Zip-Specifications and Automatic Sequences

Clemens Grabmayer^, Jörg Endrullis ${ }^{\dagger}$, Dimitri Hendriks ${ }^{\dagger}$, Jan Willem Klop ${ }^{\dagger}$ and Lawrence S. Moss ${ }^{\ddagger}$

\author{

* Universiteit Utrecht
 \dagger Vrije Universiteit Amsterdam,
 \ddagger Indiana University
}

CoiN - Coalgebra in the Netherlands Radboud Universiteit Nijmegen, June 4, 2012

Overview

- zip-specifications
- observation graphs
- connection with automatic sequences
- mix-automaticity and zip-mix specifications
- dynamic logic representation of automatic sequences

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L}=0: X \\
\mathrm{X}=1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, y: \tau)=x: y: \operatorname{zip}(\sigma, \tau)
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, y: \tau) \rightarrow x: y: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, y: \tau) \rightarrow x: y: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
L \rightarrow 0: X
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{L} \rightarrow^{*} 0: 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y})
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{L} \rightarrow^{*} 0: 1: \operatorname{zip}(1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}), \mathrm{Y})
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{L} \rightarrow^{*} 0: 1: \operatorname{zip}(1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}), 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}))
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{L} \rightarrow^{*} 0: 1: 1: 0: \operatorname{zip}(z i p(\mathrm{X}, \mathrm{Y}), \operatorname{zip}(\mathrm{Y}, \mathrm{X}))
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\frac{\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)}{\mathrm{L} \rightarrow^{\omega} 0: 1: 1: 0: 1: 0: 0: 1: 1: 0: 0: 1: 0: 1: 1: 0: \ldots}
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau) \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
L \rightarrow^{*} 0: 1: z i p(X, Y)
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau) \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
L \rightarrow^{*} 0: 1: z i p(1: z i p(X, Y), Y)
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau) \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
L \rightarrow^{*} 0: 1: 1: z i p(Y, z i p(X, Y))
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau) \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
\mathrm{L} \rightarrow^{*} 0: 1: 1: \operatorname{zip}(0: \operatorname{zip}(Y, X), \operatorname{zip}(X, Y))
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau) \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
\left.L \rightarrow^{*} 0: 1: 1: 0: \text { zip(zip }(X, Y), \text { zip }(Y, X)\right)
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{L} \rightarrow^{\omega} 0: 1: 1: 0: 1: 0: 0: 1: 1: 0: 0: 1: 0: 1: 1: 0: \ldots \\
\operatorname{zip}(x: \sigma, \tau) \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
a_{0}: a_{1}: a_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: \mathrm{X} \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau) \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
L \rightarrow^{\omega} 0: 1: 1: 0: 1: 0: 0: 1: 1: 0: 0: 1: 0: 1: 1: 0: \ldots
$$

Productive stream specification: lazy/fair evaluation of its root L results in an infinite constructor normal form (representing a stream).

Streams and zip-specifications

Zip-specifications consist of recursion equations:

$$
\mathrm{M}_{i}=\mathrm{C}_{i}\left[\mathrm{M}_{0}, \ldots, \mathrm{M}_{n-1}\right] \quad(i=0, \ldots, n-1)
$$

where contexts C_{i} are built from:

- data constants c_{1}, c_{2}, \ldots
- stream constructor symbol ؛'
- the binary stream function symbol zip

$$
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
$$

Two zip-specifications are equivalent if they define the same stream.

Motivating Question

Is equivalence of zip-specifications decidable?

Related results / existing tools

Equivalence of stream specifications

- Π_{2}^{0}-complete (Roșu, 2006)
- proof tools: Circ (Roșu), Stream-Box (E, Zantema)
- Recent: Π_{1}^{0}-complete for productive specs (E/H/Bakhshi, 2012)

Productivity of stream specifications

- productivity implies unique solvability (Sijtsma, 1989)
- Π_{2}^{0}-complete (Simonsen, E/G/H, 2006), undecidable formats (Sattler/Balestrieri, 2012).
- much previous and current work on productivity ([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry, Buchholz, E/G/H/K/Isihara, Zantema, Balestrieri)
- Productivity prover ProPro (2008) of E/G/H for stream productivity: http: //infinity.few. vu. nl/productivity/tool.html

Unique Solvability versus Productivity

Proposition

For a zip-specification \mathcal{S} the following are equivalent:

- \mathcal{S} is uniquely solvable,
- \mathcal{S} is productive,
- \mathcal{S} has a guard on every left-most cycle.

Example

$$
\begin{aligned}
& X=\operatorname{zip}(1: X, Y) \\
& Y=\operatorname{zip}(Z, X) \\
& Z=\operatorname{zip}(Y, 0: Z)
\end{aligned}
$$

Unique Solvability versus Productivity

Proposition

For a zip-specification \mathcal{S} the following are equivalent:

- \mathcal{S} is uniquely solvable,
- \mathcal{S} is productive,
- \mathcal{S} has a guard on every left-most cycle.

Example

$$
\begin{aligned}
& X=\operatorname{zip}(1: X, Y) \\
& Y=\operatorname{zip}(Z, X) \\
& Z=\operatorname{zip}(Y, 0: Z)
\end{aligned}
$$

Unique Solvability versus Productivity

Proposition

For a zip-specification \mathcal{S} the following are equivalent:

- \mathcal{S} is uniquely solvable,
- \mathcal{S} is productive,
- S has a guard on every left-most cycle.

Example

$$
\begin{aligned}
& X=\operatorname{zip}(1: X, Y) \\
& Y=\operatorname{zip}(Z, X) \\
& Z=\operatorname{zip}(Y, 0: Z)
\end{aligned}
$$

No guard on left cycle

$$
Y \rightarrow Z \rightarrow Y
$$

Not productive!

Unique Solvability versus Productivity

Proposition

For a zip-specification \mathcal{S} the following are equivalent:

- \mathcal{S} is uniquely solvable,
- \mathcal{S} is productive,
- S has a guard on every left-most cycle.

Example

$$
\begin{aligned}
& X=\operatorname{zip}(1: X, Y) \\
& Y=\operatorname{zip}(Z, X) \\
& Z=\operatorname{zip}(Y, 0: Z)
\end{aligned}
$$

No guard on left cycle

$$
\mathrm{Y} \rightarrow \mathrm{Z} \rightarrow \mathrm{Y}
$$

Not productive!
Two roads to productivity:
(1) $Z=\operatorname{zip}(0: t l(Y), 0: Z)$
(2) $Z=\operatorname{zip}(1: \mathrm{tl}(\mathrm{Y}), 0: Z)$
(tail can be rolled away)

Unique Solvability versus Productivity

Proposition

For a zip-specification \mathcal{S} the following are equivalent:

- \mathcal{S} is uniquely solvable,
- \mathcal{S} is productive,
- \mathcal{S} has a guard on every left-most cycle.

Example

$$
\begin{aligned}
& X=\operatorname{zip}(1: X, Y) \\
& Y=\operatorname{zip}(Z, X) \\
& Z=\operatorname{zip}(Y, 0: Z)
\end{aligned}
$$

No guard on left cycle

$$
Y \rightarrow Z \rightarrow Y
$$

Not productive!
Two roads to productivity:
(1) $Z=\operatorname{zip}(0: t l(Y), 0: Z)$
(2) $Z=\operatorname{zip}(1: \mathrm{tl}(\mathrm{Y}), 0: Z)$
(tail can be rolled away)
Thus 2 solutions!

Observation graphs

$$
\begin{aligned}
L & =0: X \\
X & =1: \operatorname{zip}(X, Y) \\
Y & =0: \operatorname{zip}(Y, X)
\end{aligned}
$$

Observation graphs

$$
\begin{aligned}
& \mathrm{L}=0: X \\
& \mathrm{X}=1: \operatorname{zip}(X, Y) \\
& Y=0: \operatorname{zip}(Y, X)
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

We can observe every element using hd(\{even, odd $\left.\}^{*}(\sigma)\right)$. E.g.

$$
n=6=(110)_{2} \quad \sigma(6)=\operatorname{hd}(\operatorname{odd}(\operatorname{odd}(\operatorname{even}(\sigma))))
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

We can observe every element using $\operatorname{hd}\left(\{\operatorname{even}, \text { odd }\}^{*}(\sigma)\right)$. E.g.

$$
n=6=(110)_{2} \quad \sigma(6)=\operatorname{hd}(\operatorname{odd}(\operatorname{odd}(\operatorname{even}(\sigma))))
$$

The functions even and odd are a form of destructors of zip:

$$
\operatorname{even}(\operatorname{zip}(s, t))=s \quad \operatorname{odd}(\operatorname{zip}(s, t))=t
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(X, Y) \\
Y & =0: \operatorname{zip}(Y, X)
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(X, Y) \\
Y & =0: \operatorname{zip}(Y, X)
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

$$
\begin{aligned}
& \operatorname{even}(L) \\
& =\operatorname{even}(0: X) \\
& =0: \operatorname{odd}(X) \\
& =0: \operatorname{odd}(1: \operatorname{zip}(X, Y)) \\
& =0: \operatorname{even}(\operatorname{zip}(X, Y)) \\
& =0: X \\
& =L
\end{aligned}
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

$$
\begin{aligned}
& \operatorname{odd}(\mathrm{L}) \\
& =\operatorname{odd}(0: X) \\
& =\operatorname{even}(X) \\
& =\operatorname{even}(1: \operatorname{zip}(X, Y)) \\
& =1: \operatorname{odd}(\operatorname{zip}(X, Y)) \\
& =1: Y
\end{aligned}
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

$$
\begin{aligned}
& \operatorname{even}(1: Y) \\
& =1: \operatorname{odd}(Y) \\
& =1: \operatorname{odd}(0: \operatorname{zip}(Y, X)) \\
& =1: \operatorname{even}(\operatorname{zip}(Y, X)) \\
& =1: Y
\end{aligned}
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

$$
\begin{aligned}
& \operatorname{odd}(1: Y) \\
& =\operatorname{even}(Y) \\
& =\operatorname{even}(0: \operatorname{zip}(Y, X)) \\
& =0: \operatorname{odd}(\operatorname{zip}(Y, X)) \\
& =0: X \\
& =L
\end{aligned}
$$

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

Theorem
For every productive zip-specification the observation graph is finite.

Observation graphs

$$
\begin{aligned}
\mathrm{L} & =0: X \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

We create observation graphs with the stream cobasis $\{$ hd, even, odd $\}$:

$$
\operatorname{hd}(x: t)=x \quad \operatorname{even}(x: t)=x: \operatorname{odd}(t) \quad \operatorname{odd}(x: t)=\operatorname{even}(t)
$$

Theorem

For every productive zip-specification the observation graph is finite. (Remark: zip-free cycles $X=1: 0: 1: X$ need special treatment)

Comparing zip-specifications

$$
\begin{aligned}
& \mathrm{L}=0: \mathrm{X} \\
& \mathrm{X}=1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
& \mathrm{Y}=0: \mathrm{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{L} & =0: z i p(1: \mathrm{Z}, 1: \mathrm{X}) \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{Y} & =0: z \operatorname{zip}(\mathrm{Y}, 1: \mathrm{X}) \\
\mathrm{Z} & =\operatorname{zip}(\mathrm{L}, \mathrm{Y})
\end{aligned}
$$

Zip-specifications are equal iff their observation graphs are bisimilar

Comparing zip-specifications

$$
\begin{aligned}
& \mathrm{L}=0: X \\
& \mathrm{X}=1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
& \mathrm{Y}=0: \mathrm{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{L} & =0: z \operatorname{zip}(1: \mathrm{Z}, 1: \mathrm{X}) \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, 1: \mathrm{X}) \\
\mathrm{Z} & =\operatorname{zip}(\mathrm{L}, \mathrm{Y})
\end{aligned}
$$

Zip-specifications are equal iff their observation graphs are bisimilar

Comparing zip-specifications

$$
\begin{aligned}
& \mathrm{L}=0: X \\
& \mathrm{X}=1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
& \mathrm{Y}=0: \mathrm{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{L} & =0: z \operatorname{zip}(1: \mathrm{Z}, 1: \mathrm{X}) \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, 1: \mathrm{X}) \\
\mathrm{Z} & =\operatorname{zip}(\mathrm{L}, \mathrm{Y})
\end{aligned}
$$

Zip-specifications are equal iff their observation graphs are bisimilar

Comparing zip-specifications

$$
\begin{aligned}
& \mathrm{L}=0: X \\
& \mathrm{X}=1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
& \mathrm{Y}=0: \mathrm{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{L} & =0: z \operatorname{zip}(1: \mathrm{Z}, 1: \mathrm{X}) \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, 1: \mathrm{X}) \\
\mathrm{Z} & =\operatorname{zip}(\mathrm{L}, \mathrm{Y})
\end{aligned}
$$

Zip-specifications are equal iff their observation graphs are bisimilar

Generalisations: zip-k-Specifications

Everything generalises to zip- k-specifications, where:

$$
\operatorname{zip}_{k}\left(x_{1}: \sigma_{1}, x_{2}: \sigma_{2}, \ldots, x_{k}: \sigma_{k}\right)=x_{1}: x_{2}: \ldots x_{k}: \operatorname{zip}_{k}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right)
$$

Then we use the cobasis $\left\{\mathrm{hd}, \pi_{k, 0}, \ldots, \pi_{k, k-1}\right\}$:

$$
\pi_{i, k}\left(x_{0}: x_{1}: x_{2}: \ldots\right)=x_{i}: x_{i+k}: x_{i+2 k}: \ldots
$$

$$
\begin{aligned}
& P=0: Q \\
& Q=\operatorname{zip}_{3}(1: Z, Z, Q) \\
& Z=0: Z
\end{aligned}
$$

Here P is a stream $0: 1: 0: 1: 0: 0: 0: 0: 0: 1: \ldots$

$$
P(i)=1 \Longleftrightarrow i=3^{n} \text { for some } n \in \mathbb{N}
$$

Stream Cobases

A stream cobasis $\mathcal{B}=\left\langle\mathrm{hd},\left\langle\gamma_{1}, \ldots, \gamma_{k}\right\rangle\right\rangle$ consists of operations $\gamma_{i}: \Delta^{\omega} \rightarrow \Delta^{\omega}$ such that, if for all $n \in \mathbb{N}$ and $1 \leq i_{1}, \ldots, i_{n} \leq k$:

$$
\operatorname{hd}\left(\gamma_{i_{1}}\left(\ldots\left(\gamma_{i_{n}}(\sigma)\right) \ldots\right)\right)=\operatorname{hd}\left(\gamma_{i_{1}}\left(\ldots\left(\gamma_{i_{n}}(\tau)\right) \ldots\right)\right)
$$

holds, then $\sigma=\tau$ follows.
For every $k \geq 2$ we define two stream cobases:

- 'non-orthogonal' basis: $\mathcal{N}_{k}=\left\langle h d, \pi_{0, k}, \ldots, \pi_{k-1, k}\right\rangle$
- 'orthogonal' basis: $\mathcal{O}_{k}=\left\langle\mathrm{hd}, \pi_{1, k}, \ldots, \pi_{k, k}\right\rangle$

Example

$$
\begin{aligned}
\mathcal{N}_{2} & =\left\langle\text { hd }, \pi_{0,2}, \pi_{1,2}\right\rangle & \mathcal{O}_{2} & =\left\langle\text { hd }, \pi_{1,2}, \pi_{2,2}\right\rangle \\
& =\langle\text { hd, even }, \text { odd }\rangle & & =\langle\text { hd, odd, tl(even })\rangle \\
\mathcal{N}_{3} & =\left\langle\text { hd, } \pi_{0,3}, \pi_{1,3}, \pi_{2,3}\right\rangle & \mathcal{O}_{3} & =\left\langle\text { hd, } \pi_{1,3}, \pi_{2,3}, \pi_{3,3}\right\rangle
\end{aligned}
$$

Observation graphs

$\mathcal{B}=\left\langle\mathrm{hd},\left\langle\gamma_{1}, \ldots, \gamma_{k}\right\rangle\right\rangle$ a stream cobasis, F the functor $F(X)=\Delta \times X^{k}$. A \mathcal{B}-observation graph is an F-coalgebra $\mathcal{G}=\langle S,\langle o, n\rangle\rangle$ with root $r \in S$, such that there exists an F-homomorphism $\llbracket \rrbracket \rrbracket: S \rightarrow \Delta^{\omega}$:

- \mathcal{G} defines the stream $\llbracket r \rrbracket \in \Delta^{\omega}$ (is unique!).
- The canonical \mathcal{B}-observation graph of $\sigma \in \Delta^{\omega}$ is the sub-coalgebra of the F-coalgebra $\left\langle\Delta^{\omega}, \mathcal{B}\right\rangle$ generated by σ.
- The set $\partial_{\mathcal{B}}(\sigma)$ of \mathcal{B}-derivatives of σ is the set of elements of the canonical observation graph of σ.

Finality

Proposition

The stream coalgebra $\left\langle\Delta^{\omega}, \mathcal{O}_{k}\right\rangle$ is final for the functor $F(X)=\Delta \times X^{k}$. (Hence every F-coalgebra is an \mathcal{O}_{k}-observation graph.)

- mentioned by Kupke, Rutten, Niqui (2011)
- Kupke, Rutten (2011, 2012): finality of $\left\langle\Delta^{\omega}, \mathcal{N}_{k}\right\rangle$ with respect to the class of 'even-consistent' observation graphs.

Finite Observation Graphs

Question

Which streams have finite $\{$ hd, even, odd $\}$ observation graphs?
We consider:

$$
\begin{aligned}
& \mathrm{L}=0: X \\
& \mathrm{X}=1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
& \mathrm{Y}=0: \mathrm{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

In the observation graph, we replace even $\mapsto 0$, odd $\mapsto 1$:

DFAO for L reading the binary index from the least significant bit!
We obtain exactly the 2-automatic sequences.

Connection with DFAO's

Proposition

- Every \mathcal{N}_{k}-observation graph \mathcal{G} can be viewed as k-DFAO $A(\mathcal{G})$ is invariant under zeros and generates the stream defined by \mathcal{G}.

Connection with DFAO's

Proposition

- Every \mathcal{N}_{k}-observation graph \mathcal{G} can be viewed as k-DFAO $A(\mathcal{G})$ is invariant under zeros and generates the stream defined by \mathcal{G}.

Connection with DFAO's

Proposition

- Every k-DFAO A that is invariant under leading zeros can be viewed as \mathcal{N}_{k}-observation graph $\mathcal{G}(A)$ that defines the stream that is generated by A.

Connection with DFAO's

Proposition

- Every k-DFAO A that is invariant under leading zeros can be viewed as \mathcal{N}_{k}-observation graph $\mathcal{G}(A)$ that defines the stream that is generated by A.

Connection with DFAO's

Proposition

- Every \mathcal{N}_{k}-observation graph \mathcal{G} can be viewed as k-DFAO $A(\mathcal{G})$ is invariant under zeros and generates the stream defined by \mathcal{G}.
- Every k-DFAO A that is invariant under leading zeros can be viewed as \mathcal{N}_{k}-observation graph $\mathcal{G}(A)$ that defines the stream that is generated by A.

Finite observation graphs and zip-specifications

Lemma

(1) The canonical \mathcal{N}_{k}-observation graph of a stream $\sigma \in \Delta^{\omega}$ is finite if and only if definable by a zip-k spec with equations of form:

$$
X_{i}=a_{i}: X_{i}^{\prime} \quad X_{i}^{\prime}=\operatorname{zip}_{k}\left(X_{f(i, 1)}, \ldots, X_{f(i, k-1)}, X_{f(i, 0)}^{\prime}\right)
$$

$$
\begin{array}{ll}
\mathrm{L}=0: \mathrm{L}^{\prime} & \mathrm{L}^{\prime}=\operatorname{zip}\left(Z, L^{\prime}\right) \\
Z=0: Z^{\prime} & Z^{\prime}=\operatorname{zip}\left(L, Z^{\prime}\right)
\end{array}
$$

Finite observation graphs and zip-specifications

Lemma

(2) The canonical \mathcal{O}_{k}-observation graph of a stream $\sigma \in \Delta^{\omega}$ is finite if and only if definable by a zip-k spec with equations of form:

$$
\mathrm{X}_{i}=a_{i}: \operatorname{zip}_{k}\left(\mathrm{X}_{i, 1}, \mathrm{X}_{i, 2}, \ldots, \mathrm{X}_{i, k}\right)
$$

$$
\begin{aligned}
\mathrm{L} & =0: \operatorname{zip}\left(\mathrm{X}_{\mathrm{e}}, \mathrm{X}\right) \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{X}_{\mathrm{e}} & =1: \mathrm{zip}\left(\mathrm{Y}_{\mathrm{e}}, \mathrm{Y}\right) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{Y}_{\mathrm{e}} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

Finite observation graphs and zip-specifications

Lemma

(1) The canonical \mathcal{N}_{k}-observation graph of a stream $\sigma \in \Delta^{\omega}$ is finite if and only if definable by a zip-k spec with equations of form:

$$
X_{i}=a_{i}: X_{i}^{\prime} \quad X_{i}^{\prime}=\operatorname{zip}_{k}\left(\mathrm{X}_{f(i, 1)}, \ldots, \mathrm{X}_{f(i, k-1)}, X_{f(i, 0)}^{\prime}\right)
$$

(2) The canonical \mathcal{O}_{k}-observation graph of a stream $\sigma \in \Delta^{\omega}$ is finite if and only if definable by a zip-k spec with equations of form:

$$
\mathrm{X}_{i}=a_{i}: \operatorname{zip}_{k}\left(\mathrm{X}_{i, 1}, \mathrm{X}_{i, 2}, \ldots, \mathrm{X}_{i, k}\right)
$$

$$
\begin{array}{ll}
\mathrm{L}=0: \mathrm{L}^{\prime} & \mathrm{L}^{\prime}=\operatorname{zip}\left(Z, L^{\prime}\right) \\
Z=0: Z^{\prime} & Z^{\prime}=\operatorname{zip}\left(L, Z^{\prime}\right)
\end{array}
$$

$$
\begin{aligned}
\mathrm{L} & =0: \operatorname{zip}\left(\mathrm{X}_{\mathrm{e}}, \mathrm{X}\right) \\
\mathrm{X} & =1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{X}_{\mathrm{e}} & =1: \operatorname{zip}\left(\mathrm{Y}_{\mathrm{e}}, \mathrm{Y}\right) \\
\mathrm{Y} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{Y}_{\mathrm{e}} & =0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})
\end{aligned}
$$

Zip-Specifications and automatic sequences

Theorem

For streams $\sigma \in \Delta^{\omega}$ the following properties are equivalent:
(1) The stream σ is k-automatic.
(2) The stream σ can be defined by a zip- k specification.
(0) The canonical \mathcal{N}_{k}-observation graph of σ is finite.
(- The canonical \mathcal{O}_{k}-observation graph of σ is finite.
$(1) \Leftrightarrow(3)$: independently discovered by Kupke, Rutten (2012).

Mix-Automaticity

Mix-DFAO A:

Input in a mix-ary numeration system: A defines admissible input words. Bringing numbers into mix-ary format w.r.t. A :

Mix-Automaticity

Base determiner for the DFAO A:

Input in a mix-ary numeration system: A defines admissible input words.
Bringing numbers into mix-ary format w.r.t. A:

Mix-Automaticity

Base determiner for the DFAO A:

Input in a mix-ary numeration system: A defines admissible input words. Bringing numbers into mix-ary format w.r.t. A:

$$
(5)_{q_{0}}=\left((101)_{2}\right)_{q_{0}} \rightarrow\left((10)_{2}\right)_{q_{1}} 1=\left((2)_{3}\right)_{q_{1}} 1 \rightarrow(0)_{q_{2}} 21=21
$$

Mix-Automaticity

Base determiner for the DFAO A:

Input in a mix-ary numeration system: A defines admissible input words.
Bringing numbers into mix-ary format w.r.t. A :

$$
\begin{aligned}
(5)_{q_{0}} & =\left((101)_{2}\right)_{q_{0}} \rightarrow\left((10)_{2}\right)_{q_{1}} 1=\left((2)_{3}\right)_{q_{1}} 1 \rightarrow(0)_{q_{2}} 21=21 \\
(23)_{q_{0}} & =\left((10111)_{2}\right)_{q_{0}} \rightarrow\left((1011)_{2}\right)_{q_{1}} 1=(11)_{q_{1}} 1=\left((102)_{3}\right)_{q_{1}} 1 \\
& \rightarrow\left((10)_{3}\right)_{q_{1}} 21=(3)_{q_{1}} 21=\left((10)_{3}\right)_{q_{1}} 21 \\
& \rightarrow\left((1)_{2}\right)_{q_{0}} 021 \rightarrow(0)_{q_{1}} 1021
\end{aligned}
$$

Mix-Automaticity

Mix-DFAO A:

Input in a mix-ary numeration system: A defines admissible input words.
Bringing numbers into mix-ary format w.r.t. A :

$$
\begin{aligned}
(5)_{q_{0}} & =\left((101)_{2}\right)_{q_{0}} \rightarrow\left((10)_{2}\right)_{q_{1}} 1=\left((2)_{3}\right)_{q_{1}} 1 \rightarrow(0)_{q_{2}} 21=21 \\
(23)_{q_{0}} & =\left((10111)_{2}\right)_{q_{0}} \rightarrow\left((1011)_{2}\right)_{q_{1}} 1=(11)_{q_{1}} 1=\left((102)_{3}\right)_{q_{1}} 1 \\
& \rightarrow\left((10)_{3}\right)_{q_{1}} 21=(3)_{q_{1}} 21=\left((10)_{3}\right)_{q_{1}} 21 \\
& \rightarrow\left((1)_{2}\right)_{q_{0}} 021 \rightarrow(0)_{q_{1}} 1021
\end{aligned}
$$

A defines the mix-automatic sequence:
$a: b: b: a: b: b: a: a: b: b: b: a: a: a: a: b: b: b: b: b: b: a: a: a: a: b: a: b: \ldots$

From mix-automatic to zip-mix specifications

The corresponding zip-mix specification:

$$
\begin{aligned}
& X_{0}=a: X_{0}^{\prime} \\
& \mathrm{X}_{1}=b: \mathrm{X}_{1}^{\prime} \\
& \mathrm{X}_{2}=b: \mathrm{X}_{2}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& X_{0}^{\prime}=\operatorname{zip}_{2}\left(X_{1}, X_{0}^{\prime}\right) \\
& X_{1}^{\prime}=\operatorname{zip}_{3}\left(X_{0}, X_{1}, X_{2}^{\prime}\right) \\
& X_{2}^{\prime}=\operatorname{zip}_{2}\left(X_{0}, X_{1}^{\prime}\right)
\end{aligned}
$$

Proposition

Mix-automatic sequences can be specified by zip-mix-specifications.

Mix-observation graphs

$$
\begin{aligned}
& S \longrightarrow \mathbb{\llbracket} \rrbracket \Delta^{\omega} \\
& \underset{\left.\sum_{k=2}^{\infty} \Delta \times S^{k} \xrightarrow{\langle o, n\rangle} \begin{array}{l}
\sum_{k=2}^{\infty} \text { id } \times \llbracket \cdot \rrbracket^{k} \\
\sum_{k=2}^{\infty} \Delta \times\left(\Delta^{\omega}\right)^{k}
\end{array} \begin{array}{|l}
\downarrow \mathcal{N}_{k}
\end{array}\right)}{ }
\end{aligned}
$$

Theorem

For streams $\sigma \in \Delta^{\omega}$ the following are equivalent:
(1) The stream σ is mix-automatic.
(2) The stream σ can be defined by a zip-mix specification.
(There exists a finite mix-observation graph defining σ.

Mix-automatic, but not automatic

Proposition

The class of mix-automatic sequences properly extends that of the automatic sequences.

Proof.

We use:
(1) Arithmetical subsequences of k-auto sequences are k-auto.
(2) Cobham's theorem (1969): Suppose that σ is both k-auto and ℓ-auto for multiplicatively independent $k, \ell \geq 2$ (i.e. $k^{i} \neq \ell^{j}$ for all $i, j>0$). Then σ is eventually periodic.
Let σk-auto, and τ and ℓ-auto, for multiplicatively independent k en ℓ, and neither is ultimately periodic.If zip (σ, τ) were m-auto, for some m, then by (1) so would be σ and τ. But then, by (2), $k^{i_{1}}=m^{j_{1}}$ and $\ell^{i_{2}}=m^{j_{2}}$ for some $i_{0}, i_{1}, j_{0}, j_{1}>0$, which implies the wrong statement: $k^{i}=\ell^{j}$ for some $i, j>0$. Consequently, $\operatorname{zip}(\sigma, \tau)$ is mix-auto, but not automatic.

Equivalence problem for zip-mix-specifications

Question

Is equivalence decidable for streams definable by zip-mix specifications?

Proposition (partial results)

The equivalence problem for defined streams is decidable for:

- zip $_{k}$-specifications versus zip ${ }_{\ell}$-specifications.
- zip $_{k}$-specifications versus zip-mix-specifications.

Beyond decidability: zip-mix $+\pi_{i, k}$ specifications

zip ${ }^{\pi}$-terms over $\langle\Delta, \mathcal{X}\rangle$:

$$
Z::=X|a: Z| \operatorname{zip}_{k}(Z, \ldots, Z) \mid \pi_{i, k}(Z) \quad(X \in \mathcal{X}, a \in \Delta)
$$

zip ${ }^{\pi}$-specifications have equations of the form:

$$
\mathrm{X}=t \quad\left(t \text { a zip }{ }^{\pi} \text {-term over }\langle\Delta, \mathcal{X}\rangle\right)
$$

Theorem
Deciding equality of streams defined by productive $z i^{\pi}$-specifications is undecidable, and more precisely, Π_{1}^{0}-complete.

Dynamic logic representation

Let $F(X)=\{0,1\} \times X$.
PDL sentences φ and programs π :

$$
\begin{aligned}
& \varphi::=0|1| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \\
& \pi::=\text { even } \mid \text { odd }|\pi ; \pi| \pi \sqcup \pi \mid \pi^{*}
\end{aligned}
$$

Interpretation of formulas in a F-coalgebra $\mathcal{G}=\langle S,\langle o, n\rangle\rangle$, or in models $\mathcal{G}=\langle S, \mathbf{0}, \mathbf{1}$, even, odd \rangle where $\mathbf{0}, \mathbf{1} \subseteq S$, even, odd $\subseteq S^{2}$:

\[

\]

Dynamic Logic representation

Proposition (preservation of validity)

If $f: M \rightarrow N$ morphism of models and $x \models \varphi$ in M, then $f(x) \models \varphi$ in N.

Proposition (characterisation)

For every finite pointed model $\langle\mathcal{G}, x\rangle$ there is a sentence φ_{x} of $P D L$ so that for all F-coalgebras $\langle\mathcal{H}, y\rangle$, the following are equivalent:
(1) $y \vDash \varphi_{x}$ in \mathcal{H}.
(2) There is a bisimulation between \mathcal{G} and \mathcal{H} relating x to y.

We call φ_{x} the characterizing sentence of x.

Characterising Thue-Morse

The formula $\varphi_{\text {TM }}=\varphi \wedge\left[(\text { even } \sqcup \text { odd })^{*}\right](\varphi \vee \psi)$ with:

$$
\begin{aligned}
& \varphi=0 \wedge \neg 1 \wedge\langle\text { even }\rangle 0 \wedge[\text { even }] 0 \wedge\langle\text { odd }\rangle 1 \wedge[\text { odd }] 1 \\
& \psi=\neg 0 \wedge 1 \wedge\langle\text { even }\rangle 1 \wedge \text { [even }] 1 \wedge\langle\text { odd }\rangle 0 \wedge[\text { odd }] 0
\end{aligned}
$$

is a characteristic sentence for the Thue-Morse sequence TM:

$$
\sigma \models \varphi_{\mathrm{TM}} \Longleftrightarrow \sigma=\mathrm{TM}
$$

Dynamic Logic representation

Proposition

The following finite model properties hold:
(1) If a sentence φ has a model, it has a finite model (using [Kozen and Parikh, 1981]).
(2) If φ has a model in which even and odd are total functions, then it has a finite model with these properties (using [Ben-Ari, Halpern, and Pnueli, 1982]).

Theorem

The following are equivalent for $\sigma \in \Delta^{\omega}$:
(1) σ is 2-automatic.
(2) There is a characterising sentence φ for σ, i.e. for all $\tau \in \Delta^{\omega}$:

$$
\tau \models \varphi \text { in }\left\langle\Delta^{\omega},\langle\text { hd, even, odd }\rangle\right\rangle \text { iff } \tau=\sigma .
$$

Our results

- Zip(-k)-stream-specifications
- equivalence problem is decidable
- by reduction to bisimilarity of associated observation graphs
- \mathcal{O}_{k} - and \mathcal{N}_{k}-observation graphs
- finality of $\left\langle\Delta^{\omega}, \mathcal{O}_{k}\right\rangle$ for the functor $F(X)=\Delta \times X^{k}$
- Correspondence with automatic sequences:
- \mathcal{N}_{k}-observation graphs correspond to zero-consistent DFAO's
- k-automatic $=$ zip- k-definable
- Mix-DFAO's and mix-automaticity
- properly extend automatic sequences
- equivalence problem still decidable?
- undecidable if projections $\pi_{i, k}$ are added (Π_{1}^{0}-complete if productive)
- dynamic logic representation of automatic sequences

