From Compactifying Lambda-Letrec Terms to Recognizing Regular-Expression Processes

Clemens Grabmayer
https://clegra.github.io

Department of Computer Science

G	S Gran sasso CIENCE INSTITUTE
S	\| School of Avancebe sivules
	L'Aquila, Italy
	DCM'23

Sapienza Università di Roma
 July 2, 2023

Overview

1. Compactifying λ-terms with letrec (maximal sharing
of functional programs)

- higher-order λ-term graphs

2. Recognizing regular-expression processes

- LEE-witnesses: graph labelings based on a loop-condition LEE

Overview

1. Compactifying λ-terms with letrec (maximal sharing of functional programs)

- from terms in the λ-calculus with letrec to:
- higher-order λ-term graphs
- first-order λ-term graphs
- λ-NFAs, and λ-DFAs
- minimization / readback / efficiency / Haskell implementation

2. Recognizing regular-expression processes

- LEE-witnesses: graph labelings based on a loop-condition LEE

Overview

1. Compactifying λ-terms with letrec (maximal sharing of functional programs)

- from terms in the λ-calculus with letrec to:
- higher-order λ-term graphs
- first-order λ-term graphs
- λ-NFAs, and λ-DFAs
- minimization / readback / efficiency / Haskell implementation

2. Recognizing regular-expression processes

- Milner's questions, known results
- structure-constrained process graphs:
- LEE-witnesses: graph labelings based on a loop-condition LEE
- preservation under bisimulation collapse
- readback: from graph labelings to regular expressions

Overview

- Comparison desiderata

1. Compactifying λ-terms with letrec (maximal sharing of functional programs)

- from terms in the λ-calculus with letrec to:
- higher-order λ-term graphs
- first-order λ-term graphs
- λ-NFAs, and λ-DFAs
- minimization / readback / efficiency / Haskell implementation

2. Recognizing regular-expression processes

- Milner's questions, known results
- structure-constrained process graphs:
- LEE-witnesses: graph labelings based on a loop-condition LEE
- preservation under bisimulation collapse
- readback: from graph labelings to regular expressions
- Comparison results

Comparison original desiderata

λ-calculus with letrec under the unfolding semantics
Well-known: graph representations implemented by compilers

- but were not intended for manipulation under \leftrightarrows

Not well-known: term graph interpretation that is studied under \leftrightarrows

Regular expressions under process semantics (bisimilarity \leftrightarrows)

Comparison original desiderata

λ-calculus with letrec under the unfolding semantics
Well-known: graph representations implemented by compilers

- but were not intended for manipulation under \leftrightarrows

Not well-known: term graph interpretation that is studied under \leftrightarrows
Desired: term graph interpretation that:

- has natural correspondence with terms in $\boldsymbol{\lambda}_{\text {letrec }}$
- supports compactification under \leftrightarrows
- permits efficient translation and readback

Regular expressions under process semantics (bisimilarity \leftrightarrows)

Comparison original desiderata

λ-calculus with letrec under the unfolding semantics
Well-known: graph representations implemented by compilers

- but were not intended for manipulation under \leftrightarrows

Not well-known: term graph interpretation that is studied under \leftrightarrows
Desired: term graph interpretation that:

- has natural correspondence with terms in $\boldsymbol{\lambda}_{\text {letrec }}$
- supports compactification under \leftrightarrows
- permits efficient translation and readback

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $P(\cdot)$, studied under \leftrightarrows

- not closed under \rightrightarrows, and \leftrightarrows, modulo \leftrightarrows incomplete

Comparison original desiderata

λ-calculus with letrec under the unfolding semantics
Well-known: graph representations implemented by compilers

- but were not intended for manipulation under \leftrightarrows

Not well-known: term graph interpretation that is studied under \leftrightarrows
Desired: term graph interpretation that:

- has natural correspondence with terms in $\boldsymbol{\lambda}_{\text {letrec }}$
- supports compactification under \leftrightarrows
- permits efficient translation and readback

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $P(\cdot)$, studied under \longleftrightarrow

- not closed under $\overrightarrow{\text {, and }} \leftrightarrows$, modulo \leftrightarrows incomplete

Desired: reason with graphs that are $P(\cdot)$-expressible modulo \leftrightarrows (at least with 'sufficiently many') understand incompleteness by a structural graph property

structure constraints (L'Aquila)

Maximal sharing of functional programs

(joint work with Jan Rochel)

Maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L

Maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L

L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

Maximal sharing: example (fix)

Maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L

L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

Maximal sharing: example (fix)

L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

Maximal sharing: example (fix)

Maximal sharing: example (fix)

Maximal sharing: example (fix)

Maximal sharing: the method

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$
b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

Maximal sharing: the method

1. term graph interpretation $\llbracket \rrbracket \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding program $L_{0}=\mathrm{rb}\left(G_{0}\right)$.

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding program $L_{0}=\mathrm{rb}\left(G_{0}\right)$.

Interpretation

Running example

instead of:
λf. let $r=f(f r)$ in r
\longmapsto max-sharing λf. let $r=f r$ in r
we use:
$\lambda x . \lambda f$. let $r=f(f r x) x$ in r
$\longmapsto_{\text {max-sharing }}$
$\lambda x . \lambda f$. let $r=f r x$ in r
L
\longmapsto max-sharing

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes, + binding links)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with abstraction-prefix function)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

λ-higher-order-term-graph $\llbracket L_{0} \rrbracket_{\mathcal{H}}$

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ abstraction-prefix function)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

incomplete DFA

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink, + scopes)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink, + scopes, + binding links)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with abstraction-prefix function)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph (+ abstraction-prefix function)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with scope vertices with backlinks

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (examples 1 and 2)

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\boldsymbol{\lambda}_{\text {letrec }}$-term $L \longmapsto \lambda$-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ-term-graphs: ~ minimal scopes

Theorem

For $\boldsymbol{\lambda}_{\text {letrec }}$-terms L_{1} and L_{2} it holds: Equality of infinite unfolding coincides with bisimilarity of λ-term-graph interpretations:

$$
\llbracket L_{1} \rrbracket_{\lambda^{\infty}}=\llbracket L_{2} \rrbracket_{\lambda^{\infty}} \quad \Longleftrightarrow \quad \llbracket L_{1} \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

Collapse

Bisimulation check between λ-term-graphs

bisimulation between λ-term-graphs

bisimilarity between λ-term-graphs

functional bisimilarity and bisimulation collapse

Bisimulation collapse: property

Theorem

The class of eager-scope λ-term-graphs is closed under functional bisimilarity \rightarrow.
\Longrightarrow For a $\boldsymbol{\lambda}_{\text {letrec }}$-term L the bisimulation collapse of $\llbracket L \rrbracket_{\mathcal{T}}$ is again an eager-scope λ-term-graph.

defined with property:

Readback

defined with property:

Readback

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \|_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $\left[\cdot \|_{\mathcal{T}}\right.$ modulo isomorphism \simeq.

Readback

defined with property:

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $\left[\cdot \|_{\mathcal{T}}\right.$ modulo isomorphism \simeq.
idea:

1. construct a spanning tree T of G
2. using local rules, in a bottom-up traversal of T synthesize $L=\mathrm{rb}(G)$

Readback: example (fix)

Readback: example (fix)

$\left(v_{1}[] \cdots v_{n}[]\right) v_{n}$

Readback: example (fix)

$$
\left(v_{1}[] \cdots v_{n}[] v_{n+1}[r=?]\right) r
$$

Readback: example (fix)

Readback: example (fix)

$$
\begin{gathered}
\left(\vec{p} v_{n+1}[B, r=L]\right) r \\
\left(\vec{p} v_{n+1}\left[B,(\vec{p}) v_{n+1}\right)\right. \\
\end{gathered}
$$

Readback: example (fix)

(\vec{p}) λv_{n}. let B in L

$\left(\vec{p} v_{n}[B]\right) L$

Maximal sharing: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb
of f-o term graph G_{0}
yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

Theorem

Computing a maximally compact form $L_{0}=\left(\mathrm{rb} \circ \downarrow \circ \llbracket \cdot \rrbracket_{\mathcal{T}}\right)(L)$ of L for a $\boldsymbol{\lambda}_{\text {letrec }}$-term L requires time $O\left(n^{2} \log n\right)$, where $|L|=n$.

Demo: console output

jan:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
λ-letrec-term:
λx. λf. let $r=f(f r x) x$ in r
derivation:

$(x f[r]) f \quad(x f[r]) f r x$
(x f[r]) f (f r x)
(x f[r]) f (f r x) x
($\mathrm{x} f[\mathrm{r}]$) r
(x) x
@ --------- S
($\mathrm{x} f[\mathrm{r}]$) x
(x) λf. let $r=f(f r x) x$ in r
() λx. λf. let $r=f(f r x) x$ in r
writing DFA to file: running-dfa.pdf
readback of DFA:
λx. λy. let $F=y(y F x) x$ in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
λx. λy. let $F=y F x$ in F
jan:~/papers/maxsharing-ICFP/talks/ICFP-2014>

Demo: generated λ-NFAs

Resources (maximal sharing)

- tool maxsharing on hackage.haskell.org
- articles and reports
- Maximal Sharing in the Lambda Calculus with Letrec
- ICFP 2014 paper
- accompanying report arXiv:1401.1460
- Term Graph Representations for Cyclic Lambda Terms
- TERMGRAPH 2013 proceedings
- extended report arXiv:1308.1034
- Vincent van Oostrom, CG: Nested Term Graphs
- TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
- Unfolding Semantics of the Untyped λ-Calculus with letrec
- Ph.D. Thesis, Utrecht University, 2016

Process interpretation of regular expressions
 (based on joint work with Wan Fokkink)

Regular expressions (S.C. Kleene, 1951)

Definition

The set $\operatorname{Reg}(A)$ of regular expressions over alphabet A is defined by the grammar:

$$
e, f::=0|1| a|(e+f)|(e \cdot f) \mid\left(e^{\star}\right) \quad(\text { for } a \in A) \text {. }
$$

Regular expressions (S.C. Kleene, 1951)

Definition

The set $\operatorname{Reg}(A)$ of regular expressions over alphabet A is defined by the grammar:

$$
e, f::=0|1| a|(e+f)|(e \cdot f) \mid\left(e^{*}\right) \quad(\text { for } a \in A) .
$$

Note, here:

- symbol 0 instead of \varnothing
- symbol 1 used (often dropped, definable as 0^{*})
- no complementation operation \bar{e}
- which is not expressible under language interpretation

Language semantics $\llbracket \cdot \rrbracket_{L}$ of reg. expr's (Copi-Elgot-Wright, 1958)

$$
\begin{array}{lll}
\mathbf{0} & \stackrel{L}{\longmapsto} & \text { empty language } \varnothing \\
\mathbf{1} & \stackrel{L}{\longmapsto}\{\epsilon\} \quad(\epsilon \text { the empty word) } \\
a & \stackrel{L}{\longmapsto}\{a\}
\end{array}
$$

Language semantics $\llbracket \cdot \rrbracket_{L}$ of reg. expr's (Copi-Elgot-Wright, 1958)

$$
\begin{aligned}
0 & \stackrel{L}{\longmapsto}
\end{aligned} \text { empty language } \varnothing \quad \begin{aligned}
& \\
& \mathbf{1} \stackrel{L}{\longmapsto}\{\epsilon\} \quad \text { (} \epsilon \text { the empty word) } \\
& a \stackrel{L}{\longmapsto}\{a\} \\
& e+f \stackrel{L}{\longmapsto} \text { union of } L(e) \text { and } L(f) \\
& e \cdot f \stackrel{L}{\longmapsto} \text { element-wise concatenation of } L(e) \text { and } L(f) \\
& e^{*} \stackrel{L}{\longmapsto} \text { set of words formed by concatenating words in } L(e), \\
&
\end{aligned}
$$

Language semantics $\llbracket \cdot \rrbracket_{L}$ of reg. expr's (Copi-Elgot-Wright, 1958)

$$
\begin{aligned}
& 0 \stackrel{L}{\longmapsto} \text { empty language } \varnothing \\
& 1 \stackrel{L}{\longmapsto}\{\epsilon\} \quad \text { (} \epsilon \text { the empty word) } \\
& a \stackrel{L}{\longmapsto}\{a\} \\
& e+f \stackrel{L}{\longleftrightarrow} \text { union of } L(e) \text { and } L(f) \\
& e \cdot f \stackrel{L}{\longmapsto} \text { element-wise concatenation of } L(e) \text { and } L(f) \\
& e^{*} \stackrel{\llcorner }{\longleftrightarrow} \text { set of words formed by concatenating words in } L(e) \text {, } \\
& \text { and adding the empty word } \epsilon \\
& \llbracket e \rrbracket\llcorner:=\quad L(e) \quad \text { (language defined by } e \text {) }
\end{aligned}
$$

Process semantics of regular expressions $\llbracket \rrbracket_{P} \quad$ (Milner, 1984)

$0 \stackrel{P}{\longmapsto}$ deadlock δ, no termination
$1 \stackrel{P}{\longmapsto}$ empty-step process ϵ, then terminate
$a \stackrel{P}{\longmapsto}$ atomic action a, then terminate

Process semantics of regular expressions $\llbracket \cdot \rrbracket_{P} \quad$ (Milner, 1984)

$0 \stackrel{P}{\longmapsto}$ deadlock δ, no termination
$1 \stackrel{P}{\longmapsto}$ empty-step process ϵ, then terminate
$a \stackrel{P}{\longmapsto}$ atomic action a, then terminate

$$
\begin{aligned}
e+f & \stackrel{P}{\longmapsto} \text { (choice) execute } P(e) \text { or } P(f) \\
e \cdot f & \stackrel{P}{\longmapsto} \text { (sequentialization) execute } P(e) \text {, then } P(f) \\
e^{*} & \stackrel{P}{\longmapsto} \text { (iteration) repeat (terminate or execute } P(e) \text {) }
\end{aligned}
$$

Process semantics of regular expressions $\llbracket \cdot \rrbracket_{P} \quad$ (Milner, 1984)

$0 \stackrel{P}{\longmapsto}$ deadlock δ, no termination
$1 \stackrel{P}{\longmapsto}$ empty-step process ϵ, then terminate
$a \stackrel{P}{\longmapsto}$ atomic action a, then terminate

$$
\begin{aligned}
e+f & \stackrel{P}{\longmapsto} \text { (choice) execute } P(e) \text { or } P(f) \\
e \cdot f & \stackrel{P}{\longmapsto} \text { (sequentialization) execute } P(e) \text {, then } P(f) \\
e^{*} & \stackrel{P}{\longmapsto} \text { (iteration) repeat (terminate or execute } P(e)) \\
\llbracket e \rrbracket_{P} & \left.:=[P(e)]_{\leftrightarrow} \quad \text { (bisimilarity equivalence class of process } P(e)\right)
\end{aligned}
$$

Process interpretation of regular expressions (examples)

$P\left(a(a(b+b a))^{*} 0\right)$

$$
P\left(\left(a a(b a)^{*} b\right)^{*} 0\right)
$$

Process interpretation of regular expressions (examples)

$$
P\left(a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0\right)
$$

$$
P\left(\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0\right)
$$

Process interpretation of regular expressions (examples)

$$
P\left(a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0\right)
$$

$$
P\left(\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0\right)
$$

Process interpretation of regular expressions (examples)

$$
P\left(a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0\right)
$$

$$
P\left(\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0\right)
$$

Process interpretation of regular expressions (examples)

$$
P\left(a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0\right)
$$

$$
P\left(\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0\right)
$$

Process interpretation of regular expressions (examples)

$P\left(a(a(b+b a))^{*} 0\right)$

$$
P\left(\left(a a(b a)^{*} b\right)^{*} 0\right)
$$

Process interpretation of regular expressions (examples)

Expressible process graphs (under bisimulation \leftrightarrows)

Properties of P and $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $P(\cdot)$-expressible.

? $P(\cdot)$-expressible ?
$\llbracket \cdot \rrbracket_{P}$-expressible

Properties of P and $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $P(\cdot)$-expressible.

? $P(\cdot)$-expressible ?
not $P(\cdot)$-expressible
$\llbracket \cdot \|_{p}$-expressible

Properties of P and $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $P(\cdot)$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.

? $P(\cdot)$-expressible ?
$\llbracket \cdot \rrbracket_{p}$-expressible
not $P(\cdot)$-expressible
not $\llbracket \cdot \rrbracket_{p}$-expressible

Properties of P and $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $P(\cdot)$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{p}$-expressible.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \varsubsetneqq=L$.

Properties of P and $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $P(\cdot)$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{p}$-expressible.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \varsubsetneqq=L$.

Properties of P and $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $P(\cdot)$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \varsubsetneqq=L$.

$$
a \cdot(b+c)
$$

$$
\ngtr P
$$

$$
a \cdot b+a \cdot c
$$

Complete axiomatization of $=L \quad$ (Aanderaa/Salomaa, 1965/66)

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $\quad(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $\quad e^{*}=(1+e)^{*}$
(B6) $e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin L(f)}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Sound and unsound axioms with respect to $\leftrightarrows P$

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $\quad(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $e^{*}=(1+e)^{*}$
(B6) $e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad\left(\text { if }_{\text {non-empty-word }}^{\text {property }} \begin{array}{c}
\{\epsilon\} \notin L(f)
\end{array}\right)
$$

Sound and unsound axioms with respect to $\leftrightarrows P$

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $\quad(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $\quad e^{*}=(1+e)^{*}$
(B6) $e+e=e$
(B8) $\quad 0 \cdot e=0$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin L(f)}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Adaptation for $\overleftrightarrow{\leftrightarrows}_{P} \quad($ Milner, 1984 $) \quad\left(\right.$ Mil $^{2}=$ Mil $^{-}+$RSP $\left.^{*}\right)$

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B11) $e^{*}=(1+e)^{*}$
(B6) $e+e=e$
$(\mathrm{B} 8)^{\prime} \quad 0 \cdot e=0$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { RSP }^{*}(\text { if } \underbrace{\{\epsilon\} \notin L(f)}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Adaptation for $\overleftrightarrow{\leftrightarrows}_{P} \quad($ Milner, 1984 $) \quad\left(\right.$ Mil $^{\prime}=$ Mil $^{-}+$RSP $\left.^{*}\right)$

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $\quad 0 \cdot e=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $e^{*}=1+e \cdot e^{*}$
(B11) $\quad e^{*}=(1+e)^{*}$
(B6) $e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { RSP }^{*}(\text { if } \underbrace{\{\epsilon\} \notin L(f)}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Adaptation for $\overleftrightarrow{\leftrightarrows}_{P} \quad($ Milner, 1984 $) \quad\left(\right.$ Mil $^{\prime}=$ Mil $^{-}+$RSP $\left.^{*}\right)$

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $\quad 0 \cdot e=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $e^{*}=1+e \cdot e^{*}$
(B11) $\quad e^{*}=(1+e)^{*}$
(B6) $e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \operatorname{RSP}^{*}(\text { if } \underbrace{\{\epsilon\} \notin L(f)}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Milner's questions

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

- definability by well-behaved specifications (Baeten/Corradini, 2005)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- Mil is complete when restricted to 0 -free and 1 -return-less expressions (Corradini, De Nicola, Labella, 2002)

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- Mil is complete when restricted to 0 -free and 1 -return-less expressions (Corradini, De Nicola, Labella, 2002)
- Mil ${ }^{-}$+ one of two stronger rules (than RSP*) is complete (G, 2006)

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- Mil is complete when restricted to 0 -free and 1 -return-less expressions (Corradini, De Nicola, Labella, 2002)
- Mil ${ }^{-}$+ one of two stronger rules (than RSP*) is complete (G, 2006)
- Mil is complete when restricted to 1-free expressions (G, Fokkink, 2020)

Milner's questions, and results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{p}$-expressibility?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- Mil is complete when restricted to 0 -free and 1 -return-less expressions (Corradini, De Nicola, Labella, 2002)
- Mil ${ }^{-}$+ one of two stronger rules (than RSP*) is complete (G, 2006)
- Mil is complete when restricted to 1-free expressions (G, Fokkink, 2020)
- Mil is complete (G, 2022, proof overview)

Well-behaved form, looping palm trees

$P\left(\left(a a(b a)^{*} b\right)^{*}\right)$

Well-behaved form, looping palm trees

well-behaved form (Corradini, Baeten)

$$
P\left(\left(a a(b a)^{*} b\right)^{*}\right) \quad P\left(\left(1 \cdot a a(1 \cdot b a)^{*} \cdot 1 \cdot b\right)^{*}(1 \cdot 1)\right)
$$

Well-behaved form, looping palm trees

well-behaved form (Corradini, Baeten)

$$
P\left(\left(a a(b a)^{*} b\right)^{*}\right)
$$

$$
P\left(\left(1 \cdot a a(1 \cdot b a)^{*} \cdot 1 \cdot b\right)^{*}(1 \cdot 1)\right)
$$

looping palm tree

$$
P\left(\left(a a(b a)^{*} b\right)^{*}\right)
$$

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1.
L-2.
L-3.

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2.
L-3.

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3.

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

no loop chart

Loop charts (interpretations of innermost iterations)

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

no loop chart

Loop elimination

Loop elimination, and properties

\longrightarrow elim: eliminate a transition-induced loop by:

- removing the loop-entry transition(s)
- garbage collection
\longrightarrow prune : remove a transition to a deadlocking state

Lemma

(i) $\longrightarrow_{\text {elim }} \cup \longrightarrow_{\text {prune }}$ is terminating.

Loop elimination, and properties

\longrightarrow elim: eliminate a transition-induced loop by:

- removing the loop-entry transition(s)
- garbage collection
\longrightarrow prune : remove a transition to a deadlocking state

Lemma

(i) $\longrightarrow_{\text {elim }} \cup \longrightarrow_{\text {prune }}$ is terminating.
(ii) $\longrightarrow_{\mathrm{elim}} \cup \longrightarrow$ prune is decreasing, and hence locally confluent.

Loop elimination, and properties

\longrightarrow elim: eliminate a transition-induced loop by:

- removing the loop-entry transition(s)
- garbage collection
\longrightarrow prune : remove a transition to a deadlocking state

Lemma

(i) $\longrightarrow_{\text {elim }} \cup \longrightarrow_{\text {prune }}$ is terminating.
(ii) $\longrightarrow_{\text {elim }} \cup \longrightarrow_{\text {prune }}$ is decreasing, and hence locally confluent.
(iii) $\longrightarrow_{\text {elim }} \cup \longrightarrow_{\text {prune }}$ is confluent.

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

$\xrightarrow{\longrightarrow}$ elim

Loop elimination

$\xrightarrow{\longrightarrow}$ elim

Loop elimination

\longrightarrow elim

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

\longrightarrow elim

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

\longrightarrow elim

\xrightarrow{l} elim

Loop elimination

$\xrightarrow{ } \mathrm{elim}$

\longrightarrow elim

Loop elimination

Loop elimination

$\xrightarrow{\mu}$ elim

Loop elimination

$\xrightarrow{\mu}$ elim

Loop elimination

$\xrightarrow{ } \mathrm{elim}$

Structure property LEE
Definition
A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \nsucc{ }_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Structure property LEE

Definition
A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \succ_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Lemma (by using termination and confluence)
For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) There is an \longrightarrow elim normal form without an infinite trace.

Structure property LEE

Definition
A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \succ_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Lemma (by using termination and confluence)
For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) There is an \longrightarrow elim normal form without an infinite trace.
(iii) There is an \longrightarrow elim,prune normal form without an infinite trace.

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}(G \longrightarrow & { }_{\text {elim }}^{*} G_{0} \not_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Lemma (by using termination and confluence)
For every process graph G the following are equivalent:
(i) $\mathrm{LEE}(G)$.
(ii) There is an \longrightarrow elim normal form without an infinite trace.
(iii) There is an $\longrightarrow_{\text {elim, prune }}$ normal form without an infinite trace.
(iv) Every \longrightarrow elim normal form is without an infinite trace.
(v) Every $\longrightarrow_{\text {elim,prune }}$ normal form is without an infinite trace.

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \nsucc{ }_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Lemma (by using termination and confluence)
For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) There is an \longrightarrow elim normal form without an infinite trace.
(iii) There is an \longrightarrow elim,prune normal form without an infinite trace.
(iv) Every $\longrightarrow_{\text {elim }}$ normal form is without an infinite trace.
(v) Every \longrightarrow elim,prune normal form is without an infinite trace.

Theorem (efficient decidability)
The problem of deciding $\operatorname{LEE}(G)$ for process graphs G is in PTIME.

LEE fails

LEE fails

LEE fails

LEE fails

LEE holds

LEE holds

LEE holds / Recording loop elimination

LEE holds / Recording loop elimination

LEE

LEE holds / Recording loop elimination

LEE

LEE holds / Recording loop elimination

LEE

LEE holds / Recording loop elimination

LEE holds / Recording loop elimination

\longrightarrow elim

\longrightarrow elim
LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

\longrightarrow elim

\longrightarrow elim

LEE

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$,

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$,

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.

L2.
L3.

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.
L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.
L2.
L3.
$\mathcal{L}\left(v_{2}, \rightarrow_{[1]}, \rightarrow_{\text {br,[>1] }}\right)$
is loop subchart
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{b r,[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v
followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$,
until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.
L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{r}v \rightarrow[n] \Rightarrow \\ \\ \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, [>n] }}\right) \\ \text { is a loop subchart }\end{array}\right)$.
L2.
L3.

$$
\mathcal{L}\left(v_{1}, \rightarrow_{[2]}, \rightarrow_{\mathrm{br},[>2]}\right)
$$

is loop subchart
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v
followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$,
until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{l}v \rightarrow[n] \Rightarrow \\ \\ \text { is a loop subchart }\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br,[>n] }}\right) \\ \end{array}\right)$.
L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$,
until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:

L2. No infinite \rightarrow br path from start vertex.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{b r,[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\binom{v \rightarrow[n] \Rightarrow}{$ is a loop subchart } .
L2. No infinite $\rightarrow_{b r}$ path from start vertex.
L3. Loop subcharts contained in other loop subcharts have different entry-step levels.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v
followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$,
until v is reached again

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

LEE-witness

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\binom{v \rightarrow[n] \Rightarrow}{$ is a loop subchart } .
L2. No infinite \rightarrow br path from start vertex.
L3. $\mathcal{L}\left(w_{i}, \rightarrow_{\left[n_{i}\right]}, \rightarrow_{\mathrm{br},\left[>n_{i}\right]}\right)$ for $i \in\{1,2\}$ loop charts $\wedge w_{1} \neq w_{2} \wedge w_{1} \in \mathcal{L}\left(w_{2}, \ldots, \ldots\right) \Longrightarrow n_{1} \neq n_{2}$.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$,
until v is reached again

LEE-witness?

LEE-witness ?

LEE-witness?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right)$
not a loop chart

LEE-witness?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow_{[1]}, \rightarrow_{\text {br,[>1] }}\right)$
not a loop chart

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow \mathrm{br},[>1]\right)$
not a loop chart

LEE-witness ?

no!
(L1.) violated:

not a loop chart

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow[1], \rightarrow \mathrm{br},[>1]\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow[1], \rightarrow \mathrm{br},[>1]\right)$
not a loop chart

no!
(L2.) violated:
infinite $\rightarrow_{b r}$ path
from start vertex

v_{2}
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow_{\text {br,[>1] }}\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

v_{2}
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow_{\text {br,[>1] }}\right)$
not a loop chart

no!
(L2.) violated:
infinite $\rightarrow_{b r}$ path
from start vertex

LEE-witness ?

(L1.) violated:
$\left.\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow_{\text {br,[}}{ }^{\text {b }}\right]\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

no!
(L3.) violated:
have same level

LEE-witness ?

(L1.) violated:
$\left.\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow_{\text {br,[}}{ }^{\text {b }}\right]\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

no!
(L3.) violated:
have same level

LEE-witness ?

La C-des MS interpret collapse readback c d pubs

La C-des MS interpret collapse readback c d pubs

O C-des MS interpret collapse readback c d pu Layered LEE-witnesS

until v is reached again

La C-des MS interpret collapse readback c d pubs

La C-des MS interpret collapse readback c d pubs

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a layered LEE-witness, if:
I-L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{l}v \rightarrow_{[n]} \Rightarrow \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br }}\right) \\ \\ \text { is a loop subchart }) .\end{array}\right.$
I-L2. No infinite $\rightarrow_{b r}$ path from start vertex.
I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.
layered
LEE-witness

$$
\begin{aligned}
& \mathcal{L}\left(v_{2}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br}}\right) \\
& \mathcal{L}\left(v_{0}, \rightarrow_{[2]}, \rightarrow_{\mathrm{br}}\right)
\end{aligned}
$$

La C-des MS interpret collapse readback c d pubs

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}{ }_{[n]}$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a layered LEE-witness, if:
I-L1. $\forall n \in \mathbb{N} \forall v \in V\binom{v \rightarrow_{[n]} \Rightarrow \underset{L}{\mathcal{L}\left(v,{ }_{[n]}, \rightarrow_{\text {br }}\right)}}{$ is a loop subchart } .
I-L2. No infinite \rightarrow br path from start vertex.
I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.
layered
LEE-witness

$$
\begin{aligned}
& \mathcal{L}\left(v_{2}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br}}\right) \\
& \mathcal{L}\left(v_{0}, \rightarrow_{[2]}, \rightarrow_{\mathrm{br}}\right)
\end{aligned}
$$

LEE versus LEE-witness

Theorem
For every process graph G :

$$
\operatorname{LEE}(G) \Longleftrightarrow G \text { has a LEE-witness. }
$$

LEE versus LEE-witness

Theorem
For every process graph G :

$$
\operatorname{LEE}(G) \Longleftrightarrow G \text { has a LEE-witness. }
$$

Proof.

\Rightarrow : record loop elimination

LEE versus LEE-witness

Theorem

For every process graph G :

$$
\operatorname{LEE}(G) \Longleftrightarrow G \text { has a LEE-witness. }
$$

Proof.

\Rightarrow : record loop elimination
\Leftarrow : carry out loop-elimination as indicated in the LEE-witness, in inside-out direction, e.g.:

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph G
can be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}^{\prime} of G.

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph G
can be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}^{\prime} of G.

Lemma

For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) G has a LEE-witness.
(iii) G has a layered LEE-witness.

7 LEE-witnesses

7 LEE-witnesses

7 LEE-witnesses

layered

7 LEE-witnesses

layered

7 LEE-witnesses

layered

layered

not layered

7 LEE-witnesses

layered

layered

not layered

7 LEE-witnesses

layered

layered

not layered

layered

7 LEE-witnesses

layered

layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered
layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

layered

LEE under bisimulation?

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.

LEE
$\neg L E E$

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.

LEE
$\neg L E E$

LEE
ᄀLEE

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.
- LEE is not preserved by converse functional bisimulation.

LEE
$\neg L E E$

LEE
ᄀLEE

LEE under functional bisimulation

Lemma
(i) LEE is preserved by functional bisimulations:

$$
\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \rightarrow G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right) .
$$

LEE under functional bisimulation

Lemma
(i) LEE is preserved by functional bisimulations:

$$
\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \rightarrow G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right) .
$$

Proof (Idea).
Use loop elimination in G_{1} to carry out loop elimination in G_{2}.

Collapsing LEE-witnesses

$P\left(a(a(b+b a))^{*} 0\right)$

$P\left(\left(a a(b a)^{*} b\right)^{*} 0\right)$

Collapsing LEE-witnesses

$P\left(a(a(b+b a))^{*} 0\right)$

$P\left(\left(a a(b a)^{*} b\right)^{*} 0\right)$

Collapsing LEE-witnesses

$P\left(a(a(b+b a))^{*} 0\right)$
$P\left(\left(a a(b a)^{*} b\right)^{*} 0\right)$

Collapsing LEE-witnesses

$P\left(a(a(b+b a))^{*} 0\right)$
$P\left(\left(a a(b a)^{*} b\right)^{*} 0\right)$

Collapsing LEE-witnesses

$P\left(a(a(b+b a))^{*} 0\right)$

$P\left(\left(a a(b a)^{*} b\right)^{*} 0\right)$

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICs'20) (no 1-transitions!)

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Reduced bisimilarity redundancies in LLEE-charts (no 1-trans.!)

 (G/Fokkink, LICS'20)
w_{1}, w_{2} in the same scc

Lemma

Every not collapsed LLEE-chart contains bisimilar vertices $w_{1} \neq w_{2}$ of kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy $\left\langle w_{1}, w_{2}\right\rangle$):

Reduced bisimilarity redundancies in LLEE-charts (no 1-trans.!)

 (G/Fokkink, LICS'20)
w_{1}, w_{2} in the same scc

Lemma

Every not collapsed LLEE-chart contains bisimilar vertices $w_{1} \neq w_{2}$ of kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy $\left\langle w_{1}, w_{2}\right\rangle$):

Lemma

Every reduced bisimilarity redundancy in a LLEE-chart can be eliminated LLEE-preservingly.

LEE under functional bisimulation

Lemma
(i) LEE is preserved by functional bisimulations:

$$
\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \rightarrow G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right) .
$$

Idea of Proof for (i)
Use loop elimination in G_{1} to carry out loop elimination in G_{2}.

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$
\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \rightarrow G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right) .
$$

(ii) LEE is preserved from a process graph to its bisimulation collapse:
$\operatorname{LEE}(G) \wedge C$ is bisimulation collapse of $G \Longrightarrow \operatorname{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_{1} to carry out loop elimination in G_{2}.

Readback

Lemma

Process graphs with LEE are $P(\cdot)$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}(A)(G \leftrightarrows P(e)) .
$$

Readback from layered LEE-witness (example)

Readback from layered LEE-witness (example)

layered
LEE-witness

Readback from layered LEE-witness (example)

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
& ={ }_{\text {Mil }^{\prime}}(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a) \\
& =\text { Mil }^{-} b+b \cdot a \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{2}
\end{aligned}
$$

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
\begin{aligned}
& s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right) \\
& s\left(v_{1}\right)=\quad\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0
\end{aligned}
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

$$
s\left(v_{1}\right)=\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0
$$

$$
s\left(v_{2}, v_{1}\right)=0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right)
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
s\left(v_{1}, v_{1}\right) & =1
\end{aligned}
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right)
\end{aligned}
$$

LEE-witness

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

$$
s\left(v_{1}\right)=\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0
$$

$$
s\left(v_{2}, v_{1}\right)=0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right)
$$

$$
\begin{aligned}
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1
\end{aligned}
$$

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

$$
s\left(v_{1}\right)=\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0
$$

$$
s\left(v_{2}, v_{1}\right)=0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right)
$$

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{-} a
\end{aligned}
$$

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

$$
s\left(v_{1}\right)=\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0
$$

$$
\begin{aligned}
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a)
\end{aligned}
$$

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{-} a
\end{aligned}
$$

Readback from layered LEE-witness (example)

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a) \\
& =\text { Mil }^{-} b+b \cdot a \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{-} a
\end{aligned}
$$

Readback from layered LEE-witness (example)

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
& =\text { Mil }^{-}(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a) \\
& =\text { Mil }^{-} b+b \cdot a \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{-} a
\end{aligned}
$$

Readback from layered LEE-witness (example)

Readback from layered LEE-witness (example)

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
& ={ }_{\text {Mil }^{\prime}}(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a) \\
& =\text { Mil }^{-} b+b \cdot a \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{2}
\end{aligned}
$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $P(\cdot)$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}(A)(G \leftrightarrows P(e)) .
$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \nmid \star \star}(A)(G \leftrightarrows P(e)) .
$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \|_{P}^{1+\|^{\star}}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \nmid \star \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1-return-less(-under-*) $\left(e \in \operatorname{Reg}^{1 / 1 \mid \star}(A)\right)$ if:

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \mid \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \mid \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$

1-return-less regular expressions

Lemma
Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \mid \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1 \star \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \star \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*}$
\times
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$

1-return-less regular expressions

Lemma
Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \star \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1 \star \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*}$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}^{1+\|^{*}}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1+\star \star}(A)(G \leftrightarrow P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1-return-less(-under-*) $\left(e \in \operatorname{Reg}^{17 \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}^{1+\|^{*}}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1+\star \star}(A)(G \leftrightarrow P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1-return-less(-under-*) $\left(e \in \operatorname{Reg}^{17 \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*}$
\times
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$ \times
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}^{1+\|^{*}}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1+\star \star}(A)(G \leftrightarrow P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1-return-less(-under-*) $\left(e \in \operatorname{Reg}^{17 \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \quad$ • $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*}$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$
\times
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}^{1+\|^{*}}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1+\star \star}(A)(G \leftrightarrow P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1-return-less(-under-*) $\left(e \in \operatorname{Reg}^{17 \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$
\times
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*}$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$
\times
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \mid \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1 \star \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$
\times
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \quad \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$
\times
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*}$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \mid \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1 \star \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \mid \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1 \star \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$
- $\left(a^{*}(b+c \cdot 0)\right)^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \mid \star}(A)(G \leftrightarrows P(e)) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1 \star \| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $P(f)$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \quad \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$
- $\left(a^{*}(b+c \cdot 0)\right)^{*}$

Characterization of expressibility ${ }^{1+\^{\star}}$

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1 \nmid \star}$-expressible.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Characterization of expressibility ${ }^{1+\left.\right|^{\star}}$

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\downarrow \star}$-expressible.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Milners characterization question:
Q1. Which structural property of finite process graphs characterizes $P(\cdot)$-expressibility?

Characterization of expressibility ${ }^{1+\^{\star}}$

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1 \nmid \star}$-expressible.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Milners characterization question restricted:
Q1'. Which structural property of finite process graphs
characterizes $\llbracket \prod_{P}^{1+\mid \star}$-expressibility?

Characterization of expressibility ${ }^{1+\^{\star}}$

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1 \nmid \star}$-expressible.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Milners characterization question restricted, and adapted:
Q1". Which structural property of collapsed finite process graphs characterizes $\llbracket \|_{P}^{1 \nmid \star \star}$-expressibility?

Characterization of expressibility ${ }^{1+\^{\star}}$

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\nmid \star}$-expressible.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:
Q1". Which structural property of collapsed finite process graphs characterizes $\llbracket \cdot \|_{P}^{\mathbb{H} \nmid \star}$-expressibility?

- The loop-existence and elimination property LEE.

Characterization of expressibility ${ }^{1+\^{\star}}$

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\nmid \star}$-expressible.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:
Q1". Which structural property of collapsed finite process graphs characterizes $\llbracket \cdot \|_{P}^{\neq \mid \star}$-expressibility?

- The loop-existence and elimination property LEE.

Also yields: efficient decision method of $\llbracket \cdot \prod_{P}^{1 \nmid \star}$-expressibility?

Structure constrained finite process graphs

graphs with LEE / a (layered) LEE-witness

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

graphs with LEE / a (layered) LEE-witness

\varsubsetneqq graphs whose collapse satisfies LEE
$=$ graphs that are $\llbracket \cdot \|_{P}^{1 \star \mid \star}$-expressible

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
& \text { by } 1 \text {-return-less expression } P(\cdot) \text {-expressible graphs } \\
& \subsetneq \text { graphs with LEE / a (layered) LEE-witness } \\
& \ddagger \text { graphs whose collapse satisfies LEE } \\
&= \text { graphs that are } \llbracket \cdot \|_{P}^{1+\mid \star} \text {-expressible }
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
& \text { by } 1 \text {-return-less expression } P(\cdot) \text {-expressible graphs } \\
\subsetneq & \text { graphs with LEE / a (layered) LEE-witness } \\
\varsubsetneqq & \text { graphs whose collapse satisfies LEE } \\
= & \text { graphs that are } \llbracket \cdot \|_{P}^{1 \times \mid \star} \text {-expressible } \\
\subsetneq & \text { graphs that are } P(\cdot) \text {-expressible }
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
& \text { by } 1 \text {-return-less expression } P(\cdot) \text {-expressible graphs } \\
\varsubsetneqq & \text { graphs with LEE } / \text { a (layered) LEE-witness } \\
\subsetneq & \text { graphs whose collapse satisfies LEE } \\
= & \text { graphs that are } \llbracket \cdot \rrbracket_{P}^{11 \mid \star} \text {-expressible } \\
\varsubsetneqq & \text { graphs that are } P(\cdot) \text {-expressible } \\
\varsubsetneqq & \text { finite process graphs }
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

loop-exit palm trees \varsubsetneqq by 1-return-less expression $P(\cdot)$-expressible graphs \varsubsetneqq graphs with LEE / a (layered) LEE-witness
\varsubsetneqq graphs whose collapse satisfies LEE
$=$ graphs that are $\llbracket \cdot \|_{P}^{1 \times \mid \star}$-expressible
\varsubsetneqq graphs that are $P(\cdot)$-expressible
\varsubsetneqq finite process graphs

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

loop-exit palm trees \varsubsetneqq by 1 -return-less expression $P(\cdot)$-expressible graphs § graphs with LEE / a (layered) LEE-witness
\subsetneq graphs whose collapse satisfies LEE
$=$ graphs that are $\llbracket \cdot \|_{P}^{1+\| \star}$-expressible
\ddagger graphs that are $P(\cdot)$-expressible
\ddagger finite process graphs

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Application to Milner's questions yields partial results:
Q1: characterization/efficient decision of $\llbracket \cdot \|_{P}^{1+\| \star}$-expressibility
Q2: alternative compl. proof of Mil on 1-return-less expressions (C/DN/L)

Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions

Clemens Grabmayer (Department of Computer Science, Gran Sasso Science Institute, Viale F. Crispi, 7, 67100 L'Aquila AQ, Italy)

Abstract

We report on a lengthy completeness proof for Robin Milner's proof system Mil (1984) for bisimilarity of regular expressions in the process semantics. Central for our proof are the reoognitions:

1. Process graphs with 1 -transitions (1-charts) and the loop existence/elimination property LLEE are not closed under bisimilation collapse,
2. Such process graphs can be crystallized' to 'near-collapsed' 1 -charts with some strongly connected components of 'twin-crystal' form.

The Process Semantics of Regular Expressions

Milner (1984) introduced a process semantics for regular expressions: the interpretation of 0 is dead lock, of 1 is an empty step to termination, letters a are atomic actions, the operators + and \cdot stand for choice and concatenation of processes, and unary Kleene star $(-)^{*}$ represents (unbounded) iteration. Formally, Milner defined chart (finite process graph) interpretations $\mathcal{C}(e)$ of regular expressions e.

Milner's Proof System
As axiomatization of the relation $e_{1}=\boldsymbol{p} e_{2}$ on regular expressions e_{1} and e_{2} defined by $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$ (as bisimilarity \leftrightarrows of chart interpretations), Milner asked whether the following system Mil is complete: (A1) $e+(f+g)=(e+f)+g \quad$ (A7) $e=1 \cdot e$ (A2) $\quad e+0=e \quad$ (A8) $e=e \cdot 1$ (A3) $e+f=f+e \quad$ (A9) $0=0 \cdot e$ (A4) $\quad e+e=e \quad$ (A10) $e^{*}=1+e \cdot e^{*}$ (A5) $e \cdot(f \cdot g)=(e \cdot f) \cdot g \quad($ A11 $) e^{*}=(1+e)^{*}$ (A6) $(e+f) \cdot g=e \cdot g+f \cdot g$
$\frac{e=f \cdot e+g}{e=f^{\cdot} \cdot g}$ RSP * (if f does not terminate immediately)
This system is a variation of Salomaa's complete axiom system (1966) for language equality of regular expressions, missing left-distributivity $e \cdot(f+g)=$ $e \cdot f+e \cdot g$ and $e \cdot 0=0$, which are unsound here.

Loop Existence and Elimination

The process semantics is incomplete: not every finite process graph is expressible by (=bisimilar to the interpretation of) a regular expression. A sufficient condition for expressibility is the (layered) loop existence and elimination property LLEE. It is defined via elimination of 'loops' (loop subcharts):

LLEE holds if a graph without infinite behavior can be obtained. Important features of LLEE:
(US) Every guarded LLEE-1-chart (chart, maybe 1-transitions, with LLEE) is uniquely Mil-provably solvable modulo provability in Mil (CALCO 2021). (IV) The chart interpretation $\mathcal{C}(e)$ of a regular expression e can always be expanded under bisimilarity to a LLEE-1-chart $\mathcal{C}(e)$ (TERMGRAPH 2020). $\left(\mathrm{C}_{2}\right)$ LLEE-charts (without 1-transitions) are preserved by bisimulation collapse (G/Fokkink, LICS'20).

LLEE-preserving Collapse Fails

LLEE-1-charts with 1 -transitions, however, are not preserved under bisimulation collapse. A counterexample is provided by the following LLEE-1-chart $\underline{\mathcal{C}}$

Identifying the bisimilar vertices w_{1} and w_{2} vields a chart for which LLEE fails. Also, the subcharts of $\underline{\mathcal{C}}$ that are rooted at w_{1} and w_{2} are not LLEE-preservingly jointly minimizable under bisimilarity.

Twin-Crystals

The comnterexample to LLEE-preserving collapse is symmetric, and its structure can be abstracted as:

It is a LLEE-1-chart with a single soc (strongly connected component) P that consists of a pivot part P_{1} below pivot vertex piv, and a top part P_{2} below top vertex top. P_{1} and P_{2} are connected only via transitions from piv and from top. While both P_{1} and P_{2} are collapsed, P contains bisimilarity redundancies ($=$ distinct bisimilar vertices) such as $\left\{w_{1}, w_{2}\right\}$ that are linked by a self-inverse counterpart function $c p_{p}$. We call such an scc a twin-ctystal. We have:
(CC) Every Mil-provable solution of a twin-crystal gives rise to a Mil-provable solution of its bisimulation collapse (which often is not a LLEE-1-chart).

Crystallization of LLEE-1-charts By crystallization of a LLEE-1-chart \mathcal{C} we mean: > a process of minimization of $\underline{\mathcal{C}}$ under bisimilarity by steps that eliminate most (all but crystalline) bisimilarity redundancies $\left\{w_{1}, w_{2}\right\}$, roughly by redirecting transitions that target w_{1} over to w_{2}; hereby only 'reduced' bisimilarity redundancies can be eliminated LLEE-preservingly, which exist whenever a LLEE-1-chart is not collapsed; the result is a crystallized LLEE-1-chart that is bisimilar to $\underline{\mathcal{C}}$, and collapsed apart from within some its soc's that are twin-crystals.

The crystallization process facilitates to show: (CR) From every LLEE-1-chart a bisimilar crystallized LLEE-1-chart can be obtained.

Completeness Proof

Let $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$ be bisimilar chart interpretations of regular expressions e_{1} and e_{2}. To secure LLEE, $\mathcal{C}\left(e_{1}\right)$ and $\mathcal{C}\left(e_{2}\right)$ are expanded to their 1-chart interpretations $\underline{\mathcal{C}}\left(e_{1}\right)$ and $\underline{\mathcal{C}}\left(e_{2}\right)$. One of them, say $\underline{\mathcal{C}}\left(e_{1}\right)$, is erystallized to $\mathcal{C}_{\text {g. }}$. All (1-)charts are linked by (1-)bisimulations to their bisimulation collapse \mathcal{C}_{0}.

From \underline{C}_{10} a provable solution \mathcal{C}_{10} can be extracted due to LLEE, transferred (T) to the collapse $\mathcal{\mathcal { C }}$). and then to $\underline{\mathcal{C}}\left(e_{1}\right)$ and $\underline{\mathcal{C}}\left(e_{2}\right)$. On the LLEE-1-charts $\mathcal{C}\left(e_{1}\right)$ and $\underline{\mathcal{C}}\left(e_{2}\right), c_{10}$ can be proved equal to the solutions e_{1} and e_{2} there, respectively. By transitivity, $e_{1}=$ Mil e_{2} (provability of $e_{1}=e_{2}$ in Mil) follows.
Theorem. Milner's system Mil is complete: $e_{1}=p e_{2}$ implies $e_{1}=$ Mil e_{2}, for reg. expr's e_{1}, e_{2}.

Next Steps and Projects
$>$ Monograph project: proof in fine-grained details. \triangleright Build an animation tool for crystallization.
D Apply crystallization to find an efficient algorithm for expressibility of finite process graphs by a regular expression modulo bisimilarity.

Contact
clemens.grabmayer@gssi.it
G S
GRAN SASSO
S I SCHool of ADVaNced stuole

- CG: Modeling Terms by Graphs with Structure Constraints
- TERMGRAPH 2018 Post-Proceedings, EPTCS 288, arXiv:1902.02010.
- CG: Structure-Constrained Process Graphs for the Process Semantics of Regular Expressions
- TERMGRAPH 2020 Post-Proceedings, EPTCS 334, arXiv:2012.10869.
- CG, Wan Fokkink: A Complete Proof System for

1-Free Regular Expressions Modulo Bisimilarity

- LICS 2020, arXiv:2004.12740, video on youtube.
- CG: Milner's Proof System for

Regular Expressions Modulo Bisimilarity is Complete

- LICS 2022, arXiv:2209.12188, poster.
- CG: A Coinductive Version/Reformulation of Milner's Proof System for Regular Expressions Modulo Bisimilarity
- CALCO 2021, arXiv:2108.13104.
- LMCS 2023, arXiv:2303.14219.

Outlook

correspondences found

- process graphs with LEE
$\sim P(\cdot)$-interpretations of 1-return-less regular expressions
- process graphs with 1-transitions and with LEE
$\sim P(\cdot)$-interpretations of regular expressions
- facilitate/may facilitate:
efficient manipulation/recognition of $P(\cdot) / \llbracket \cdot \|_{P}$-expressible graphs
slides and resources: clegra.github.io

Outlook

correspondences found

- process graphs with LEE
~ $P(\cdot)$-interpretations of 1-return-less regular expressions
- process graphs with 1-transitions and with LEE
$\sim P(\cdot)$-interpretations of regular expressions
- facilitate/may facilitate:
efficient manipulation/recognition of $P(\cdot) / \mathbb{\llbracket} \cdot \|_{P}$-expressible graphs

current projects

- PTIME-decidability of LEE (LLEE) and $\llbracket \cdot \|_{P}^{1 \|^{\star}}$-expressibility
- refinability into LEE-graphs by adding 1-transitions (in PTIME?)
- $\llbracket \cdot \rrbracket_{P}$-expressibility: \Longleftrightarrow expansion and refinability into a crystallized LLEE-1-process-graph (in FPT?)
- full completeness proof of Mil via crystallization (two parts: motivation / procedure)
slides and resources: clegra.github.io

Comparison results: structure-constrained graphs

λ-calculus with letrec under $=\boldsymbol{\lambda}^{\infty}$
Not available: graph interpretation that is studied modulo \leftrightarrows

Regular expressions under \leftrightarrows_{P}
Given: graph interpretation $P(\cdot)$, studied modulo bisimulation \leftrightarrows

- not closed under $\xrightarrow{\longrightarrow}$, and \leftrightarrows, incomplete under \leftrightarrows

Comparison results: structure-constrained graphs

λ-calculus with letrec under $=\lambda^{\infty}$
Not available: graph interpretation that is studied modulo \leftrightarrows
Defined: int's $\llbracket \cdot \rrbracket_{\mathcal{H}} / \llbracket \cdot \rrbracket_{\mathcal{T}}$ as higher-order/first-order λ-term graphs

- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with λ-calculus with letrec
- efficient translation and readback
- translation is inverse of readback

Regular expressions under $\overleftrightarrow{\leftrightarrows}_{P}$
Given: graph interpretation $P(\cdot)$, studied modulo bisimulation \leftrightarrows

- not closed under \leftrightarrows, and \leftrightarrows, incomplete under \leftrightarrows

Comparison results: structure-constrained graphs

λ-calculus with letrec under $=\lambda^{\infty}$
Not available: graph interpretation that is studied modulo \leftrightarrows
Defined: int's $\llbracket \cdot \rrbracket_{\mathcal{H}} / \llbracket \cdot \rrbracket_{\mathcal{T}}$ as higher-order/first-order λ-term graphs

- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with λ-calculus with letrec
- efficient translation and readback
- translation is inverse of readback

Regular expressions under $\overleftrightarrow{\leftrightarrows}_{P}$
Given: graph interpretation $P(\cdot)$, studied modulo bisimulation \leftrightarrows

- not closed under $\xrightarrow{\longrightarrow}$, and \leftrightarrows, incomplete under \leftrightarrows

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's
- contains the collapse of a process graph G
$\Longleftrightarrow G$ is $\llbracket \cdot \|_{P}^{\mathbb{1 + \star} \text {-expressible }}$

