Modeling Terms in the λ-Calculus with letrec

(by Term Graphs and Finite-State Automata)

Clemens Grabmayer

Gran Sasso Science Institute
 L'Aquila, Italy

Computational Logic \& Applications Université de Versailles

July 1-2, 2019

Aim

Explain graph representations for (abstracted) functional programs (λ-terms with recursive bindings) that:

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:

Aim

Explain graph representations for (abstracted) functional programs (λ-terms with recursive bindings) that:

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
- use scope sharing,

Aim

Explain graph representations for (abstracted) functional programs (λ-terms with recursive bindings) that:

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
- use extended-scope sharing,

Aim

Explain graph representations for (abstracted) functional programs (λ-terms with recursive bindings) that:

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
- use extended-scope sharing,
- not context sharing from optimal λ-reduction.

Aim

Explain graph representations for (abstracted) functional programs (λ-terms with recursive bindings) that:

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
- use extended-scope sharing,
- not context sharing from optimal λ-reduction.

Results from the interdisciplinary research project
ROS (Realising Optimal Sharing, Utrecht University, 2009-2014/16), which brought together:

- term rewriters and logicians (philosophy department, UU)
- Vincent van Oostrom, CG
- Haskell implementors (CS department, UU)
- Doaitse Swierstra, Atze Dijkstra, Jan Rochel

Overview

- λ-calculus with letrec $\left(\boldsymbol{\lambda}_{\text {letrec }}\right)$
- Expressibility of $\lambda_{\text {letrec }}$ via unfolding
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- Nested term graphs

Overview

- λ-calculus with letrec $\left(\boldsymbol{\lambda}_{\text {letrec }}\right)$
- Expressibility of $\lambda_{\text {letrec }}$ via unfolding
- Which infinite λ-terms are unfoldings of $\lambda_{\text {letrec }}$-terms?
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- How can $\lambda_{\text {letrec-terms be compressed maximally }}$ while preserving their nested scope-structure?
- Nested term graphs
- How to get a general framework for terms with nested scopes?

Overview

- λ-calculus with letrec $\left(\lambda_{\text {letrec }}\right)$
- Expressibility of $\lambda_{\text {letrec }}$ via unfolding
- Which infinite λ-terms are unfoldings of $\boldsymbol{\lambda}_{\text {letrec }}$-terms?
- strongly regular λ^{∞}-terms
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- How can $\lambda_{\text {letrec-terms be compressed maximally }}$ while preserving their nested scope-structure?
- Nested term graphs
- How to get a general framework for terms with nested scopes?

Overview

- λ-calculus with letrec ($\lambda_{\text {letrec }}$)
- Expressibility of $\lambda_{\text {letrec }}$ via unfolding
- Which infinite λ-terms are unfoldings of $\lambda_{\text {letrec }}$-terms?
- strongly regular λ^{∞}-terms
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- How can $\lambda_{\text {letrec-terms be compressed maximally }}$ while preserving their nested scope-structure?
- formalization as (higher-/first-order) term graphs and DFAs
- minimization / readback / efficiency / Haskell implementation
- Nested term graphs
- How to get a general framework for terms with nested scopes?

Overview

- λ-calculus with letrec ($\lambda_{\text {letrec }}$)
- Expressibility of $\lambda_{\text {letrec }}$ via unfolding
- Which infinite λ-terms are unfoldings of $\lambda_{\text {letrec }}$-terms?
- strongly regular λ^{∞}-terms
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- How can $\lambda_{\text {letrec-terms be compressed maximally }}$ while preserving their nested scope-structure?
- formalization as (higher-/first-order) term graphs and DFAs
- minimization / readback / efficiency / Haskell implementation
- Nested term graphs
- How to get a general framework for terms with nested scopes?
- term graphs with inbuilt nesting

The λ-Calculus with letrec

$$
(\lambda f \text {. letrec } r=f r \text { in } r) M
$$

The λ-Calculus with letrec

$$
(\lambda f \text {. let } r=f r \text { in } r) M
$$

The λ-Calculus

Terms in the λ-calculus
(term)
(over set Var of variables):
(variable, $x \in$ Var)
(application)
(abstraction)

The λ-Calculus

Terms in the λ-calculus
(term)

$$
\begin{array}{lll}
M & ::= & x \\
& \mid & M_{1} M_{2} \\
& \mid & \lambda x \cdot M
\end{array}
$$

(over set Var of variables):
(variable, $x \in$ Var)
(application)
(abstraction)

Rewriting in $\boldsymbol{\lambda}$:

$$
(\lambda x . M) N \rightarrow_{\beta} \quad M[x:=N]
$$

(β-reduction step)

The λ-Calculus

Terms in the λ-calculus
(over set Var of variables):
(term)

$$
\begin{array}{lll}
M & ::= & x \\
& \mid & M_{1} M_{2} \\
& \mid & \lambda x . M
\end{array}
$$

(variable, $x \in$ Var)
(application)
(abstraction)

Rewriting in $\boldsymbol{\lambda}$:

$$
\begin{array}{rll}
(\lambda x \cdot M) N & \rightarrow_{\beta} & M[x:=N] \\
& (\beta \text {-reduction step }) \\
\lambda x \cdot M \rightarrow_{\alpha} & \lambda y \cdot M[x:=y] & (\alpha \text {-conversion step) }
\end{array}
$$

The λ-Calculus with letrec

Terms in the λ-calculus ($\lambda_{\text {letrec }}$) with letrec (over set Var of variables): (term)

M	$:=$	x
\mid	$M_{1} M_{2}$	
\mid	$\lambda x \cdot M$	
\mid	letrec B in M	

(variable, $x \in$ Var)
(application)
(abstraction)
(letrec)

Rewriting in $\boldsymbol{\lambda}$:

$$
\begin{array}{rll}
(\lambda x \cdot M) N \rightarrow_{\beta} & M[x:=N] & (\beta \text {-reduction step }) \\
\lambda x \cdot M \rightarrow_{\alpha} & \lambda y \cdot M[x:=y] & (\alpha \text {-conversion step) }
\end{array}
$$

The λ-Calculus with letrec

Terms in the λ-calculus ($\lambda_{\text {letrec }}$) with letrec (over set Var of variables):

| (term) | M | $::=$ | x | (variable, $x \in$ Var) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | \mid | $M_{1} M_{2}$ | (application) |
| | \mid | $\lambda x . M$ | (abstraction) | |
| | | \mid | letrec B in M | (letrec) |
| (binding group) | B | $::=$ | $f_{1}=M_{1}, \ldots, f_{n}=M_{n}$ | (bindings, $f_{1}, \ldots, f_{n} \in$ Var $)$ |

Rewriting in $\boldsymbol{\lambda}$:

$$
\begin{array}{rll}
(\lambda x \cdot M) N & \rightarrow_{\beta} & M[x:=N] \\
& (\beta \text {-reduction step }) \\
\lambda x \cdot M \rightarrow_{\alpha} & \lambda y \cdot M[x:=y] & (\alpha \text {-conversion step) }
\end{array}
$$

The λ-Calculus with letrec

Terms in the λ-calculus ($\lambda_{\text {letrec }}$) with letrec (over set Var of variables):

(term)	M	$::=$	x	(variable, $x \in \operatorname{Var})$
		\mid	$M_{1} M_{2}$	(application)
	\mid	$\lambda x . M$	(abstraction)	
		let B in M	(letrec)	
(binding group)	B	$::=$	$f_{1}=M_{1}, \ldots, f_{n}=M_{n}$	(bindings, $\left.f_{1}, \ldots, f_{n} \in \operatorname{Var}\right)$

Notation: letrec = let (like in Haskell).
Rewriting in $\boldsymbol{\lambda}$:

$$
\begin{array}{rll}
(\lambda x . M) N & \rightarrow_{\beta} & M[x:=N] \\
\lambda x \cdot M \rightarrow_{\alpha} & \lambda y \cdot M[x:=y] & (\alpha \text {-coduction step }) \\
& (\alpha \text {-conversion step })
\end{array}
$$

The λ-Calculus with letrec

Terms in the λ-calculus ($\lambda_{\text {letrec }}$) with letrec (over set Var of variables):

(term)	M :: $=$	x	(variable, $x \in$ Var)
	\|	$M_{1} M_{2}$	(application)
	\|	$\lambda x . M$	(abstraction)
	\|	let B in M	(letrec)
(binding group)	B ::=	$f_{1}=M_{1}, .$.	(bindings, $f_{1}, \ldots, f^{\prime}$

Notation: letrec $=$ let (like in Haskell).
Rewriting in $\boldsymbol{\lambda}$:

$$
\begin{array}{rll}
(\lambda x \cdot M) N & \rightarrow_{\beta} & M[x:=N] \\
& (\beta \text {-reduction step }) \\
\lambda x \cdot M \rightarrow_{\alpha} & \lambda y \cdot M[x:=y] & (\alpha \text {-conversion step })
\end{array}
$$

The λ-Calculus with letrec

Terms in the λ-calculus ($\lambda_{\text {letrec }}$) with letrec (over set Var of variables):

(term)	M	::=	x	(variable, $x \in \operatorname{Var}$)
		\|	$M_{1} M_{2}$	(application)
		\|	$\lambda x . M$	(abstraction)
		\|	let B in M	(letrec)
(binding group)	B	:: $=$	$f_{1}=M_{1}$	(bindings, $f_{1}, \ldots, f^{\prime}$

Notation: letrec $=$ let (like in Haskell).
Rewriting in $\boldsymbol{\lambda}_{\text {letrec }}$:

$$
\begin{array}{rll}
(\lambda x \cdot M) N \rightarrow_{\beta} & M[x:=N] & \text { (} \beta \text {-reduction step) } \\
\lambda x \cdot M \rightarrow_{\alpha} & \lambda y \cdot M[x:=y] & \text { (} \alpha \text {-conversion step) } \\
\text { let } B \text { in } M \rightarrow_{\nabla} & \cdots & \text { (unfolding steps) }
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:
fix

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix $:=\lambda f$. let $r=f r$ in r we find:

$$
\text { fix }=\quad \lambda f . \text { let } r=f r \text { in } r
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix $:=\lambda f$. let $r=f r$ in r we find:

$$
\begin{array}{rll}
\mathrm{fix} & = & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & \lambda f . \text { let } r=f r \text { in } f r
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix := λ. let $r=f r$ in r we find:

$$
\begin{aligned}
\text { fix } & = & & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & & \lambda f . \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & & \lambda f .(\text { let } r=f r \text { in } f)(\text { let } r=f r \text { in } r)
\end{aligned}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix := λf. let $r=f r$ in r we find:

$$
\begin{aligned}
\text { fix } & = & & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & & \lambda f . \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & & \lambda f .(\text { let } r=f r \text { in } f)(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & & \lambda f . f(\text { let } r=f r \text { in } r)
\end{aligned}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix $:=\lambda f$. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } & = & & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & \lambda f . \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & & \lambda f .(\text { let } r=f r \text { in } f)(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & & \lambda f . f(\boxed{\text { let } r=f r \text { in } r})
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix := λf. let $r=f r$ in r we find:

$$
\begin{aligned}
\text { fix } & = & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & \lambda f . \mid \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & \lambda f .(\text { let } r=f r \text { in } f)(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & \lambda f . f(\boxed{\text { let } r=f r \text { in } r}) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\boxed{\text { let } r=f r \text { in } r}))
\end{aligned}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rll}
\text { fix } & = & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & \lambda f . \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & \lambda f .(\text { let } r=f r \text { in } f)(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & \lambda f . f(\boxed{\text { let } r=f r \text { in } r}) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\boxed{\text { let } r=f r \text { in } r})) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\ldots f(\boxed{\text { let } r=f r \text { in } r})))
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rll}
\text { fix } & = & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & \lambda f . \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & \lambda f .(\operatorname{let} r=f r \text { in } f)(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & \lambda f . f(\boxed{\text { let } r=f r \text { in } r}) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\boxed{\text { let } r=f r \text { in } r})) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\ldots f(\overline{\operatorname{let} r=f r \text { in } r}))) \\
& >_{\nabla} & \lambda f . f(f(\ldots f(\ldots)))
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } & = & & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & \lambda f . \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & \lambda f .(\text { let } r=f r \text { in } f)(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & \lambda f . f(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\text { let } r=f r \text { in } r)) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\ldots f(\text { let } r=f r \text { in } r))) \\
& >_{\nabla} & \lambda f . f(f(\ldots f(\ldots)))
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$ (infinite unfolding)

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } & = & & \lambda f . \text { let } r=f r \text { in } r \\
& \rightarrow_{\nabla} & & \lambda f . \text { let } r=f r \text { in } f r \\
& \rightarrow_{\nabla} & & \lambda f .(\text { let } r=f r \text { in } f)(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & & \lambda f . f(\text { let } r=f r \text { in } r) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\text { let } r=f r \text { in } r)) \\
& \rightarrow_{\nabla} & \lambda f . f(f(\ldots f(\text { let } r=f r \text { in } r))) \\
& \prod_{\nabla} & \lambda f . f(f(\ldots f(\ldots))) \\
& = & \llbracket \text { fix } \rrbracket_{\lambda^{\infty}}
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:
fix M

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:
fix M

$M($ fix $M)$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\text { fix } M=\quad(\lambda f \text {. let } r=f r \text { in } r) M
$$

$M($ fix $M)$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } M & = & & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & \text { let } r=M r \text { in } r
\end{array}
$$

$M($ fix $M)$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\begin{aligned}
\text { fix } M & = & & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & & \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} & & \text { let } r=M r \text { in } M r
\end{aligned}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\begin{aligned}
\text { fix } M & = & & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & & \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} & & \text { let } r=M r \text { in } M r \\
& \rightarrow_{\nabla} & & (\text { let } r=M r \text { in } M)(\text { let } r=M r \text { in } r)
\end{aligned}
$$

$M(\operatorname{fix} M)$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } M & = & & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & & \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} & & \text { let } r=M r \text { in } M r \\
& \rightarrow_{\nabla} & & (\text { let } r=M r \text { in } M)(\text { let } r=M r \text { in } r) \\
& \rightarrow_{\nabla} & M(\text { let } r=M r \text { in } r)
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λ. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } M & = & & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & & \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} & & \text { let } r=M r \text { in } M r \\
& \rightarrow_{\nabla} & & (\text { let } r=M r \text { in } M)(\text { let } r=M r \text { in } r) \\
& \rightarrow_{\nabla} & M(\text { let } r=M r \text { in } r) \\
& \leftarrow_{\beta} & M((\lambda f . \text { let } r=f r \text { in } r) M) \\
& & M(\text { fix } M)
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λ. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } M & = & & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & & \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} & & \text { let } r=M r \text { in } M r \\
& \rightarrow_{\nabla} & & (\text { let } r=M r \text { in } M)(\text { let } r=M r \text { in } r) \\
& \rightarrow_{\nabla} & M(\text { let } r=M r \text { in } r) \\
& \leftarrow_{\beta} & M((\lambda f . \text { let } r=f r \text { in } r) M) \\
& = & M(\text { fix } M)
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } M & = & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} & \text { let } r=M r \text { in } M r \\
& \rightarrow_{\nabla} & & (\text { let } r=M r \text { in } M)(\text { let } r=M r \text { in } r) \\
& \rightarrow_{\nabla} & M(\text { let } r=M r \text { in } r) \\
& \leftarrow_{\beta} & M((\lambda f . \text { let } r=f r \text { in } r) M) \\
& = & M(\text { fix } M) \\
& \\
\text { fix } M & \leftrightarrow_{\beta \nabla}^{*} & M(\text { fix } M)
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } M & = & & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} & & \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} & & \text { let } r=M r \text { in } M r \\
& \rightarrow_{\nabla} & & (\text { let } r=M r \text { in } M)(\text { let } r=M r \text { in } r) \\
& \rightarrow_{\nabla} & M(\text { let } r=M r \text { in } r) \\
& \leftarrow_{\beta} & M((\lambda f . \text { let } r=f r \text { in } r) M) \\
& = & M(\text { fix } M) \\
& & \\
\text { fix } M & \leftrightarrow_{\beta}^{*} & M(\text { fix } M) \\
& \leftrightarrow_{\beta}^{*} & M(M(\ldots(M(\operatorname{fix} M)) \ldots))
\end{array}
$$

Fixed-point combinator in $\boldsymbol{\lambda}_{\text {letrec }}$

For fix := λf. let $r=f r$ in r we find:

$$
\begin{array}{rlrl}
\text { fix } M & = & (\lambda f . \text { let } r=f r \text { in } r) M \\
& \rightarrow_{\beta} \quad \text { let } r=M r \text { in } r \\
& \rightarrow_{\nabla} \quad \text { let } r=M r \text { in } M r \\
& \rightarrow_{\nabla} \quad(\text { let } r=M r \text { in } M)(\text { let } r=M r \text { in } r) \\
& \rightarrow_{\nabla} \quad M(\text { let } r=M r \text { in } r) \\
& \leftarrow_{\beta} \quad M((\lambda f . \text { let } r=f r \text { in } r) M) \\
& =M(\text { fix } M) \\
\text { fix } M & \leftrightarrow_{\beta_{\nabla}}^{*} M(\text { fix } M) \\
& \leftrightarrow_{\beta \nabla}^{*} M(M(\ldots(M(\text { fix } M)) \ldots)) \\
& \left(\rightarrow_{\beta \nabla}^{+} \cdot \leftarrow_{\beta}\right)^{\omega} M(M(\ldots(M(\ldots)) \ldots)) .
\end{array}
$$

Expressibility of $\boldsymbol{\lambda}_{\text {letrec }}$ via unfolding

(joint work with Jan Rochel)

Which infinite λ-terms are expressible finitely in $\boldsymbol{\lambda}_{\text {letrec }}$?

Example

let $f=\lambda x$. λy. $f y x$ in f

Which infinite λ-terms are expressible finitely in $\boldsymbol{\lambda}_{\text {letrec }}$?

Example

let $f=\lambda x$. λy. $f y x$ in f

Which infinite λ-terms are expressible finitely in $\boldsymbol{\lambda}_{\text {letrec }}$?

Example

let $f=\lambda x . \lambda y . f y x$ in $f \quad \Longrightarrow_{\nabla} \quad \lambda x y .(\lambda x y .(\lambda x y .(\ldots) y x) y x) y x$

Which infinite λ-terms are expressible finitely in $\boldsymbol{\lambda}_{\text {letrec }}$?
Example

$$
\text { let } f=\lambda x . \lambda y . f y x \text { in } f \quad \prod_{\nabla} \quad \lambda x y .(\lambda x y .(\lambda x y .(\ldots) y x) y x) y x
$$

Which infinite λ-terms are expressible finitely in $\boldsymbol{\lambda}_{\text {letrec }}$?
Example

$$
\text { let } f=\lambda x . \lambda y . f y x \text { in } f \quad \prod_{\nabla} \quad \lambda x y .(\lambda x y .(\lambda x y .(\ldots) y x) y x) y x
$$

Which infinite λ-terms are expressible finitely in $\boldsymbol{\lambda}_{\text {letrec }}$?
Example
let $f=\lambda x . \lambda y . f y x$ in $f \quad{ }^{\#} \nabla \quad \lambda x y .(\lambda x y .(\lambda x y .(\ldots) y x) y x) y x$

$\boldsymbol{\lambda}_{\text {letrec }}$-Expressible 'regular' λ^{∞}-term

term graph syntax tree

$\boldsymbol{\lambda}_{\text {letrec }}$-Expressible 'regular' λ^{∞}-term

term graph syntax tree
bindings

$\boldsymbol{\lambda}_{\text {letrec }}$-Expressible 'regular' λ^{∞}-term

Not $\boldsymbol{\lambda}_{\text {letrec }}$-expressible 'regular' $\boldsymbol{\lambda}^{\infty}$-term

syntax tree

Not $\boldsymbol{\lambda}_{\text {letrec }}$-expressible 'regular' $\boldsymbol{\lambda}^{\infty}$-term

syntax tree

bindings

Not $\boldsymbol{\lambda}_{\text {letrec }}$-expressible 'regular' $\boldsymbol{\lambda}^{\infty}$-term

syntax tree

bindings
infinitely entangled

Not $\boldsymbol{\lambda}_{\text {letrec }}$-expressible 'regular' $\boldsymbol{\lambda}^{\infty}$-term

syntax tree

bindings

scopes
infinitely entangled

Not $\boldsymbol{\lambda}_{\text {letrec }}$-expressible 'regular' $\boldsymbol{\lambda}^{\infty}$-term

syntax tree

bindings
infinitely entangled

scopes

scope ${ }^{+}$s
infinite nesting

Deconstructing/observing λ^{∞}-terms

() $\lambda x \cdot \lambda y \cdot x x y$

Deconstructing/observing λ^{∞}-terms

$$
\begin{aligned}
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x) \lambda y \cdot x x y
\end{aligned}
$$

$$
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0}
$$

Deconstructing/observing λ^{∞}-terms

$$
\begin{aligned}
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x y) x x y
\end{aligned}
$$

$$
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0}
$$

Deconstructing/observing λ^{∞}-terms

$$
\begin{aligned}
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x y) x x y @_{0} \\
& (x y) x x
\end{aligned}
$$

$$
\begin{aligned}
\left(x_{1} \ldots x_{n}\right) M_{0} M_{1} & \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \quad(i \in\{0,1\}) \\
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} & \rightarrow{ }_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0}
\end{aligned}
$$

Deconstructing/observing λ^{∞}-terms

$$
\begin{aligned}
& () \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x y) x x y \rightarrow_{0} \\
& (x y) x x \rightarrow_{\mathrm{S}} \\
& (x) x x
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1} \ldots x_{n}\right) M_{0} M_{1} \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \quad(i \in\{0,1\}) \\
& \left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0} \\
& \left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} \rightarrow_{\mathrm{S}}\left(x_{1} \ldots x_{n}\right) M_{0} \\
& \text { (if } \lambda x_{n+1} \text { is vacuous) }
\end{aligned}
$$

Deconstructing/observing λ^{∞}-terms

$$
\begin{aligned}
& () \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x y) x x y \rightarrow_{@_{0}} \\
& (x y) x x \rightarrow_{\mathrm{s}} \\
& (x) x x \rightarrow_{0} \\
& (x) x
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1} \ldots x_{n}\right) M_{0} M_{1} \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \quad(i \in\{0,1\}) \\
& \left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0} \\
& \left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} \rightarrow_{\mathrm{S}}\left(x_{1} \ldots x_{n}\right) M_{0} \\
& \text { (if } \lambda x_{n+1} \text { is vacuous) }
\end{aligned}
$$

Deconstructing/observing λ^{∞}-terms

$$
\begin{aligned}
& () \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x y) x x y \rightarrow_{@_{0}} \\
& (x y) x x \rightarrow_{\mathrm{s}} \\
& (x) x x \rightarrow_{0} \\
& (x) x
\end{aligned}
$$

$\rightarrow_{\text {reg+ }}{ }^{-g e n e r a t e d}$ subterms of $\lambda x \cdot \lambda y . x x y$ w.r.t. rewrite relation $\rightarrow_{\text {reg+ }}$:

$$
\begin{aligned}
\left(x_{1} \ldots x_{n}\right) M_{0} M_{1} & \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \\
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} & \rightarrow_{\lambda}(i \in\{0,1\}) \\
\left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} & \left.\rightarrow_{\mathrm{S}}\left(x_{1} \ldots x_{n+1}\right) M_{0}\right) M_{0} \quad\left(\text { if } \lambda x_{n+1} \text { is vacuous }\right)
\end{aligned}
$$

Deconstructing/observing λ^{∞}-terms

$$
\begin{aligned}
& () \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
& (x y) x x y \rightarrow_{@_{0}} \\
& (x y) x x \rightarrow_{\mathrm{s}} \\
& (x) x x \rightarrow_{0} \\
& (x) x
\end{aligned}
$$

$\rightarrow_{\text {reg+ }}{ }^{-g e n e r a t e d}$ subterms of $\lambda x \cdot \lambda y . x x y$ w.r.t. rewrite relation $\rightarrow_{\text {reg+ }}$:

$$
\begin{aligned}
\left(x_{1} \ldots x_{n}\right) M_{0} M_{1} & \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \\
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} & \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0} \\
\left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} & \rightarrow \mathrm{~S}\left(x_{1} \ldots x_{n}\right) M_{0} \quad\left(\text { if } \lambda x_{n+1}\right. \text { is vacuous) }
\end{aligned}
$$

formalized as a CRS, e.g. rule:

$$
\operatorname{pre}_{n}\left(\left[x_{1} \ldots x_{n}\right] \operatorname{abs}\left(\left[x_{n+1}\right] Z(\vec{x})\right)\right) \rightarrow \operatorname{pre}_{n+1}\left(\left[x_{1} \ldots x_{n+1}\right] Z(\vec{x})\right)
$$

Deconstructing/observing λ^{∞}-terms

() $\lambda x \cdot \lambda y \cdot x x y \rightarrow \lambda$
(x) $\lambda y . x x y \rightarrow_{\lambda}$
(xy) $x x y \rightarrow_{@_{1}}$
(xy) y

$$
\begin{array}{ll}
() \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} & () \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
(x) \lambda y \cdot x x y \rightarrow_{\lambda} & (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
(x y) x x y @_{0} & (x y) x x y \rightarrow @_{0} \\
(x y) x x \rightarrow \mathrm{~s} & (x y) x x \mathrm{~S}_{\mathrm{s}} \\
(x) x x \rightarrow @_{0} & (x) x x \rightarrow @_{1} \\
(x) x & (x) x
\end{array}
$$

$\rightarrow_{\text {reg }}+-$ generated subterms of $\lambda x . \lambda y . x x y$ w.r.t. rewrite relation $\rightarrow_{\text {reg }}$:

$$
\begin{aligned}
\left(x_{1} \ldots x_{n}\right) M_{0} M_{1} & \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \quad(i \in\{0,1\}) \\
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} & \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0} \\
\left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} & \rightarrow \mathrm{~s}\left(x_{1} \ldots x_{n}\right) M_{0} \quad \text { (if } \lambda x_{n+1} \text { is vacuous) }
\end{aligned}
$$

formalized as a CRS, e.g. rule:

$$
\operatorname{pre}_{n}\left(\left[x_{1} \ldots x_{n}\right] \operatorname{abs}\left(\left[x_{n+1}\right] Z(\vec{x})\right)\right) \rightarrow \operatorname{pre}_{n+1}\left(\left[x_{1} \ldots x_{n+1}\right] Z(\vec{x})\right)
$$

Generated subterms

() $\lambda x \cdot \lambda y \cdot x x y \rightarrow \lambda$
(x) $\lambda y . x x y \rightarrow_{\lambda}$
(xy) $x x y \rightarrow_{@_{1}}$
(xy) y

$$
\begin{array}{ll}
() \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} & \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
(x) \lambda y \cdot x x y \rightarrow_{\lambda} & (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
(x y) x x y @_{0} & (x y) x x y @_{0} \\
(x y) x x \rightarrow \mathrm{~s} & (x y) x x \mathrm{~S}_{0} \\
(x) x x \rightarrow @_{0} & (x) x x \rightarrow @_{1} \\
(x) x & (x) x
\end{array}
$$

$$
\begin{aligned}
&\left(x_{1} \ldots x_{n}\right) M_{0} M_{1} \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \\
&\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} \rightarrow \lambda(i \in\{0,1\}) \\
&\left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} \rightarrow \mathrm{~s}\left(x_{1} \ldots x_{n+1}\right) M_{0} \\
& \\
& \text { (if } \lambda x_{n+1} \text { is vacuous) } M_{0}
\end{aligned}
$$

$\rightarrow_{\text {reg }}$-generated subterms w.r.t. rewrite relation $\rightarrow_{\text {reg }}$, rules above plus:
$\left(x_{1} \ldots x_{i} \ldots x_{n+1}\right) M_{0} \rightarrow_{\text {del }}\left(x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}\right) M_{0} \quad$ (if λx_{i} is vacuous)

Generated subterms

$$
\begin{aligned}
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (x) } \lambda y . x x y \rightarrow_{\lambda} \\
& \text { (xy) } x x y \rightarrow_{@_{1}} \\
& \text { (xy) y } \\
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (} x \text {) } \lambda y . x x y \rightarrow_{\lambda} \\
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (xy) } x x y \rightarrow @_{0} \\
& \text { (x) } \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (xy) } x x y \rightarrow @_{0} \\
& \text { (xy) } x x \rightarrow \mathrm{~s} \\
& \text { (xy) } x x \rightarrow \mathrm{~s} \\
& (x) x x \rightarrow @_{0} \\
& \text { (x) } x x \rightarrow @_{1} \\
& \text { (} x \text {) } x \\
& \text { (x) } x \\
& \left(x_{1} \ldots x_{n}\right) M_{0} M_{1} \rightarrow @_{i}\left(x_{1} \ldots x_{n}\right) M_{i} \quad(i \in\{0,1\}) \\
& \left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0}
\end{aligned}
$$

$\rightarrow_{\text {reg }}$-generated subterms w.r.t. rewrite relation $\rightarrow_{\text {reg }}$, rules above plus:

$$
\left(x_{1} \ldots x_{i} \ldots x_{n+1}\right) M_{0} \rightarrow_{\text {del }}\left(x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}\right) M_{0} \quad \text { (if } \lambda x_{i} \text { is vacuous) }
$$

Generated subterms

$$
\begin{aligned}
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (} x \text {) } \lambda y . x x y \rightarrow_{\lambda} \\
& \text { (xy) } x x y \rightarrow_{@_{1}} \\
& \text { (} x y \text {) } y \rightarrow_{\mathrm{del}} \\
& \text { (y) } y \\
& \begin{array}{l}
\text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
\text { (x) } \lambda y \cdot x x y \rightarrow_{\lambda} \\
\text { (xy) } x x y \rightarrow_{@_{0}} \\
\text { (xy) } x x \rightarrow{ }_{\mathrm{S}} \\
\text { (x) } x x \mathrm{@}_{0} \\
\text { (x) } x
\end{array} \\
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (x) } \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (xy) } x x y \rightarrow @_{0} \\
& \text { (xy) } x x \rightarrow \mathrm{~s} \\
& \text { (x) } x x \rightarrow @_{1} \\
& \text { (x) } x \\
& \left(x_{1} \ldots x_{n}\right) M_{0} M_{1} \rightarrow @_{i}\left(x_{1} \ldots x_{n}\right) M_{i} \quad(i \in\{0,1\}) \\
& \left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0}
\end{aligned}
$$

$\rightarrow_{\text {reg }}$-generated subterms w.r.t. rewrite relation $\rightarrow_{\text {reg }}$, rules above plus:

$$
\left(x_{1} \ldots x_{i} \ldots x_{n+1}\right) M_{0} \rightarrow_{\text {del }}\left(x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}\right) M_{0} \quad \text { (if } \lambda x_{i} \text { is vacuous) }
$$

Generated subterms

() $\lambda x \cdot \lambda y \cdot x x y \rightarrow \lambda$
(x) $\lambda y \cdot x x y \rightarrow_{\lambda}$
(xy) $x x y \rightarrow @_{1}$
$(x y) y \rightarrow_{\mathrm{del}}$
$(y) y$

$$
\begin{array}{ll}
() \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} & \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
(x) \lambda y \cdot x x y \rightarrow_{\lambda} & (x) \lambda y \cdot x x y \rightarrow_{\lambda} \\
(x y) x x y @_{0} & (x y) x x y @_{0} \\
(x y) x x \rightarrow_{\mathrm{s}} & (x y) x x \rightarrow_{\mathrm{s}} \\
(x) x x \rightarrow @_{0} & (x) x x @_{1} \\
(x) x & (x) x
\end{array}
$$

$\rightarrow_{\text {reg }}+-$ generated subterms of $\lambda x . \lambda y . x x y$ w.r.t. rewrite relation $\rightarrow_{\text {reg }}$:

$$
\begin{aligned}
\left(x_{1} \ldots x_{n}\right) M_{0} M_{1} & \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \\
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} & \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0} \\
\left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} & \rightarrow \mathrm{~S}\left(x_{1} \ldots x_{n}\right) M_{0} \quad \text { (if } \lambda x_{n+1} \text { is vacuous) }
\end{aligned}
$$

$\rightarrow_{\text {reg }}$-generated subterms w.r.t. rewrite relation $\rightarrow_{\text {reg }}$, rules above plus:
$\left(x_{1} \ldots x_{i} \ldots x_{n+1}\right) M_{0} \rightarrow_{\text {del }}\left(x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}\right) M_{0} \quad$ (if λx_{i} is vacuous)

Generated subterms

$$
\begin{aligned}
& \text { () } \lambda x \cdot \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (x) } \lambda y \cdot x x y \rightarrow_{\lambda} \\
& \text { (xy) xxy } @_{1} \\
& \text { (xy) } y \rightarrow_{\text {del }} \\
& \text { (y) } y
\end{aligned}
$$

() $\lambda x \cdot \lambda y \cdot x x y \rightarrow \lambda$
(x) $\lambda y . x x y \rightarrow_{\lambda}$
(xy) $x x y \rightarrow @_{0}$
(xy) $x x \rightarrow \mathrm{~s}$
(x) $x x \rightarrow @_{1}$
(x) x
$\rightarrow_{\text {reg }^{+-}}$generated subterms of $\lambda x . \lambda y . x x y$ w.r.t. rewrite relation $\rightarrow_{\text {reg }}$:

$$
\begin{aligned}
\left(x_{1} \ldots x_{n}\right) M_{0} M_{1} & \rightarrow_{@_{i}}\left(x_{1} \ldots x_{n}\right) M_{i} \\
\left(x_{1} \ldots x_{n}\right) \lambda x_{n+1} \cdot M_{0} & \rightarrow_{\lambda}\left(x_{1} \ldots x_{n+1}\right) M_{0} \\
\left(x_{1} \ldots x_{n} x_{n+1}\right) M_{0} & \rightarrow \mathrm{~S}\left(x_{1} \ldots x_{n}\right) M_{0} \quad \text { (if } \lambda x_{n+1} \text { is vacuous) }
\end{aligned}
$$

$\rightarrow_{\text {reg }}$-generated subterms w.r.t. rewrite relation $\rightarrow_{\text {reg }}$, rules above plus:

$$
\left(x_{1} \ldots x_{i} \ldots x_{n+1}\right) M_{0} \rightarrow_{\text {del }}\left(x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}\right) M_{0} \quad \text { (if } \lambda x_{i} \text { is vacuous) }
$$

We use eager application of scope-closure rules for $\rightarrow_{\text {reg+ }}$ and $\rightarrow_{\text {reg }}$.

Regularity and strong regularity

An infinite first-order term t is regular if:
t has only finitely many subterms.

Definition

(1) A λ^{∞}-term M is strongly regular if:
() M has only finitely many $\rightarrow_{\text {reg }^{+}}$generated subterms.

Regularity and strong regularity

An infinite first-order term t is regular if:
t has only finitely many subterms.

Definition

(1) A λ^{∞}-term M is strongly regular if:
() M has only finitely many $\rightarrow_{\text {reg }}{ }^{+}$generated subterms.
(2) A λ^{∞}-term N is regular if:
() N has only finitely many $\rightarrow_{\text {reg }}$-generated subterms.

Strongly regular λ^{∞}-term

$$
() M=() \lambda x y \cdot M y x
$$

$M=\lambda x y . M y x$

Strongly regular λ^{∞}-term

$$
\begin{array}{rlr}
() M & = & () \lambda x y \cdot M y x \\
\rightarrow_{\lambda} & (x) \lambda y \cdot M y x
\end{array}
$$

$$
M=\lambda x y \cdot M y x
$$

$\rightarrow_{\text {reg }}{ }^{+}$-generated subterms

Strongly regular λ^{∞}-term

$M=\lambda x y . M y x$
$\rightarrow_{\text {reg }}{ }^{+}$-generated subterms

Strongly regular λ^{∞}-term

$M=\lambda x y . M y x$
$\rightarrow_{\text {reg }}{ }^{+}$-generated subterms

Strongly regular λ^{∞}-term

$M=\lambda x y . M y x$
$\rightarrow_{\text {reg }}{ }^{+}$-generated subterms

Strongly regular λ^{∞}-term

$M=\lambda x y . M y x$
$\rightarrow_{\text {reg }}{ }^{+}$-generated subterms

Strongly regular λ^{∞}-term

$M=\lambda x y . M y x$
$\rightarrow_{\text {reg }}{ }^{+}$-generated subterms

Strongly regular λ^{∞}-term

$M=\lambda x y . M y x$
$\rightarrow_{\text {reg }}{ }^{+}$-generated subterms

Strongly regular λ^{∞}-term

$M=\lambda x y . M y x$
finitely many $\rightarrow_{\text {reg+--generated }}$ subterms
$\Longrightarrow M$ is strongly regular

Not strongly regular λ^{∞}-term

λ^{∞}-term N
$\rightarrow_{\text {reg+ }}$-generated subterms

Not strongly regular λ^{∞}-term

λ^{∞}-term N
$\rightarrow_{\text {reg+ }}$-generated subterms

Not strongly regular λ^{∞}-term

$$
\begin{array}{rll}
N & = & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c .(\ldots) b) a
\end{array}
$$

Not strongly regular λ^{∞}-term

$$
\begin{aligned}
& N= \\
&() \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} \\
&(a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow @_{0} \\
&(a b) \lambda c \cdot(\lambda c .(\ldots) b) a \\
&
\end{aligned}
$$

Not strongly regular λ^{∞}-term

$$
\begin{array}{rll}
N & = & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c .(\ldots) b) a \\
& \rightarrow_{@_{0}} & (a b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & (a b c)(\lambda d .(\ldots) c) b
\end{array}
$$

Not strongly regular λ^{∞}-term

$$
\begin{array}{rlr}
N & = & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c .(\ldots) b) a \\
& \rightarrow_{@_{0}} & (a b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & (a b c)(\lambda d .(\ldots) c) b \\
& \rightarrow_{@_{0}} & (a b c) \lambda d .(\lambda e \ldots) c
\end{array}
$$

Not strongly regular λ^{∞}-term

$$
\begin{array}{rll}
N & = & () \lambda a . \lambda b .(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b .(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c .(\ldots) b) a \\
& \rightarrow_{@_{0}} & (a b) \lambda c .(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & (a b c)(\lambda d .(\ldots) c) b \\
& \rightarrow_{@_{0}} & (a b c) \lambda d .(\lambda e \ldots) c \\
& \rightarrow_{\lambda} & (a b c d)(\lambda e .(\ldots) d) c
\end{array}
$$

\rightarrow reg $^{+}$-generated subterms

Not strongly regular λ^{∞}-term

λ^{∞}-term N
infinitely many $\rightarrow_{\text {reg+ }}$-generated subterms $\Longrightarrow N$ is not strongly regular

Regular λ^{∞}-term

$$
N=() \lambda a \cdot \lambda b \cdot(\ldots) a
$$

Regular λ^{∞}-term

$$
\begin{aligned}
N & =() \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} \quad(a) \lambda b \cdot(\lambda c \ldots) a
\end{aligned}
$$

Regular λ^{∞}-term

$$
\begin{array}{rlrl}
N & = & () \lambda a \cdot \lambda b .(\ldots) a \\
& \rightarrow_{\lambda} & & (a) \lambda b .(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c .(\ldots) b) a
\end{array}
$$

Regular λ^{∞}-term

$$
\begin{array}{rlr}
N & = & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c .(\ldots) b) a \\
& \rightarrow @_{0} & (a b) \lambda c \cdot(\lambda d \ldots) b
\end{array}
$$

Regular λ^{∞}-term

$$
\begin{aligned}
N & = \\
& \rightarrow_{\lambda} \\
& (a) \lambda a \cdot \lambda b .(\lambda c \ldots) a \\
& \rightarrow_{\lambda} \\
& (a b)(\lambda c .(\ldots) b) a \\
& \rightarrow_{@_{0}} \\
& (a b) \lambda c \cdot(\lambda d \ldots) b \\
& (b) \lambda c .(\lambda d \ldots) b
\end{aligned}
$$

Regular λ^{∞}-term

$$
\begin{aligned}
N & = & & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & & (a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & & (a b)(\lambda c \cdot(\ldots) b) a \\
& \rightarrow_{@_{0}} & & (a b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\text {del }} & & (b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & & (b c)(\lambda d \cdot(\ldots) c) b
\end{aligned}
$$

λ^{∞}-term N
$\rightarrow_{\text {reg }}$-generated subterms

Regular λ^{∞}-term

$$
\begin{array}{rlrl}
N & & & () \lambda a . \lambda b .(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b .(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c .(\ldots) b) a \\
& \rightarrow_{@_{0}} & (a b) \lambda c .(\lambda d \ldots) b \\
& \rightarrow_{\text {del }} & & (b) \lambda c .(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & & (b c)(\lambda d .(\ldots) c) b \\
& \rightarrow_{@_{0}} & & (b c) \lambda d .(\lambda d \ldots) c
\end{array}
$$

λ^{∞}-term N
$\rightarrow_{\text {reg }}$-generated subterms

Regular λ^{∞}-term

$$
\begin{aligned}
N & = & & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & & (a) \lambda b \cdot(\lambda c . \ldots) a \\
& \rightarrow_{\lambda} & & (a b)(\lambda c \cdot(\ldots) b) a \\
& \rightarrow_{@_{0}} & & (a b) \lambda c \cdot(\lambda d . \ldots) b \\
& \rightarrow_{\text {del }} & & (b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & & (b c)(\lambda d \cdot(\ldots) c) b \\
& \rightarrow_{@_{0}} & & (b c) \lambda d \cdot(\lambda d . \ldots) c \\
& \rightarrow_{\text {del }} & & (c) \lambda d \cdot(\lambda e \ldots) d
\end{aligned}
$$

λ^{∞}-term N
$\rightarrow_{\text {reg }}$-generated subterms

Regular λ^{∞}-term

$$
\begin{aligned}
N & = & & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & & (a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & & (a b)(\lambda c \cdot(\ldots) b) a \\
& \rightarrow_{@_{0}} & & (a b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\text {del }} & & (b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & & (b c)(\lambda d .(\ldots) c) b \\
& \rightarrow_{@_{0}} & & (b c) \lambda d \cdot(\lambda d \ldots) c \\
& \rightarrow_{\text {del }} & & (c) \lambda d \cdot(\lambda e \ldots) d \\
& \rightarrow_{\lambda} & & (c d)(\lambda e .(\ldots) d) c
\end{aligned}
$$

λ^{∞}-term N
$\rightarrow_{\text {reg-generated }}$ subterms

Regular λ^{∞}-term

$$
\begin{array}{rlrl}
N & & & () \lambda a . \lambda b .(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b .(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & (a b)(\lambda c . \ldots) b) a \\
& \rightarrow_{@_{0}} & (a b) \lambda c .(\lambda d \ldots) b \\
& \rightarrow_{\text {del }} & & (b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\lambda} & & (b c)(\lambda d .(\ldots) c) b \\
& \rightarrow_{@_{0}} & & (b c) \lambda d \cdot(\lambda d \ldots) c \\
& \rightarrow_{\text {del }} & (c) \lambda d .(\lambda e \ldots) d \\
& \rightarrow_{\lambda} & (c d)(\lambda e . \ldots) d) c \\
& \rightarrow_{@_{0}} & (c d) \lambda e .(\lambda f \ldots) d
\end{array}
$$

λ^{∞}-term N
$\rightarrow_{\text {reg }}$-generated subterms

Regular λ^{∞}-term

λ^{∞}-term N

$$
\begin{array}{rlrl}
N & = & () \lambda a \cdot \lambda b \cdot(\ldots) a \\
& \rightarrow_{\lambda} & (a) \lambda b \cdot(\lambda c \ldots) a \\
& \rightarrow_{\lambda} & & (a b)(\lambda c \cdot(\ldots) b) a \\
& \rightarrow_{@_{0}} & & (a b) \lambda c \cdot(\lambda d \ldots) b \\
& \rightarrow_{\text {del }} & & (b) \lambda c \cdot(\lambda d . \ldots) b \\
& \rightarrow_{\lambda} & & (b c)(\lambda d .(\ldots) c) b \\
& \rightarrow_{@_{0}} & & (b c) \lambda d .(\lambda d \ldots) c \\
& \rightarrow_{\text {del }} & & (c) \lambda d .(\lambda e \ldots) d \\
& \rightarrow_{\lambda} & & (c d)(\lambda e .(\ldots) d) c \\
& \rightarrow_{@_{0}} & (c d) \lambda e \cdot(\lambda f . \ldots) d \\
& \rightarrow_{\text {del }} & & (d) \lambda e .(\lambda f . \ldots) d
\end{array}
$$

$\rightarrow_{\text {reg-generated }}$ subterms

Regular λ^{∞}-term

$$
\begin{aligned}
& \lambda^{\infty} \text {-term } N \\
& \{N=\lambda x y . R(y) x, \\
& R(z)=\lambda u \cdot R(u) z\}
\end{aligned}
$$

finitely many $\rightarrow_{\text {reg }}$-generated subterms $\Longrightarrow M$ is regular

Strongly regular \Rightarrow regular

Proposition

- Every strongly regular λ^{∞}-term is also regular.
- Finite λ-terms are both regular and strongly regular.

$\boldsymbol{\lambda}_{\text {letrec }}$-Expressibility

Proposition

- Every strongly regular λ^{∞}-term is also regular.
- Finite λ-terms are both regular and strongly regular.

Theorem ($\lambda_{\text {letrec }}$-expressibility)
An λ^{∞}-term is $\boldsymbol{\lambda}_{\text {letrec }}$-expressible if and only if it is strongly regular.

Binding-capturing chains

Definition (Melliés, van Oostrom)

For positions p, q, r, s :
$p \circ q: \Longleftrightarrow$ binder at p binds variable occurrence at position q
$r \rightarrow s: \Longleftrightarrow$ variable occurrence at r is captured by binding at s
Binding-capturing chains: $p_{0} \circ p_{1} \rightarrow p_{2} \circ p_{3} \rightarrow p_{4} \circ \ldots$

Binding-capturing chains

Definition (Melliés, van Oostrom)

For positions p, q, r, s :
$p \circ q: \Longleftrightarrow$ binder at p binds variable occurrence at position q
$r \rightarrow s: \Longleftrightarrow$ variable occurrence at r is captured by binding at s
Binding-capturing chains: $p_{0} \circ p_{1} \rightarrow p_{2} \circ-p_{3} \rightarrow p_{4} \circ \ldots$

Main theorem (extended)

Theorem (binding-capturing chains)
For all λ^{∞}-term M :
M is strongly regular $\Longleftrightarrow M$ is regular, and
M has only finite binding-capturing chains.

Main theorem (extended)

Theorem (binding-capturing chains)
For all λ^{∞}-term M :
M is strongly regular $\Longleftrightarrow M$ is regular, and
M has only finite binding-capturing chains.

Theorem ($\boldsymbol{\lambda}_{\text {letrec }}$-expressibility, extended)
For all λ^{∞}-terms M the following are equivalent:
(i) M is $\boldsymbol{\lambda}_{\text {letrec }}$-expressible.
(ii) M is strongly regular.
(iii) M is regular, and it only contains finite binding-capturing chains.

Maximal sharing of functional programs

(joint work with Jan Rochel)

Motivation, questions, and results

Motivation

- desirable: increase sharing in programs
- code that is as compact as possible
- avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

Questions
(1): how to maximize sharing in programs?
(2): how to check for unfolding equivalence?

We restrict to $\lambda_{\text {letrec }}$, the λ-calculus with letrec

- as abstraction \& syntactical core of functional languages

Results:

- efficient methods solving questions (1) and (2) for $\lambda_{\text {letrec }}$

The method

- Methods consist of the steps:

1. interpretation of $\boldsymbol{\lambda}_{\text {letrec }}$-terms as term graphs

- higher-order term graphs: λ-ho-term-graphs
- first-order term graphs : λ-term-graphs
- deterministic finite-state automata: λ-DFAs

2. bisimilarity \& bisimulation collapse of λ-term-graphs

- implemented as: DFA-minimization of λ-DFAs

3. readback of λ-term-graphs as $\boldsymbol{\lambda}_{\text {letrec }}$-terms

- Haskell implementation
- Complexity

Maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L

Maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L
L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

Maximal sharing: the method

Maximal sharing: the method

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L
L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

Maximal sharing: the method

L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

Maximal sharing: the method

Maximal sharing: the method

Maximal sharing: the method

Maximal sharing: the method

1. term graph interpretation $\llbracket \rrbracket \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

Maximal sharing: the method

1. term graph interpretation $\llbracket \rrbracket \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$.
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse \downarrow of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding program $L_{0}=\mathrm{rb}\left(G_{0}\right)$.

Maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding program $L_{0}=\mathrm{rb}\left(G_{0}\right)$.

Unfolding equivalence: example

λf. let $r=f(f r)$ in r

$$
\lambda f . f(f(\ldots))
$$

λf. let $r=f r$ in r

Unfolding equivalence: example

Unfolding equivalence: the method

Unfolding equivalence: the method

Unfolding equivalence: the method

$$
\begin{array}{r}
L_{1} \\
\llbracket \cdot \rrbracket_{\infty} \Phi \downarrow \\
M \\
\llbracket \cdot \rrbracket_{\lambda_{\infty}} \mp ? \\
L_{2}
\end{array}
$$

Unfolding equivalence: the method

1. term graph interpretation 【.]. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1} and L_{2} as:
a. higher-order term graphs

$$
\mathcal{G}_{1}=\llbracket L_{1} \rrbracket_{\mathcal{H}}
$$

b. first-order term graphs

$$
G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}}
$$

Unfolding equivalence: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1} and L_{2} as:
a. higher-order term graphs

$$
\mathcal{G}_{1}=\llbracket L_{1} \rrbracket_{\mathcal{H}} \text { and } \mathcal{G}_{2}=\llbracket L_{2} \rrbracket_{\mathcal{H}}
$$

b. first-order term graphs

$$
G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}} \text { and } G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

Unfolding equivalence: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$.
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1} and L_{2} as:
a. higher-order term graphs

$$
\mathcal{G}_{1}=\llbracket L_{1} \rrbracket_{\mathcal{H}} \text { and } \mathcal{G}_{2}=\llbracket L_{2} \rrbracket_{\mathcal{H}}
$$

b. first-order term graphs

$$
G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}} \text { and } G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

2. check bisimilarity of f-o term graphs G_{1} and G_{2}

Interpretation

Running example

instead of:
λf. let $r=f(f r)$ in $r \quad \longmapsto_{\text {max-sharing }}$ λf. let $r=f r$ in r
we use:
$\lambda x . \lambda f$. let $r=f(f r x) x$ in r
\longmapsto max-sharing
$\lambda x . \lambda f$. let $r=f r x$ in r

L
\longmapsto max-sharing

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes, + binding links)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with abstraction-prefix function)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

λ-higher-order-term-graph $\llbracket L_{0} \rrbracket_{\mathcal{H}}$

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ abstraction-prefix function)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

incomplete DFA

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink, + scopes)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink, + scopes, + binding links)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with abstraction-prefix function)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph (+ abstraction-prefix function)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with scope vertices with backlinks

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

Graph interpretation (examples 1 and 2)

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\boldsymbol{\lambda}_{\text {letrec }}$-term $L \longmapsto \lambda$-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ-term-graphs: ~ minimal scopes

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\boldsymbol{\lambda}_{\text {letrec }}$-term $L \longmapsto \lambda$-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ-term-graphs: ~ minimal scopes

Theorem

For $\lambda_{\text {letrec }}$-terms L_{1} and L_{2} it holds: Equality of infinite unfolding coincides with bisimilarity of λ-term-graph interpretations:

$$
\llbracket L_{1} \rrbracket_{\lambda_{\infty}}=\llbracket L_{2} \rrbracket_{\lambda_{\infty}} \quad \Longleftrightarrow \llbracket L_{1} \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

structure constraints (L'Aquila)

higher-order as first-order term graphs

$$
\text { let } f=\lambda x .(\lambda y . f x) x \text { in } f
$$

higher-order term graph [Blom '03]

higher-order term graph (abstraction-prefix funct.)

first-order term graph

Collapse

Bisimulation check between λ-term-graphs

$$
\llbracket L_{0} \rrbracket_{\mathcal{T}}
$$

$$
\llbracket L \rrbracket_{\mathcal{T}}
$$

Bisimulation check between λ-term-graphs

Bisimulation between λ-term-graphs

Bisimilarity between λ-term-graphs

Functional bisimilarity and bisimulation collapse

Bisimulation collapse: property

Theorem

The class of eager-scope λ-term-graphs is closed under functional bisimilarity \rightarrow.
\Longrightarrow For a $\boldsymbol{\lambda}_{\text {letrec }}$-term L
the bisimulation collapse of $\llbracket L \rrbracket_{\mathcal{T}}$ is again an eager-scope λ-term-graph.

λ-DFA-Minimization

Readback

Readback

defined with property:

Readback

defined with property:

Readback

defined with property:

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $\llbracket \cdot \|_{\mathcal{T}}$ modulo isomorphism \simeq.

Readback

defined with property:

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $\llbracket \cdot \|_{\mathcal{T}}$ modulo isomorphism \simeq.
idea:

1. construct a spanning tree T of G
2. using local rules, in a bottom-up traversal of T synthesize $L=\mathrm{rb}(G)$

Readback: example (fix)

readback: example (fix)

$\left(v_{1}[] \cdots v_{n}[]\right) v_{n}$

readback: example (fix)

$$
\left(v_{1}[] \cdots v_{n}[] v_{n+1}[r=?]\right) r
$$

readback: example (fix)

readback: example (fix)

$$
\begin{gathered}
\left(\vec{p} v_{n+1}[B, r=L]\right) r \\
\left(\vec{p} v_{n+1}\left[B,(\vec{p}) v_{n+1}\right)\right. \\
\end{gathered}
$$

readback: example (fix)

(\vec{p}) λv_{n}. let B in L

$\left(\vec{p} v_{n}[B]\right) L$

Maximal sharing: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

Maximal sharing: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

Maximal sharing: complexity

1. interpretation
of $\lambda_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

Maximal sharing: complexity

1. interpretation
of $\lambda_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\downarrow \downarrow$
of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb
of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

Maximal sharing: complexity

1. interpretation
of $\lambda_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\downarrow \downarrow$
of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb
of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\mathrm{rb}\left(G_{0}\right)$.

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

Maximal sharing: complexity

1. interpretation
of $\lambda_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\downarrow \downarrow$
of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb
of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

Theorem

Computing a maximally compact form $L_{0}=\left(\mathrm{rb} \circ \downarrow \circ \llbracket \cdot \rrbracket_{\mathcal{T}}\right)(L)$ of L for a $\boldsymbol{\lambda}_{\text {letrec }}$-term L requires time $O\left(n^{2} \log n\right)$, where $|L|=n$.

Unfolding equivalence: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1}, L_{2}
as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket \mathcal{T}$ and $G_{2}=\llbracket L_{2} \rrbracket \mathcal{T}$
2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

Unfolding equivalence: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1}, L_{2} with $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$ as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}}$ and $G_{2}=\llbracket L_{2} \rrbracket \mathcal{T}$ - in time $O\left(n^{2}\right)$, sizes $\left|G_{1}\right|,\left|G_{2}\right| \in O\left(n^{2}\right)$.
2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

Unfolding equivalence: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1}, L_{2} with $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$ as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}}$ and $G_{2}=\llbracket L_{2} \rrbracket \mathcal{T}$

- in time $O\left(n^{2}\right)$, sizes $\left|G_{1}\right|,\left|G_{2}\right| \in O\left(n^{2}\right)$.

2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

- in time $O\left(\left|G_{i}\right| \alpha\left(\left|G_{i}\right|\right)\right)=O\left(n^{2} \alpha(n)\right)$

Unfolding equivalence: complexity

1. interpretation of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1}, L_{2} with $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$ as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}}$ and $G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, sizes $\left|G_{1}\right|,\left|G_{2}\right| \in O\left(n^{2}\right)$.

2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

- in time $O\left(\left|G_{i}\right| \alpha\left(\left|G_{i}\right|\right)\right)=O\left(n^{2} \alpha(n)\right)$

Theorem

Deciding whether $\boldsymbol{\lambda}_{\text {letrec }}$-terms L_{1} and L_{2} are unfolding-equivalent requires almost quadratic time $O\left(n^{2} \alpha(n)\right)$ for $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$.

Demo: console output

jan:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
λ-letrec-term:
λx. λf. let $r=f(f r x) x$ in r
derivation:

$(x f[r]) f \quad(x f[r]) f r x$
(x f[r]) f (f r x)
(x f[r]) f (f r x) x
@
(x) x
@ --------- S
(x fr]) x
(x f) let r = f (f r x) x in r
(x) λf. let $r=f(f r x) x$ in r
() λx. λf. let $r=f(f r x) x$ in r
writing DFA to file: running-dfa.pdf
readback of DFA:
λx. λy. let $F=y(y F x) x$ in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
$\lambda x . \lambda y$. let $F=y F x$ in F
jan: ~/papers/maxsharing-ICFP/talks/ICFP-2014>

Demo: generated λ-DFAs

Desiderata \rightarrow results: structure-constrained term graphs

λ-calculus with letrec under unfolding semantics $\llbracket \cdot \rrbracket_{\lambda^{\infty}}$
Not available: term graph semantics that is studied under \longleftrightarrow

- graph representations used by compilers were not intended for use under \leftrightarrows

Desiderata \rightarrow results: structure-constrained term graphs

λ-calculus with letrec under unfolding semantics $\llbracket \cdot \rrbracket_{\lambda^{\infty}}$
Not available: term graph semantics that is studied under \leftrightarrows

- graph representations used by compilers were not intended for use under \leftrightarrows

Desired: term graph semantics that:

- natural correspondence with terms in $\boldsymbol{\lambda}_{\text {letrec }}$
- supports compactification under \leftrightarrows
- efficient translation and readback

Desiderata \rightarrow results: structure-constrained term graphs

λ-calculus with letrec under unfolding semantics $\llbracket \cdot \rrbracket_{\lambda_{\infty}}$
Not available: term graph semantics that is studied under \leftrightarrows

- graph representations used by compilers were not intended for use under \leftrightarrows

Desired: term graph semantics that:

- natural correspondence with terms in $\boldsymbol{\lambda}_{\text {letrec }}$
- supports compactification under \leftrightarrows
- efficient translation and readback

Defined: int's $\llbracket \cdot \rrbracket_{\mathcal{H}} / \mathbb{\llbracket} \cdot \rrbracket_{\mathcal{T}}$ as higher-order/first-order λ-term graphs

- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with λ-calculus with letrec
- efficient translation and readback
- translation is inverse of readback

Desiderata \rightarrow results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under \leftrightarrows

- not closed under $\overrightarrow{ } \rightarrow$, and \leftrightarrows, modulo \leftrightarrows incomplete

Desiderata \rightarrow results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under \leftrightarrows

- not closed under \rightrightarrows, and \leftrightarrows, modulo \leftrightarrows incomplete

Desired: reason with graphs that are $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows (at least with 'sufficiently many')
understand incompleteness by a structural graph property

Desiderata \rightarrow results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under \leftrightarrows

- not closed under $\overrightarrow{\text {, and }} \leftrightarrows$, modulo \leftrightarrows incomplete

Desired: reason with graphs that are $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows (at least with 'sufficiently many')
understand incompleteness by a structural graph property
Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's
- contains the collapse of a process graph G
$\Longleftrightarrow G$ is $\llbracket \|_{P}^{1+\| x}$-expressible modulo \leftrightarrows

Nested Term Graphs

(joint work with Vincent van Oostrom)

Nested scopes in $\lambda_{\text {letrec }}$ terms

First-order term graph over $\Sigma=\{\lambda / 1, @ / 2,0 / 0\}$

Nested scopes in $\lambda_{\text {letrec }}$ terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$. let $\beta=x(\lambda u . u) \beta$ in $\beta)$

Nested scopes in $\lambda_{\text {letrec }}$ terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$. let $\beta=x(\lambda u . u) \beta$ in $\beta)$

Nested scopes in $\lambda_{\text {letrec }}$ terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$. let $\beta=x(\lambda u . u) \beta$ in $\beta)$

Nested scopes in $\lambda_{\text {letrec }}$ terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$. let $\beta=x(\lambda u . u) \beta$ in $\beta)$

Nested scopes in $\lambda_{\text {letrec }}$ terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$. let $\beta=x(\lambda u . u) \beta$ in $\beta)$

Nested scopes in $\lambda_{\text {letrec }}$ terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$. let $\beta=x(\lambda u . u) \beta$ in $\beta)$

Nested scopes in λ-terms

Nested scopes \rightarrow nested term graph

nested term graph

gletrec

$$
\begin{aligned}
\mathrm{n}() & =\lambda x \cdot \mathrm{f}_{1}(x) \mathrm{f}_{2}(x, \mathrm{~g}()) \\
\mathrm{f}_{1}\left(X_{1}\right) & =\lambda x \cdot \operatorname{let} \alpha=X_{1} \alpha \text { in } \alpha \\
\mathrm{f}_{2}\left(X_{1}, X_{2}\right) & =\lambda y \cdot \operatorname{let} \beta=X_{1}\left(X_{2} \beta\right) \text { in } \beta \\
\mathrm{g}() & =\lambda z \cdot z \\
\mathrm{n}() &
\end{aligned}
$$

in

nested term graph

Signature

A signature for nested term graphs (ntg-signature) is a signature Σ that is partitioned into:

- atomic symbol alphabet Σ_{at}
- nested symbol alphabet $\Sigma_{\text {ne }}$

Additionally used:

- interface symbols alphabet $O I=O \cup I$
- $O=\{0\}$ with o unary
- $I=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \ldots\right\}$ with i_{j} nullary

Recursive graph specification

Definition

Let Σ be an ntg-signature.
A recursive graph specification (a rgs) $\mathcal{R}=\langle r e c, r\rangle$ consists of:

- specification function

$$
\begin{aligned}
r e c: & \Sigma_{\mathrm{ne}} \\
\quad & \longrightarrow \mathrm{TG}(\Sigma \cup O I) \\
& \longmapsto \operatorname{rec}(f)=F \in \mathrm{TG}\left(\Sigma \cup\left\{\mathrm{o}, \mathrm{i}_{1}, \ldots, \mathrm{i}_{k}\right\}\right)
\end{aligned}
$$

where F contains precisely one vertex labeled by o, the root, and one vertex each labeled by \mathbf{i}_{j}, for $j \in\{1, \ldots, k\}$;

- nullary root symbol $r \in \Sigma_{\text {ne }}$.

Recursive graph specification

$$
\begin{aligned}
& \Sigma_{\mathrm{at}}=\{\lambda / 1, @ / 2,0 / 0\}, \Sigma_{\mathrm{ne}}=\left\{\mathrm{r}_{0} / 0, \mathrm{f}_{2} / 2, \mathrm{~g} / 0\right\}, O=\{\mathrm{o} / 1\}, \\
& I=\left\{\mathrm{i}_{1} / 0, \mathrm{i}_{2} / 0, \ldots\right\} .
\end{aligned}
$$

Recursive graph specification

Definition

Let Σ be an ntg-signature.
A recursive graph specification (a rgs) $\mathcal{R}=\langle r e c, r\rangle$ consists of:

- specification function

$$
\begin{aligned}
r e c: & \Sigma_{\mathrm{ne}} \longrightarrow \mathrm{TG}(\Sigma \cup O I) \\
& \quad f / k \longmapsto \operatorname{rec}(f)=F \in \mathrm{TG}\left(\Sigma \cup\left\{\mathrm{o}, \mathrm{i}_{1}, \ldots, \mathrm{i}_{k}\right\}\right)
\end{aligned}
$$

where F contains precisely one vertex labeled by o, the root, and one vertex each labeled by i_{i}, for $i \in\{1, \ldots, k\}$;

- nullary root symbol $r \in \Sigma_{\text {ne }}$.
rooted dependency ARS \circ of \mathcal{R} :
- objects: nested symbols in $\Sigma_{\text {ne }}$
- steps: for all $f, g \in \Sigma_{\text {ne }}$:
$p: f \circ g \Longleftrightarrow g$ occurs in the term $\operatorname{graph} \operatorname{rec}(f)$ at position p

Recursive graph specification

dependency ARS: $f_{2} \xlongequal[\circ]{\circ} r_{0} \circ g$ is a dag (but not a tree).

Nested term graph: intensional definition

Definition

Let Σ be an ntg-signature.
A nested term graph over Σ is an rgs $\mathcal{N}=\langle r e c, r\rangle$ such that the rooted dependency ARS \circ is a tree.

Nested term graph (intensionally)

Nested term graph (intensionally)

Nested term graph (intensionally)

Nested term graph (intensionally)

infinite λ-term
nested term graph with infinite nesting dependency ARS: $f_{0} \circ-f_{1} \circ-f_{2} \circ-f_{3} \circ-\ldots$ (infinitely nested scopes)

Nested term graph (intensionally)

Nested term graph: extensional definition

Nested term graph: extensional definition

An extensional description of an $n t g$ (an entg) over Σ is a term graph over $\Sigma \cup O I$ (not root-connected) with vertex set V enriched by:

- call : $V \rightharpoonup V,(v$ with nested symbol $) \mapsto($ root of graph nested into $v)$

Nested term graph: extensional definition

An extensional description of an $n t g$ (an entg) over Σ is a term graph over $\Sigma \cup O I$ (not root-connected) with vertex set V enriched by:

- call : $V \rightharpoonup V,(v$ with nested symbol $) \mapsto($ root of graph nested into $v)$
- return : $V \rightarrow V,\left(v\right.$ with output vertex $\left.\mathrm{i}_{j}\right) \mapsto$ (j-th successor of vertex into which the graph containing v is nested)

Nested term graph: extensional definition

An extensional description of an $n t g$ (an entg) over Σ is a term graph over $\Sigma \cup O I$ (not root-connected) with vertex set V enriched by:

- call : $V \rightharpoonup V,(v$ with nested symbol $) \mapsto($ root of graph nested into $v)$
- return : $V \rightarrow V,\left(v\right.$ with output vertex $\left.\mathrm{i}_{j}\right) \mapsto$ (j-th successor of vertex into which the graph containing v is nested)
- anc $: V \rightarrow V^{*}$ ancestor function:
$v \mapsto$ word $\operatorname{anc}(v)=v_{1} \cdots v_{n}$ of the vertices in which v is nested

Nested term graphs: intensional vs. extensional definition

Proposition

- Every nested term graph has an extensional description.
- For every entg \mathcal{G} there is a nested term graph for which \mathcal{G} is the extensional description.

Bisimulation

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} be the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} be the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}. \mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is a bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation B betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} be the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}. \mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is a bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation B betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} be the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}. \mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is a bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation B betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} be the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is a bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation B betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

Bisimulation (for extensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} be the vertices of \mathcal{N}_{1}, and let V_{2} be the vertices of \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is a bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation B betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

Implementation by first-order term graph (via entg)

Summary

- Expressibility of $\lambda_{\text {letrec }}$ via unfolding
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- Nested term graphs

Summary

- Expressibility of $\boldsymbol{\lambda}_{\text {letrec }}$ via unfolding
- Characterizations of infinite λ-terms that are unfoldings of $\boldsymbol{\lambda}_{\text {letrec }}$-terms as:
- strongly regular λ^{∞}-terms,
- regular λ^{∞}-terms with finite binding-capturing chains.
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- Nested term graphs

Summary

- Expressibility of $\boldsymbol{\lambda}_{\text {letrec }}$ via unfolding
- Characterizations of infinite λ-terms that are unfoldings of $\boldsymbol{\lambda}_{\text {letrec }}$-terms as:
- strongly regular λ^{∞}-terms,
- regular λ^{∞}-terms with finite binding-capturing chains.
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- Maximal compactification of $\boldsymbol{\lambda}_{\text {letrec }}$-terms
while preserving their nested scope-structure, by:
- formalization as (higher-/first-order) term graphs and DFAs
- minimization / readback / complexity / Haskell implementation
- Nested term graphs

Summary

- Expressibility of $\boldsymbol{\lambda}_{\text {letrec }}$ via unfolding
- Characterizations of infinite λ-terms that are unfoldings of $\boldsymbol{\lambda}_{\text {letrec }}$-terms as:
- strongly regular λ^{∞}-terms,
- regular λ^{∞}-terms with finite binding-capturing chains.
- Maximal sharing of functional programs in $\boldsymbol{\lambda}_{\text {letrec }}$
- Maximal compactification of $\boldsymbol{\lambda}_{\text {letrec }}$-terms
while preserving their nested scope-structure, by:
- formalization as (higher-/first-order) term graphs and DFAs
- minimization / readback / complexity / Haskell implementation
- Nested term graphs
- Basic ideas for a general framework for graph representations of terms with nested scopes

Resources

- papers and reports
- G: Modeling Terms by Graphs with Structure Constraints
- TERMGRAPH 2018 post-proceedings in in EPTCS 288
- G, Rochel: Maximal Sharing in the Lambda Calculus with Letrec
- ICFP 2014 paper, extending report arXiv:1401.1460
- G, Rochel: Term Graph Representations for Cyclic Lambda Terms
- TERMGRAPH 2013 proceedings, report arXiv:1308.1034
- G, Vincent van Oostrom: Nested Term Graphs
- TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
- Unfolding Semantics of the Untyped λ-Calculus with letrec
- Ph.D. Thesis, Utrecht University, 2016
- tools by Jan Rochel
- maxsharing on hackage.haskell.org
- port graph rewriting

