

(interpret) obtain the λ -term-graph interpretations G1 ∶= JL1KT of L1 and G2 ∶= JL2KT of L2;

(check-bisim) check bisimilarity of G1 and G2; if G1↔ G2 holds, conclude that L1 =J⋅Kλ∞
L2 holds

(that is, L1 and L2 have the same infinite unfolding), otherwise L1 ≠J⋅Kλ∞
L2 holds.

We implemented both the maximal-sharing method and the decision procedure for unfolding
equivalence =J⋅Kλ∞

by a prototype implementation [25] that is available on Haskell’s Hackage plat-
form. For the efficient implementation of these methods we extended the representation pipeline
from λ -term-graphs further to λ -DFAs, by which we mean representations of λ letrec-terms as de-
terministic finite-state automata. In this way, unfolding equivalence =J⋅Kλ∞

of λ letrec-terms is rep-
resented as language equivalence of λ -DFAs, and so we could use for the implementation [25] that
bisimulation collapse of λ -term-graphs is faithfully represented by state minimization of λ -DFAs.

At the end of this section I want to mention a concept that Vincent van Oostrom suggested after
seeing the concept of λ -term-graphs in Jan Rochel’s thesis [22]: the concept of ‘nested term graphs’.

8 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

→

Jλx.λ f . let r = f r x in r
´¹¹¹¸¹¹¶

L0

KTJλx.λ f . let r = f (f r x) x in r
´¹¹¹¸¹¹¹¶

L

KT

Figure 4: Compactification of the λ letrec-term L, a redundant form of a variant fixed-point combinator
(compare with the forms in Figure 3), to the more compact λ letrec-term L0. The λ -term-graph interpre-
tations JLKT and JL0KT of the λ letrec terms L and L0 are bisimilar. Indeed the links form a functional
bisimulation→ from JLKT to JL0KT , of which the λ -term-graph JL0KT is in bisimulation-collapsed form.

Nested Term Graphs

Motivated by the results on term graph representations and maximal sharing for λletrec-terms, Vincent
van Oostrom and I formulated a concept of nested term graph [8]. Instead of describing scopes by
additional features like scope sets or an abstraction-prefix function in order to define constraints that
guarantee that scopes are nested, we introduced ‘nesting’ itself as a structuring concept. This means
that we permitted nesting of first-order term graphs into vertices of other first-order term graphs. In
this manner, well-foundedly nested first-order term graphs can be defined by induction. We studied
the behavioral semantics of nested term graphs in [8], and also showed, in analogy with the faithful
encoding of λ -ho-term-graphs as λ -term-graphs, that nested term graphs can be encoded by first-order
term graphs faithfully (in the sense of preserving the respective unfolding semantics).

Nested term graphs not only provide a natural formalization the maximal-sharing method developed
in [13, 14], but they make it much more broadly applicable, also outside of Lambda Calculus.

References

[4] Stefan Blom (2001): Term Graph Rewriting, Syntax and Sematics. Ph.D. thesis, Vrije Universiteit Amster-
dam. Available at https://ir.cwi.nl/pub/29853/29853D.pdf from webpage https://ir.cwi.nl/
pub/29853 for this thesis at CWI Amsterdam.

https://ir.cwi.nl/pub/29853/29853D.pdf
https://ir.cwi.nl/pub/29853
https://ir.cwi.nl/pub/29853

C. Grabmayer 9

[5] Olivier Danvy & Ulrik P. Schultz (2000): Lambda-Dropping: Transforming Recursive Equa-
tions into Programs with Block Structure. Theoretical Computer Science 248(1), pp. 243–287,
doi:https://doi.org/10.1016/S0304-3975(00)00054-2. PEPM’97.

[6] Georges Gonthier, Martin Abadi & Jean-Jacques Lévy (1992): The Geometry of Optimal Lambda Reduction.
In: Proceedings of POPL’92, pp. 15–26, doi:https://doi.org/10.1145/143165.143172.

[7] Clemens Grabmayer (2019): Modeling Terms in the λ -Calculus with letrec. Invited talk at the Workshop
Computational Logic and Applications, Université de Versailles, France, July 1–2. Slides available at https:
//clegra.github.io/lf/CLA-2019-invited-talk.pdf.

[8] Clemens Grabmayer & Vincent van Oostrom (2015): Nested Term Graphs. In Aart Middeldorp & Femke van
Raamsdonk, editors: Post-Proceedings 8th International Workshop on Computing with Terms and Graphs,
Vienna, Austria, July 13, 2014, Electronic Proceedings in Theoretical Computer Science 183, Open Publish-
ing Association, pp. 48–65, doi:10.4204/EPTCS.183.4. ArXived at:1405.6380v2.

[9] Clemens Grabmayer & Jan Rochel (2012): Expressibility in the Lambda-Calculus with Letrec. Technical
Report, arxiv.org, doi:10.48550/arXiv.1208.2383. arXiv:1208.2383.

[10] Clemens Grabmayer & Jan Rochel (2013): Confluent Let-Floating. In: Proceedings of IWC 2013 (2nd

International Workshop on Confluence), pp. 59–64. Available at http://www.jaist.ac.jp/~hirokawa/
iwc2013/iwc2013.pdf. Available at http://www.jaist.ac.jp/~hirokawa/iwc2013/iwc2013.pdf.

[11] Clemens Grabmayer & Jan Rochel (2013): Expressibility in the Lambda Calculus with Mu. In Femke
van Raamsdonk, editor: 24th International Conference on Rewriting Techniques and Applications (RTA
2013), Leibniz International Proceedings in Informatics (LIPIcs) 21, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, pp. 206–222, doi:10.4230/LIPIcs.RTA.2013.206. Available at http:
//drops.dagstuhl.de/opus/volltexte/2013/4063.

[12] Clemens Grabmayer & Jan Rochel (2013): Expressibility in the Lambda Calculus with µ . Technical Report,
arxiv.org, doi:10.48550/arXiv.1304.6284. arXiv:1304.6284. Extends [11].

[13] Clemens Grabmayer & Jan Rochel (2013): Term Graph Representations for Cyclic Lambda Terms.
In: Proceedings of TERMGRAPH 2013, EPTCS 110, pp. 56–73, doi:10.4204/EPTCS.110. ArXived
at:1302.6338v1.

[14] Clemens Grabmayer & Jan Rochel (2014): Maximal Sharing in the Lambda Calculus with Letrec. In: Pro-
ceedings of the 19th ACM SIGPLAN International Conference on Functional Programming, ICFP ’14, ACM,
New York, NY, USA, pp. 67–80, doi:10.1145/2628136.2628148.

[15] Clemens Grabmayer & Jan Rochel (2014): Maximal Sharing in the Lambda Calculus with letrec. Technical
Report, arxiv.org, doi:10.48550/arXiv.1401.1460. arXiv:1401.1460. Extends [14].

[16] Clemens Grabmayer & Jan Rochel (2014): Term Graph Representations for Cyclic Lambda-Terms. Technical
Report, arxiv.org, doi:10.48550/arXiv.1304.6284. arXiv:1304.6284. Report extending [13] (proofs of main
results added).

[17] Vinod Kumar Kathail (1990): Optimal Interpreters for Lambda-calculus Based Functional Languages.
Ph.D. thesis, MIT. Available at https://dspace.mit.edu/bitstream/handle/1721.1/14040/
23292041-MIT.pdf?sequence=2.

[18] John Lamping (1989): An Algorithm for Optimal Lambda Calculus Reduction. In: Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’90, Association
for Computing Machinery, New York, NY, USA, p. 16–30, doi:10.1145/96709.96711.

[19] Jean-Jacques Lévy (1978): Réductions correctes et optimales dans le λ -calcul. Ph.D. thesis, Université,
Paris VII.

[20] Vincent van Oostrom, Kees-Jan van de Looij & Marijn Zwitserlood (2004):]. Extended Abstract for the
Workshop on Algebra and Logic on Programming Systems (ALPS), Kyoto, April 10th 2004. Available at
http://www.phil.uu.nl/~oostrom/publication/pdf/lambdascope.pdf.

[21] Jan Rochel (2010): Port Graph Rewriting in Haskell. Implementation with an explanatory techni-
cal report at http://rochel.info/docs/graph-rewriting.pdf tool on HackageDB with packages

https://doi.org/https://doi.org/10.1016/S0304-3975(00)00054-2
https://doi.org/https://doi.org/10.1145/143165.143172
https://clegra.github.io/lf/CLA-2019-invited-talk.pdf
https://clegra.github.io/lf/CLA-2019-invited-talk.pdf
https://doi.org/10.4204/EPTCS.183.4
http://arxiv.org/abs/1405.6380v2
http://arxiv.org
https://doi.org/10.48550/arXiv.1208.2383
https://arxiv.org/abs/1208.2383
http://www.jaist.ac.jp/~hirokawa/iwc2013/iwc2013.pdf
http://www.jaist.ac.jp/~hirokawa/iwc2013/iwc2013.pdf
http://www.jaist.ac.jp/~hirokawa/iwc2013/iwc2013.pdf
https://doi.org/10.4230/LIPIcs.RTA.2013.206
http://drops.dagstuhl.de/opus/volltexte/2013/4063
http://drops.dagstuhl.de/opus/volltexte/2013/4063
http://arxiv.org
https://doi.org/10.48550/arXiv.1304.6284
https://arxiv.org/abs/1304.6284
https://doi.org/10.4204/EPTCS.110
http://arxiv.org/abs/1302.6338v1
https://doi.org/10.1145/2628136.2628148
http://arxiv.org
https://doi.org/10.48550/arXiv.1401.1460
https://arxiv.org/abs/1401.1460
arxiv.org
https://doi.org/10.48550/arXiv.1304.6284
https://arxiv.org/abs/1304.6284
https://dspace.mit.edu/bitstream/handle/1721.1/14040/23292041-MIT.pdf?sequence=2
https://dspace.mit.edu/bitstream/handle/1721.1/14040/23292041-MIT.pdf?sequence=2
https://doi.org/10.1145/96709.96711
http://www.phil.uu.nl/~oostrom/publication/pdf/lambdascope.pdf
http://rochel.info/docs/graph-rewriting.pdf
http://hackage.haskell.org/

10 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

1⇓
ei⇓

(i ∈ {1,2})
(e1+e2)⇓

e1⇓ e2⇓

(e1 ⋅e2)⇓ (e∗)⇓

a
a
Ð→ 1

ei
a
Ð→ e′i (i ∈ {1,2})

e1+e2
a
Ð→ e′i

e1
a
Ð→ e′1

e1 ⋅e2
a
Ð→ e′1 ⋅e2

e1⇓ e2
a
Ð→ e′2

e1 ⋅e2
a
Ð→ e′2

e
a
Ð→ e′

e∗
a
Ð→ e′ ⋅e∗

Figure 5: Transition system specification T for computations enabled by regular expressions.

graph-rewriting, graph-rewriting-layout, graph-rewriting-gl, graph-rewriting-ski, graph-rewriting-trs, graph-
rewriting-lambdascope, maxsharing. The rewrite system uses Stewart’s port graph grammars (PGGs) [56].

[22] Jan Rochel (2016): Unfolding Semantics of the Untyped λ -Calculus with letrec. Ph.D. thesis, Utrecht Uni-
versity. Defended on June 20, 2016. Available at http://rochel.info/thesis/thesis.pdf.

[23] Jan Rochel & Clemens Grabmayer (2011): Repetitive Reduction Patterns in Lambda Calculus with Letrec.
In Rachid Echahed, editor: Proceedings of the workshop TERMGRAPH 2011, 2 April 2011, Saarbrücken,
Germany, Electronic Proceedings in Theoretical Computer Science 48, Open Publishing Association, pp.
85–100, doi:10.4204/EPTCS.48.9. ArXived at:1102.2656v1.

[24] Jan Rochel & Clemens Grabmayer (2013): Confluent Unfolding in the λ -calculus with letrec. In: Proceedings
of IWC 2013 (2nd International Workshop on Confluence), pp. 17–22. Available at http://www.jaist.
ac.jp/~hirokawa/iwc2013/iwc2013.pdf.

[25] Jan Rochel & Clemens Grabmayer (2014): Maximal Sharing in the Lambda Calculus with letrec. Implemen-
tation of the maximal sharing method described in [14, 15], available at http://hackage.haskell.org/
package/maxsharing/.

3 Proving Bisimilarity between Regular-Expression Processes

This section motivates, summarizes, and provides references to my work on Milner’s process semantics
of regular expressions [52]. An important part of it (leading to [49, 50]) was done in close collaboration
(2015–2020) with Wan Fokkink who had stimulated me to work on Milner’s question already in 2005.
While this section focuses on my work on Milner’s axiomatization questions (see (A) below), my current
work on the expressibility question (see (E) below) will be mentioned in Section 4.

Milner introduced a process semantics J⋅KP in [52] for regular expressions (conceived by Kleene [51])
that refines the standard language semantics J⋅KL (defined by Copi, Elgot, Wright [32]). For regular ex-
pressions e that are constructed from constants 0, 1, letters over a given set A with the binary operators +
and ⋅, and the unary operator (⋅)∗, Milner first defined a process interpretation P(e) that can informally
be described as follows: 0 is interpreted as a deadlocking process without any observable behavior, 1 as a
process that terminates successfully immediately, letters from the set A stand for atomic actions that lead
to successful termination; the binary operators + and ⋅ are interpreted as the operations of choice and con-
catenation of two processes, respectively, and the unary star operator (⋅)∗ is interpreted as the operation
of unbounded iteration of a process, but with the option to terminate successfully before each iteration.

Milner formalized this process interpretation in [52] as process graphs that are defined by induction
on the structure of regular expressions. But soon afterwards a formal definition by means of a transition
system specification (TSS) that defines a labeled transition system (LTS) became more common. The
TSS T in Figure 5 defines, via derivations that it permits from its axioms, labeled transitions

a
Ð→ for ac-

tions a that occur in a regular expressions, and immediate successful termination via the unary predicate

http://hackage.haskell.org/package/graph-rewriting/
http://hackage.haskell.org/package/graph-rewriting-layout/
http://hackage.haskell.org/package/graph-rewriting-gl/
http://hackage.haskell.org/package/graph-rewriting-ski/
http://hackage.haskell.org/package/graph-rewriting-trs/
http://hackage.haskell.org/package/graph-rewriting-lambdascope/
http://hackage.haskell.org/package/graph-rewriting-lambdascope/
https://hackage.haskell.org/package/maxsharing
http://rochel.info/thesis/thesis.pdf
https://doi.org/10.4204/EPTCS.48.9
http://arxiv.org/abs/1102.2656v1
http://www.jaist.ac.jp/~hirokawa/iwc2013/iwc2013.pdf
http://www.jaist.ac.jp/~hirokawa/iwc2013/iwc2013.pdf
http://hackage.haskell.org/package/maxsharing/
http://hackage.haskell.org/package/maxsharing/

C. Grabmayer 11

a

a

b

a

b

a

a

b

b

a

a

b

b

a

G1

P(a ⋅((a ⋅(b+b ⋅a))∗ ⋅0))

P-expressible, hence J⋅KP-expr.

a ⋅((a ⋅(b+b ⋅a))∗ ⋅0)

G0

? ∈ im(P(⋅)) ?

J⋅KP-expressible
=J⋅KP

G2

P((1 ⋅(((a ⋅a) ⋅(b ⋅a)∗) ⋅b)∗) ⋅0)

P-expressible, hence J⋅KP-expr.

(1 ⋅(((a ⋅a) ⋅(b ⋅a)∗) ⋅b)∗) ⋅0

Figure 6: Two process graphs G1 and G2 that are P-expressible, and hence J⋅KP-expressible, because they
are the process interpretations of regular expressions as indicated. G1 and G2 are bisimilar via bisimula-
tions that are drawn as links to their joint bisimulation collapse G0 (of which P-expressibility is at first
unclear). It follows that also G0 is J⋅KP-expressible, and that process semantics equality holds between the
regular expressions with interpretations G1 and G2, respectively. In this example G0 is actually also in
the image of P(⋅), hence P-expressible, as witnessed for example by G0 =P(((1 ⋅a) ⋅(a ⋅(b+b ⋅a))∗) ⋅0).

⇓. The process interpretation P(e) of a regular expression e is then defined as the sub-LTS that is induced
by e in the LTS on regular expressions that is defined via derivability in T . See Figure 6 for suggestive
examples of (bisimilar) process interpretations of two simple regular expressions. In process graph illus-
trations there and later we indicate the start vertex by a brown arrow , and the property of a vertex v
to permit immediate successful termination by emphasizing v in brown as including a boldface ring.

It is interesting to note that the so-defined process interpretation of regular expressions corresponds
directly to non-deterministic finite-state automata (NFAs) that are defined via iterations of Antimirov’s
partial derivatives [27].3

Based on the process interpretation P(⋅), Milner then defined the process semantics of a regular
expression e as JeKP ∶= [P(e)]↔ where [P(e)]↔ is the equivalence class of P(e) with respect to bisim-
ilarity ↔. In analogy to how language-semantics equality =J⋅KL of regular expressions is defined from
the language semantics J⋅KL (namely as e =J⋅KL f if L(e) = JeKL = J f KL = L(e), for all regular expressions
e and f , where L(g) is the language defined by a regular expression g) Milner was then interested in
process-semantics equality =J⋅KP that is defined, for all regular expressions e and f by:

e =J⋅KP f ∶ ⇐⇒ JeKP = J f KP

⇐⇒ P(e)↔ P(f) .

As the process interpretations of the regular expressions in Figure 7 are bisimilar, it follows that these
regular expressions are linked by =J⋅KP .

Milner realized in [52] that the process semantics J⋅KP of regular expressions differs from the lan-
guage semantics J⋅KL in at least two respects: first, J⋅KP is incomplete, and second, process-semantics

3Antimirov did not have a process semantics in mind, but he had set out to define, for every regular expression e, an NFA
that is typically smaller than the deterministic automaton (DFA) as usually associated with e in automata and language theory.

12 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

G(ne)
1

a b

G(ne)
2

a1 a2b1

b2

c1

c2

not P(⋅)-expressible, and not J⋅KP-expressible

a

b c

a ⋅(b+c)

a a

b c

a ⋅b+a ⋅c
=J⋅KL
≠J⋅KP

Figure 7: On the left: Two process graphs that are neither P(⋅)-expressible (that is, not in the image of the
process interpretation P) nor J⋅KP-expressible (that is, not bisimilar to the process interpretation of any
regular expression). On the right: two regular expressions with the same language semantics (associated
language) but different process semantics, since the process interpretations are not bisimilar; therefore
right-distributivity does not hold for =J⋅KP , which entails that fewer identities hold for =J⋅KP than for =J⋅KL .

equality =J⋅KP satisfies fewer identities than language-semantics equality =J⋅KL .
We start by explaining incompleteness of J⋅KP. Language semantics J⋅KL is complete in the follow-

ing sense: every language that can be accepted by a finite-state automaton (a regular language) is the
language that is defined by a regular expression; that is, every regular language is J⋅KL-expressible. How-
ever, a comparable statement does not hold for the process interpretation. We call a finite process graph
J⋅KP-expressible if it is bisimilar to a P-expressible process graph, by which we mean the process in-
terpretation of some regular expression (and hence a graph in the image of P(⋅). While it is easier to
argue that not every finite process graph is P-expressible, there are also finite process graphs that are not
J⋅KP-expressible, either. Milner proved in [52] that the process graph G(ne)

2 in Figure 7 not only is not
P-expressible, but that it is also not J⋅KP-expressible. He also conjectured that also G(ne)

1 in Figure 7 is not
J⋅KP-expressible; this was later shown by Bosscher [31].

Milner also noticed in [52] that some identities that hold for language-semantics equality =J⋅KL are not
true any longer for process semantics equality =J⋅KP . Most notably this is the case for right-distributivity
e ⋅(f +g) = e ⋅ f +e ⋅g, which is violated just as for the comparison of process terms via bisimilarity; see
the well-known counterexample in Figure 7. The language-semantics identity e ⋅0 = 0 is also violated in
the process semantics. In order to define a natural sound adaptation (that we here designated by) Mil, see
Figure 8, of the complete axiom systems for =J⋅KL by Aanderaa [26] and Salomaa [53], Milner dropped
these two identities from Aanderaa’s system, but added the sound identity 0 ⋅e = 0.

These two pecularities of the process semantics led Milner to formulating two questions concerning
recognizability of expressible process graphs, and axiomatizability of process-semantics equality:

(E) How can J⋅KP-expressible process graphs be characterized structurally, that is, those finite process
graphs that are bisimilar to process interpretations of regular expressions?

(A) Is the natural adaptation Mil to process-semantics equality =J⋅KP (see Figure 8 for Mil) of Salomaa’s
and Aanderaa’s complete proof systems for language-semantics equality =J⋅KL complete for =J⋅KP ?

The expressibility question (E) seems to have received only limited attention at first. The reason
may have been because it asks for a structural property of (the J⋅KP-expressible) process graphs that is
invariant under bisimilarity. This is a difficult aim, because bisimulations can significantly distort the
topological structure of labeled transition graphs. Two variants of (E) have been solved after some time:

C. Grabmayer 13

(A1) e+(f +g) = (e+ f)+g (A7) e = 1 ⋅ e
(A2) e+0 = e (A8) e = e ⋅ 1
(A3) e+ f = f +e (A9) 0 = 0 ⋅ e
(A4) e+e = e (A10) e∗ = 1+e ⋅ e∗

(A5) e ⋅ (f ⋅ g) = (e ⋅ f) ⋅ g (A11) e∗ = (1+e)∗

(A6) (e+ f) ⋅ g = e ⋅ g+ f ⋅ g

e = f ⋅ e+g
RSP∗ (if f⇓̸)

e = f ∗ ⋅ g

Figure 8: Milner’s equational proof system Mil for process semantics equality =J⋅KP of regular expressions
with the fixed-point rule RSP∗ in addition to the (not shown) basic rules for reasoning with equations
(which guarantee that derivability in Mil is a congruence relation). From Mil the complete proof system
for language equivalence =J⋅KL due to Aanderaa arises by adding the axioms e ⋅ (f +g) = e ⋅ f + e ⋅ g and
e ⋅ 0 = 0 (which are not sound for =J⋅KP) and by dropping (A9) (which then is derivable).

First, the question for a natural sufficient condition for J⋅KP-expressibility of process graphs was answered
by Baeten and Corradini in [28] by the definition of process graphs that satisfy ‘well-behaved’ recursive
specifications. Second, the question of whether J⋅KP-expressibility of finite process graphs is decidable
was answered by Baeten, Corradini, and myself in [29] by giving a decision procedure (unfortunately it
is highly super-exponential) that is based on minimizing well-behaved specifications under bisimilarity.

For the axiomatization problem (A) at first only a string of partial results have been obtained. In
particular Milner’s proof system Mil has initially been shown to be complete for =J⋅KP for the following
subclasses of regular expressions:

(a) without 0 and 1, but with binary star iteration e1
⊛e2 with iteration-part e1 and exit-part e2 instead

of unary star (Fokkink and Zantema, 1994, [36]),

(b) with 0, and with iterations restricted to exit-less ones (⋅)∗ ⋅0 in absence of 1 (Fokkink, 1997, [35])
and in the presence of 1 (Fokkink, 1996 [34]),

(c) without 0, and with restricted occurrences of 1 (Corradini, De Nicola, and Labella, 2002 [33]),

(d) 1-free expressions formed with 0, without 1, but with binary iteration ⊛ (G, Fokkink, 2020, [49,
50], also showing the completeness of a proof system by Bergstra, Bethke, and Ponse [30]).

While the maximal subclasses in (c) and (d) are incomparable, these results can be joined to apply
to an encompassing class that is still a proper subclass of the regular expressions, see [49]. Indepen-
dently of these partial results concerning completeness of Milner’s system Mil for subclasses of regular
expressions, I noticed in [37] that from Mil a proof system that is complete for =J⋅KP arises when the
single-equation fixed-point rule RSP∗ is replaced by a unique-solvability principle USP for systems of
guarded equations. Also in [37] I formulated a coinductively motivated proof system for process-seman-
tics equality =J⋅KP that utilizes Antimirov’s partial derivatives [27] of regular expressions.

The principal new idea that facilitated the partial completeness result (d) in [49, 50] of Mil for 1-free
regular expressions consisted in formulating a natural structural condition that is sufficient (but not nec-
essary) for J⋅KP-expressibility of process graphs: the Loop Existence and Elimination Condition LEE,
and its layered form LLEE. This condition is based on the concept of ‘loop (process) graph’, and an
elimination process of ‘loop subgraphs’ from a given process graph. A process graph G is said to have
the property LEE if the non-deterministic iterative procedure, started on G, of repeatedly eliminating
loop subgraphs is able to obtain a process graph without an infinite behavior (that is, a graph without
infinite paths and traces). We explain the definitions in some more detail below, and provide examples.

14 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

(L1)

v0

v1

v2

(L1),(L2),(L3) (L1),(L2),(L3)

v0

v1

v2

(L1),(L2),(L3)
loop graph

v0

v1

v2

loop subgraph

LG

LG2

Figure 9: Four process graphs (action labels ignored) that violate at least one loop graph condition (LG1),
(LG2), or (LG3), and a loop graph LG with one of its loop subgraph LG2.

A process graph LG is called a loop (process) graph if it satisfies the following three conditions:

(LG1) There is an infinite trace from the start vertex of LG.
(LG2) Every infinite trace from the start vertex vs of LG returns to vs.
(LG3) Immediate successful termination is only possible at the start vertex of LG.

In such a loop graph LG, the transitions from the start vertex are called loop-entry transitions, and all
other transitions are called loop-body transitions. By a loop subgraph of a process graph G we mean a
graph LG such that with respect to a vertex v of G, and a non-empty set T of transitions of G that depart
from v the following three conditions are satisfied:

(LSG1) LG is a subgraph of G with start vertex v (which may be different from the start vertex vs of G).
(LSG2) LG is generated by the transitions T from v in the following sense: LG contains all vertices and

transitions of G that are reachable on traces that start from v via transitions in T , and continue
onward until v is reached again for the first time.

(LSG3) LG is a loop graph.

In accordance with the stipulation for loop graphs, in such a loop subgraph LG the transitions in T are
called loop-entry transitions of LG, and all others loop-body transitions of LG. In Figure 9 we have
gathered, on the left, four examples of process graphs (with action labels ignored) that are not loop
graphs: each of them violates one of the conditions (LG1), (LG2), or (LG3). The paths in red indicate
violations of (LG2), and (LG3), respectively, where the thicker arrows from the start vertex indicate
transitions that would need to be (but are not) loop-entry transitions. However, the loop subgraph LG2 in
Figure 9 is indeed a loop graph.

Based on these concepts, elimination of loop subgraphs is then defined as follows. We say that G′ is
the result of eliminating a loop subgraph LG with set T of loop-entry transitions from a process graph G,
and denote such an elimination step by G⇒elim G′, if G′ results from G by first removing the transitions
in T and by then applying garbage collection of vertices and transitions that have become unreachable
from the start vertex of G due to the transition removals. See Figure 10 for an example of three loop
elimination steps. As for non-examples, note that neither of two not J⋅KP-expressible graphs G(ne)

1 and
G(ne)

2 in Figure 7 are loop graphs, nor do they contain loop subgraphs; hence neither of G(ne)
1 and G(ne)

2
permits a loop-elimination step.

We say that a process graph G has the property LEE (resp. has the property LLEE (layered LEE)) if
there is a finite sequence of loop-elimination steps G⇒∗elim G′ from G such that the resulting graph G′

C. Grabmayer 15

elim elim

G′′′
v

elimG
v

v1

v11

v2

v21

v

v1

v11

v2

v21

G′
v

v1

v11

v2

v21

G′′

Figure 10: Example of successful loop elimination from the process graph G: three elimination steps of
loop subcharts, which are represented as shaded gray areas, lead to the process graph G′′′ without infinite
behaviour. These steps witness that G satisfies the properties LEE and LLEE (as well as do G′, G′′, G′′′).

does not permit an infinite trace (and resp., if additionally during the elimination steps in G⇒∗elim G′ it
never happens that a transition is removed that was a loop-body transition of a loop subgraph that was
eliminated in an earlier step). It can be shown that although the property LLEE is a formally stronger
requirement than the property LEE, which often helps to simplify proofs, both properties are equivalent.
See Figure 10 for an example of a process graph G with the properties LEE and LLEE as is witnessed
there by a sequence of three loop elimination steps that lead to graph G′′′ without infinite traces. The not
J⋅KP-expressible graphs G(ne)

1 and G(ne)
2 in Figure 7 do not satisfy LLEE and LEE, since loop elimination

is not successful on them: they do not enable loop-elimination steps, but facilitate infinite traces.
The reason why the definition of the properties LEE and LLEE has facilitated progress concerning

the problem (A) was that they define manageable conditions that could be used for proofs about process
graphs that are linked by functional bisimulations. Specifically for obtaining the partial result (d) in
[49, 50] it was crucial that we could prove the following facts:

(I)1 Process interpretations of 1-free regular expressions satisfy LLEE (see [50, 49]).
(E)1 Finite process graphs with LLEE are J⋅KP-expressible, by 1-free regular expressions (see [50, 49]).
(C) LLEE is preserved along functional bisimilarity, and consequently, also by the operation of bisimu-

lation collapse (see [50, 49]).

Additionally, the property LLEE permitted me to formulate a coinductive version cMil of Milner’s
system Mil that also permits cyclic derivations of the form of process graphs with the property LLEE, see
[40, 39, 47]. The system cMil could be viewed as being located proof-theoretically half-way in between
Mil and bisimulations between process interpretation. As such it could be expected to form a natural
beachhead for a completeness proof of Mil.

These results raised my hope that the argumentation could be extended quite directly to the full set of
regular expressions (including 1 and with unary iteration instead of binary iteration) as well as to process
graphs with 1-transitions and with the property LEE. While the generalization of (I)1 to all regular
expressions does not hold, this obstacle could be overcome by defining a refined process interpretation
with the desired property. Together with a rather straightforward generalization of (E)1 we obtained:

(I) The process interpretation P(e) of a regular expression e does not always satisfy LLEE (nor LEE)
(see [38, 42]).

(RI)1 There is a refined process interpretation P(⋅) that produces finite process graphs with 1-transitions
such that, for every regular expression e, P(e) satisfies LLEE, P(e) is a refinement of P(e) by sharing
transitions by means of added 1-transitions, and P(e)↔ P(e), that is, P(e) is bisimilar to P(e) when
1-transitions are interpreted as empty steps (see [48], and a slightly weaker statement in [38, 42]).

16 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

top
abc = v

a ac
c

b

G

pivot
acd =w1

a

ac c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2c2

(abcd)2 =w2
=w2

d

1

w1 = (abcd)1

b

1

e

e

f

f
cp

cp

pivot top

1

/

1

/

cp

cp

Figure 11: On the left: a finite process graph G with 1-transitions (drawn dotted, representing empty
steps) that satisfies LLEE, but cannot be minimized under bisimilarity while preserving LLEE. It is a
prototypical example of a twin-crystal. As such it consists of two interlinked parts, the top-part and the
pivot-part, which by themselves are bisimulation collapsed, but contain vertices that have bisimilar coun-
terparts in the opposite part of the twin-crystal. The self-inverse counterpart function cp links bisimilar
vertices in the two parts. On the right: schematic illustration of a twin-crystal with suggestive drawing
of its top-part and its pivot-part, together with interconnecting proper transitions from top and pivot.

(E)1 Finite process graphs with 1-transitions and with LLEE are J⋅KP-expressible. (See [39, 40, 47].)

However, critically, a direct generalization of our argument broke down dramatically due to the fact that
the collapse statement (C) did not generalize to process graphs with LLEE that contain 1-transitions:

(C)1 LLEE is not preserved under bisimulation collapse of process graphs with 1-transitions. A coun-
terexample holds for the process graph G on the left in Figure 11. (See also [44, 45].)

Therefore the proof strategy we used in [49, 50] for showing completeness of Mil for 1-free regular ex-
pressions, turned out not to work for showing completeness of Mil for the full class of regular expressions.
At the very least it was in need of a substantial refinement.

What came to my rescue here was that the counterexample for LLEE-preserving collapse of process
graphs with 1-transitions and LLEE, the graph G in 11, is of a specific symmetric form. It is a twin-crys-
tal, a process graph with 1-transitions and with LLEE that is near-collapsed in the sense that bisimilar
vertices appear only as pairs. More precisely, twin-crystals are process graphs with 1-transitions and
with LLEE that consist of a single strongly connected component (scc), and of two parts, the top-part
and the pivot-part (see in Figure 11 on the right). Each part by itself is bisimulation collapsed, and hence
any two bisimilar vertices in the twin-crystal must occur in different of the top and pivot parts, and are
linked by a self-inverse (partial) counterpart function. Process graphs with 1-transitions and with LLEE
that are collapsed apart from within scc’s, and in which all scc’s are either collapsed or twin-crystals, we
called crystallized. For this concept it was possible to show:

(NC)1 Every finite process graph with 1-transitions and with LLEE can be minimized under bisimilarity
to obtain a crystallized process graph (see [44, 45, 46].)

This statement is based on an effective crystallization procedure of process graphs with LLEE and with
1-transitions: it minimizes all scc’s of the graph either to twin-crystals or collapsed parts of the graph, and
also guarantees that the resulting graph is collapsed apart from within those scc’s that are twin-crystals.
The symmetric structure of twin-crystals can then be used to show that self-bisimulations of crystallized

C. Grabmayer 17

process graphs are of a particularly easy kind, which can be assembled from bisimulation slices that act
on the twin-crystal-scc’s [41]. This result on crystallized versions of process interpretations permitted
me to adapt the proof strategy that Fokkink and I had used previously to also show completeness of Mil
for =J⋅KP on the full class of regular expressions, see [44, 45], and the poster [46].

There is now much hope that the crystallization technique that we developed for solving the ax-
iomatization question (A) may turn out to facilitate also significant improvements for answers to the
expressibility question (E). We return to the expressibility question (E) at the end of the next section.

References

[26] Stål Aanderaa (1965): On the Algebra of Regular Expressions. Technical Report, Applied Mathematics,
Harvard University.

[27] Valentin Antimirov (1996): Partial Derivatives of Regular Expressions and Finite Automaton Constructions.
Theoretical Computer Science 155(2), pp. 291–319, doi:https://doi.org/10.1016/0304-3975(95)00182-4.

[28] Jos Baeten & Flavio Corradini (2005): Regular Expressions in Process Algebra. In: Proceedings of LICS
2005, IEEE Computer Society 2005, pp. 12–19, doi:10.1109/LICS.2005.43.

[29] Jos Baeten, Flavio Corradini & Clemens Grabmayer (2007): A Characterization of Regular Expressions
Under Bisimulation. Journal of the ACM 54(2), pp. 1–28, doi:10.1145/1219092.1219094.

[30] Jan Bergstra, Inge Bethke & Alban Ponse (1994): Process Algebra with Iteration and Nesting. The Computer
Journal 37(4), pp. 243–258, doi:10.1093/comjnl/37.4.243.

[31] Doeko Bosscher (1997): Grammars Modulo Bisimulation. Ph.D. thesis, University of Amsterdam.

[32] Irving M. Copi, Calvin C. Elgot & Jesse B. Wright (1958): Realization of Events by Logical Nets. Journal of
the ACM 5(2), doi:10.1007/978-1-4613-8177-8_1.

[33] Flavio Corradini, Rocco De Nicola & Anna Labella (2002): An Equational Axiomatization of
Bisimulation over Regular Expressions. Journal of Logic and Computation 12(2), pp. 301–320,
doi:10.1093/logcom/12.2.301.

[34] Wan Fokkink (1996): An Axiomatization for the Terminal Cycle. Technical Report, Logic Group Preprint
Series, Vol. 167, Utrecht University.

[35] Wan Fokkink (1997): Axiomatizations for the Perpetual Loop in Process Algebra. In: Proc. ICALP’97,
LNCS 1256, Springer, Berlin, Heidelberg, pp. 571–581, doi:10.1007/3-540-63165-8_212.

[36] Wan Fokkink & Hans Zantema (1994): Basic Process Algebra with Iteration: Completeness of its Equational
Axioms. The Computer Journal 37(4), pp. 259–267, doi:10.1093/comjnl/37.4.259.

[37] Clemens Grabmayer (2006): A Coinductive Axiomatisation of Regular Expressions under Bisimulation.
Technical Report, University of Nottingham. Short Contribution to CMCS 2006, March 25-27, 2006, Vienna
Institute of Technology, Austria, https://clegra.github.io/lf/sc.pdf, slides for the talk available at
https://clegra.github.io/lf/cmcs06.pdf.

[38] Clemens Grabmayer (2020): Structure-Constrained Process Graphs for the Process Semantics of
Regular Expressions. Technical Report, arxiv.org, doi:https://doi.org/10.48550/arXiv.2012.10869.
arXiv:2012.10869. Report version of [42].

[39] Clemens Grabmayer (2021): A Coinductive Version of Milner’s Proof System for Regular Expressions Mod-
ulo Bisimilarity. Technical Report, arxiv.org, doi:10.48550/arXiv.2108.13104. arXiv:2108.13104. Ex-
tended report for [40].

[40] Clemens Grabmayer (2021): A Coinductive Version of Milner’s Proof System for Regular Expressions
Modulo Bisimilarity. In Fabio Gadducci & Alexandra Silva, editors: 9th Conference on Algebra
and Coalgebra in Computer Science (CALCO 2021), Leibniz International Proceedings in Informatics

https://doi.org/https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1109/LICS.2005.43
https://doi.org/10.1145/1219092.1219094
https://doi.org/10.1093/comjnl/37.4.243
https://doi.org/10.1007/978-1-4613-8177-8_1
https://doi.org/10.1093/logcom/12.2.301
https://doi.org/10.1007/3-540-63165-8_212
https://doi.org/10.1093/comjnl/37.4.259
https://clegra.github.io/lf/sc.pdf
https://clegra.github.io/lf/cmcs06.pdf
http://arxiv.org
https://doi.org/https://doi.org/10.48550/arXiv.2012.10869
https://arxiv.org/abs/2012.10869
http://arxiv.org
https://doi.org/10.48550/arXiv.2108.13104
https://arxiv.org/abs/2108.13104

18 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

(LIPIcs) 211, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 16:1–16:23,
doi:10.4230/LIPIcs.CALCO.2021.16. Extended report see [39].

[41] Clemens Grabmayer (2021): Bisimulation Slices and Transfer Functions. Technical report, Reykjavik
University. Extended abstract for the 32nd Nordic Workshop on Programming Theory (NWPT 2021),
http://icetcs.ru.is/nwpt21/abstracts/paper5.pdf.

[42] Clemens Grabmayer (2021): Structure-Constrained Process Graphs for the Process Semantics of Regular Ex-
pressions. Electronic Proceedings in Theoretical Computer Science 334, p. 29–45, doi:10.4204/eptcs.334.3.
Extended report for [38].

[43] Clemens Grabmayer (2022): A Coinductive Reformulation of Milner’s Proof System for Regular Expressions
Modulo Bisimilarity. Technical Report, arxiv.org, doi:10.48550/arXiv.2203.09501. arXiv:2203.09501.
Special-issue journal submission, whose development started from [40, 39].

[44] Clemens Grabmayer (2022): Milner’s Proof System for Regular Expressions Modulo Bisimilarity is Complete
(Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions). In: Proceedings
of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, Association for Com-
puting Machinery, New York, NY, USA, pp. 1–13.

[45] Clemens Grabmayer (2022): Milner’s Proof System for Regular Expressions Modulo Bisimilarity is Complete
(Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions). Technical Report,
arxiv.org, doi:10.48550/arXiv.2209.12188. arXiv:2209.12188. Technical report version of [44].

[46] Clemens Grabmayer (2022): Milner’s Proof System for Regular Expressions Modulo Bisimilarity is Complete
(Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions). Poster presented
at LICS’22, Technion, Haifa, Israel, August 5. https://clegra.github.io/lf/poster-lics-2022.
pdf.

[47] Clemens Grabmayer (2023): A Coinductive Reformulation of Milner’s Proof System for Regular Expres-
sions Modulo Bisimilarity. Logical Methods in Computer Science Volume 19, Issue 2, doi:10.46298/lmcs-
19(2:17)2023. Available at https://lmcs.episciences.org/11519.

[48] Clemens Grabmayer (2023): The Image of the Process Interpretation of Regular Expressions is Not
Closed Under Bisimulation Collapse. Technical Report, arxiv.org, doi:10.48550/arXiv.2303.08553.
arXiv:2303.08553.

[49] Clemens Grabmayer & Wan Fokkink (2020): A Complete Proof System for 1-Free Regular Expressions
Modulo Bisimilarity. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’20, Association for Computing Machinery, New York, NY, USA, p. 465–478,
doi:10.1145/3373718.3394744.

[50] Clemens Grabmayer & Wan Fokkink (2020): A Complete Proof System for 1-Free Regular Expressions
Modulo Bisimilarity. Technical Report, arxiv.org, doi:10.48550/arXiv.2004.12740. arXiv:2004.12740.
Report version of [49].

[51] Stephen C. Kleene (1951): Representation of Events in Nerve Nets and Finite Automata. In: Automata
Studies, Princeton University Press, Princeton, New Jersey, USA, pp. 3–42, doi:10.1515/9781400882618-
002.

[52] Robin Milner (1984): A Complete Inference System for a Class of Regular Behaviours. Journal of Computer
and System Sciences 28(3), pp. 439–466, doi:10.1016/0022-0000(84)90023-0.

[53] Arto Salomaa (1966): Two Complete Axiom Systems for the Algebra of Regular Events. Journal of the ACM
13(1), pp. 158–169, doi:10.1145/321312.321326.

4 Current and Future Work

This section touches on my present research, and lists as well as briefly motivates some research ques-
tions and projects that have developed out of the work summarized in the past two sections. This is

https://doi.org/10.4230/LIPIcs.CALCO.2021.16
http://icetcs.ru.is/nwpt21/abstracts/paper5.pdf
https://doi.org/10.4204/eptcs.334.3
http://arxiv.org
https://doi.org/10.48550/arXiv.2203.09501
https://arxiv.org/abs/2203.09501
http://arxiv.org
https://doi.org/10.48550/arXiv.2209.12188
https://arxiv.org/abs/2209.12188
https://clegra.github.io/lf/poster-lics-2022.pdf
https://clegra.github.io/lf/poster-lics-2022.pdf
https://doi.org/10.46298/lmcs-19(2:17)2023
https://doi.org/10.46298/lmcs-19(2:17)2023
https://lmcs.episciences.org/11519
http://arxiv.org
https://doi.org/10.48550/arXiv.2303.08553
https://arxiv.org/abs/2303.08553
https://doi.org/10.1145/3373718.3394744
http://arxiv.org
https://doi.org/10.48550/arXiv.2004.12740
https://arxiv.org/abs/2004.12740
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1145/321312.321326

C. Grabmayer 19

organized in two subsections that refer to the topics of Section 2 and Section 3, respectively.

4.1 Maximal Sharing at Run Time

Apart from using the maximal-sharing method for functional programs as a static-analysis based opti-
mization transformation during compilation, one of the ideas for applications that Rochel and I gathered
in [14] was that maximal sharing could be used as an optimization transformation also repeatedly at
run-time. Making that idea fruitful, however, requires that representations of programs that are used in
graph evaluators can be linked closely with λ -term-graph representations of λletrec-terms on which the
maximal-sharing method operates. This is necessary because graph evaluators in implementations of
functional languages typically use supercombinator representations of λ letrec-terms, and much computa-
tional overhead is to be expected in transformations to and from λ -term-graphs. Yet any such overhead
is highly undesirable during program execution. Now supercombinator reduction as carried out by graph
evaluators intuitively corresponds to scope-sharing forms of β -reduction.4 And so, since λ -term-graphs
contain neatly described scopes of λ -abstractions, the implementation of a scope-sharing form of evalu-
ation on λ -term-graphs is conceivable. These considerations lead me to the following research question.

Research Question 1. Coupling of maximal sharing with evaluation, generally, and more specifically:

(i) Can the maximal-sharing method for terms in the λ -calculus with letrec be coupled naturally with
an efficient evaluation method (such as a standard graph-evaluation implementation)?

(ii) Do λ -term-graphs (which represent λ letrec-terms) permit a representation as interaction nets or
as port graphs [56] for which a form of β -reduction can be defined that is able to preserve, by
adequately chosen multi-steps of interactions, scopes and also λ -term-graph form?

In communication after the workshop Ian Mackie pointed me to his interaction-net based implemen-
tation [54, 55] of an evaluation method for the λ -calculus. I am grateful for this reference, first, because
this interaction-net representation of λ -terms bears a close resemblance with λ -term-graphs, and second,
because it provides a mechanism for implementing scope-preserving forms of β -reduction. Nevertheless
it remains a challenging question to relate the two formalisms (λ -term-graphs and interaction-net repre-
sentations of λ -terms in [54]) closely together. Yet an interaction-net representation of λ -term-graphs
close to the representation of λ -terms as used in [54] seems to me to be a plausible and promising in-road
for approaching part (ii) of Research Question 1.

4.2 Crystallization: Proof Verification, and Application to the Expressibility Problem

Currently I am writing two articles that will provide the details of the completeness proof of Milner’s
proof system Mil. The first article is going to explain the motivation of the crystallization process for
process interpretations of regular expressions: a limit to the minimization under bisimulation of pro-
cess graphs that are expressible by a regular expression. This limit will be established specifically for
the process graph G in Figure 11 with 1-transitions. The second article will detail the crystallization
procedure by which process graphs with the property LLEE (which are J⋅KP-expressible) are minimized
under bisimulation to obtain process graphs with LLEE that are close to their bisimulation collapse. This
central result will then be used, as explained in [44], to show that Milner’s proof system Mil is complete
with respect to process semantics equality =J⋅KP .

4Note that scope-sharing is distinct from the context-sharing forms of graph reduction on which implementations of parallel
or optimal β -reduction are based.

20 From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

This completeness proof can be explained with clear conceptual concepts, and with convincing de-
tails, answering Milner’s question (A) positively. However, a verification of the crystallization procedure
and the completeness proof of Mil with respect to =J⋅KP forms an important goal for me.

Research Project 2. Formalization of the proofs for crystallization, and completeness of Mil:

(a) Develop formalizations of structure constraints for process graphs in order to verify the correct-
ness of the crystallization procedure for process graphs with LEE by a proof assistant.

(b) Use the correctness proof of crystallization to verify the completeness proof of Milner’s proof
system Mil by a proof assistant.

Separately I am working out a proof of the fact that the loop existence and elimination property LEE
(and equivalently LLEE) can be decided in polynomial time. For this result the observation is crucial
that loop elimination ⇒elim can be completed to obtain a confluent rewrite system (which is obviously
terminating). As a consequence of the efficient decidability of LLEE it will follow that the restriction
of the expressibility problem (E) to expressibility by regular expressions that are 1-free under star (but
with unary iteration) can be solved efficiently. This is because the methods and results in [49, 50] permit
to show that a finite process graph G is J⋅KP-expressible by a regular expression that is 1-free under star
if and only if the bisimulation collapse of G satisfies LLEE. Then it follows that expressibility of finite
process graphs by regular expressions that are 1-free under star can be decided in polynomial time.

The crystallization procedure that we use in the completeness proof of Mil with respect to =J⋅KP sug-
gests that an extension of this characterization statement to one for J⋅KP-expressibility in full generality
is conceivable. We formulate that as our final research question.

Research Question 3. Is the problem of whether a finite process graph is J⋅KP-expressible efficiently
decidable? That is, is there a polynomial decision algorithm for it? Or is J⋅KP-expressibility at least
fixed-parameter tractable (in FPT) for interesting parameterizations?

References
[54] Ian Mackie (1998): YALE: Yet Another Lambda Evaluator Based on Interaction Nets. In: Proceedings of

the Third ACM SIGPLAN International Conference on Functional Programming, ICFP ’98, Association for
Computing Machinery, New York, NY, USA, p. 117–128, doi:10.1145/289423.289434.

[55] Ian Mackie (2004): Efficient lambda evaluation with interaction nets. In Vincent van Oostrom, editor:
Proceedings of RTA 2004, Aachen, Germany, June 3-5, 2004, LNCS 3091, pp. 155–169, doi:10.1007/978-3-
540-25979-4_11.

[56] Charles Stewart (2002): Reducibility between Classes of Port Graph Grammar. Journal of Computer and
System Sciences 65(2), pp. 169 – 223, doi:http://dx.doi.org/10.1006/jcss.2002.1814.

https://doi.org/10.1145/289423.289434
https://doi.org/10.1007/978-3-540-25979-4_11
https://doi.org/10.1007/978-3-540-25979-4_11
https://doi.org/http://dx.doi.org/10.1006/jcss.2002.1814

	Introduction
	Compactifying Lambda-Letrec Terms
	Proving Bisimilarity between Regular-Expression Processes
	Current and Future Work
	Maximal Sharing at Run Time
	Crystallization: Proof Verification, and Application to the Expressibility Problem

