Modeling Terms in the λ -Calculus with letrec (by Term Graphs and Finite-State Automata)

Clemens Grabmayer

Gran Sasso Science Institute L'Aquila, Italy

Computational Logic & Applications Université de Versailles July 1–2, 2019

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Aim											

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Aim											

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use scope sharing,

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Aim											

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use extended-scope sharing,

Aim	aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
	Aim											

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use extended-scope sharing,
 - not context sharing from optimal λ -reduction.

 $aim/ov \lambda_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Explain graph representations for (abstracted) functional programs (λ -terms with recursive bindings) that:

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use extended-scope sharing,
 - not context sharing from optimal λ -reduction.

Results from the interdisciplinary research project ROS (Realising Optimal Sharing, Utrecht University, 2009–2014/16), which brought together:

- term rewriters and logicians (philosophy department, UU)
 - Vincent van Oostrom, CG
- Haskell implementors (CS department, UU)
 - Doaitse Swierstra, Atze Dijkstra, Jan Rochel

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Ove	rview	/									

- λ -calculus with letrec (λ_{letrec})
- Expressibility of λ_{letrec} via unfolding

• Maximal sharing of functional programs in λ_{letrec}

Nested term graphs

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Ove	rview	V									

- λ -calculus with letrec (λ_{letrec})
- Expressibility of λ_{letrec} via unfolding
 - Which infinite λ-terms are unfoldings of λ_{letrec}-terms?
- Maximal sharing of functional programs in λ_{letrec}
 - How can λ_{letrec}-terms be compressed maximally while preserving their nested scope-structure?

How to get a general framework for terms with nested scopes?

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Ove	rview	/									

- λ -calculus with letrec (λ_{letrec})
- Expressibility of λ_{letrec} via unfolding
 - Which infinite λ-terms are unfoldings of λ_{letrec}-terms?
 - strongly regular λ^{∞} -terms
- Maximal sharing of functional programs in λ_{letrec}
 - How can λ_{letrec}-terms be compressed maximally while preserving their nested scope-structure?

How to get a general framework for terms with nested scopes?

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Ove	rview	V									

- λ -calculus with letrec (λ_{letrec})
- Expressibility of λ_{letrec} via unfolding
 - Which infinite λ-terms are unfoldings of λ_{letrec}-terms?
 - strongly regular λ^{∞} -terms
- Maximal sharing of functional programs in λ_{letrec}
 - How can λ_{letrec}-terms be compressed maximally while preserving their nested scope-structure?
 - formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / efficiency / Haskell implementation

How to get a general framework for terms with nested scopes?

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Ove	rview	V									

- λ -calculus with letrec (λ_{letrec})
- Expressibility of λ_{letrec} via unfolding
 - Which infinite λ-terms are unfoldings of λ_{letrec}-terms?
 - strongly regular λ^{∞} -terms
- Maximal sharing of functional programs in λ_{letrec}
 - How can λ_{letrec}-terms be compressed maximally while preserving their nested scope-structure?
 - formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / efficiency / Haskell implementation

- How to get a general framework for terms with nested scopes?
 - term graphs with inbuilt nesting

The λ -Calculus with letrec

$$(\lambda f. \text{ letrec } r = f r \text{ in } r) M$$

The λ -Calculus with letrec

$$(\lambda f. \operatorname{let} r = fr \operatorname{in} r) M$$

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
The	<i>λ</i> -C	alcul	us								

Terms in the	λ -calcult	IS		(over set Var of variables):
(term)	M	::=	x	(variable, $x \in Var$)
			$M_1 M_2$	(application)
			$\lambda x. M$	(abstraction)

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
The	<i>λ</i> -C	alcul	us								

Terms in the	λ -calcult	JS		(over set Var of variables):
(term)	M	::=	x	(variable, $x \in Var$)
			$M_1 M_2$	(application)
			$\lambda x. M$	(abstraction)

Rewriting in λ :

 $(\lambda x. M) N \rightarrow_{\beta} M[x \coloneqq N]$ (β -reduction step)

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
The	<i>λ</i> -C	alcul	us								

Terms in the	λ -calcult	IS		(over set Var of variables):
(term)	M	::=	x	(variable, $x \in Var$)
			$M_1 M_2$	(application)
			$\lambda x. M$	(abstraction)

Rewriting in λ :

 $\begin{array}{ll} (\lambda x. M) N \rightarrow_{\beta} & M[x \coloneqq N] & (\beta \text{-reduction step}) \\ \lambda x. M \rightarrow_{\alpha} & \lambda y. M[x \coloneqq y] & (\alpha \text{-conversion step}) \end{array}$

 $\begin{array}{ccccc} \text{(term)} & M & \coloneqq & x & (\text{variable, } x \in Var) \\ & & & & | & M_1 M_2 & (\text{application}) \\ & & & | & \lambda x. M & (\text{abstraction}) \\ & & & | & & \text{letrec } B \text{ in } M & (\text{letrec}) \end{array}$

Rewriting in λ :

 $\begin{array}{ll} (\lambda x. M) N \rightarrow_{\beta} & M[x \coloneqq N] & (\beta \text{-reduction step}) \\ \lambda x. M \rightarrow_{\alpha} & \lambda y. M[x \coloneqq y] & (\alpha \text{-conversion step}) \end{array}$

Rewriting in λ :

$$\begin{array}{ll} (\lambda x. M) N \rightarrow_{\beta} & M[x \coloneqq N] & (\beta \text{-reduction step}) \\ \lambda x. M \rightarrow_{\alpha} & \lambda y. M[x \coloneqq y] & (\alpha \text{-conversion step}) \end{array}$$

Notation: letrec = let (like in Haskell). Rewriting in λ :

 $\begin{array}{ll} (\lambda x. M) N \rightarrow_{\beta} & M[x \coloneqq N] & (\beta \text{-reduction step}) \\ \lambda x. M \rightarrow_{\alpha} & \lambda y. M[x \coloneqq y] & (\alpha \text{-conversion step}) \end{array}$

Notation: letrec = let (like in Haskell). Rewriting in λ :

 $\begin{array}{ll} (\lambda x. M) N \rightarrow_{\beta} & M[x \coloneqq N] & (\beta \text{-reduction step}) \\ \lambda x. M \rightarrow_{\alpha} & \lambda y. M[x \coloneqq y] & (\alpha \text{-conversion step}) \end{array}$

Notation: letrec = let (like in Haskell). Rewriting in λ_{letrec} :

 $\begin{array}{ll} (\lambda x. M) N \rightarrow_{\beta} & M[x \coloneqq N] & (\beta \text{-reduction step}) \\ \lambda x. M \rightarrow_{\alpha} & \lambda y. M[x \coloneqq y] & (\alpha \text{-conversion step}) \\ \\ \text{let } B \text{ in } M \rightarrow_{\nabla} & \dots & (\text{unfolding steps}) \end{array}$

ess max-share

pret collapse

e readback com

desid./results nest

sum/res

demo

Fixed-point combinator in $\lambda_{ ext{letrec}}$

For fix := λf . let r = f r in r we find:

fix

ess max-share

t collapse

readback o

complexity demo

desid./results ne

sum/res

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix = λf . let r = f r in r

aim/ov λ_{letrec}

demo desid./results nest sum/res

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix =
$$\lambda f$$
. let $r = f r$ in r

$$\rightarrow_{\bigtriangledown}$$
 $\lambda f.$ let $r = fr \text{ in } fr$

sum/res

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix = λf . let r = f r in r

 \rightarrow_{∇} λf . let r = f r in f r

 \rightarrow_{∇} $\lambda f.$ (let r = fr in f) (let r = fr in r)

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix = λf . let r = f r in r

 \rightarrow_{∇} λf . let r = f r in f r

 \rightarrow_{∇} $\lambda f.$ (let r = fr in f) (let r = fr in r)

$$\rightarrow_{\bigtriangledown}$$
 $\lambda f. f(\operatorname{let} r = f r \operatorname{in} r)$

aim/ov λ_{letrec}

desid./results

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix =
$$\lambda f$$
. let $r = f r$ in r

 $\rightarrow_{\bigtriangledown} \quad \lambda f.$ let r = f r in f r

$$\rightarrow_{\bigtriangledown} \quad \lambda f. (\text{let } r = f r \text{ in } f) (\text{let } r = f r \text{ in } r)$$

$$\rightarrow_{\nabla} \quad \lambda f. f\left(\begin{bmatrix} \mathsf{let} \ r = f \ r \ \mathsf{in} \ r \end{bmatrix} \right)$$

sum/res

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

-

fix =
$$\lambda f$$
. let $r = f r$ in r

 \rightarrow_{∇} λf . let r = f r in f r

 \rightarrow_{∇} $\lambda f.$ (let r = fr in f) (let r = fr in r)

$$\rightarrow_{\bigtriangledown} \quad \lambda f. f([let r = f r in r])$$

$$\twoheadrightarrow_{\nabla} \quad \lambda f. f(f([\operatorname{let} r = fr \text{ in } r]))$$

desid./results

sum/res

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix =
$$\lambda f$$
. let $r = f r$ in r

 \rightarrow_{∇} λf . let r = f r in f r

 \rightarrow_{∇} $\lambda f.$ (let r = fr in f) (let r = fr in r)

$$\rightarrow_{\bigtriangledown} \quad \lambda f. f\left(\boxed{\mathsf{let } r = f r \mathsf{in } r} \right)$$

$$\twoheadrightarrow_{\bigtriangledown} \lambda f. f(f([\operatorname{let} r = fr \operatorname{in} r]))$$

$$\twoheadrightarrow_{\nabla} \quad \lambda f. f(f(\dots f([\operatorname{let} r = fr \operatorname{in} r])))$$

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

 \rightarrow \rightarrow

fix =
$$\lambda f$$
. let $r = f r$ in r

 \rightarrow_{∇} λf . let r = f r in f r

 \rightarrow_{∇} $\lambda f.$ (let r = fr in f) (let r = fr in r)

$$\nabla \quad \lambda f. f([\operatorname{let} r = f r \operatorname{in} r])$$

$$\rightarrow_{\nabla} \quad \lambda f. f(f([\operatorname{let} r = fr \text{ in } r]))$$

 $\twoheadrightarrow_{\nabla} \quad \lambda f. f(f(\ldots f(|\text{let } r = fr \text{ in } r|)))$ $\twoheadrightarrow_{\nabla} \lambda f. f(f(\ldots f(\ldots)))$

nest

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix = λf . let r = f r in r

 \rightarrow_{∇} λf . let r = f r in f r

 \rightarrow_{∇} $\lambda f.$ (let r = fr in f) (let r = fr in r)

$$\rightarrow_{\nabla} \quad \lambda f. \ f(\operatorname{let} r = f r \operatorname{in} r)$$

$$\twoheadrightarrow_{\nabla} \quad \lambda f. f(f(\operatorname{let} r = fr \operatorname{in} r))$$

- $\twoheadrightarrow_{\nabla}$ $\lambda f. f(f(\dots f(\operatorname{let} r = fr \operatorname{in} r)))$
- $\twoheadrightarrow_{\nabla} \lambda f. f(f(\ldots f(\ldots)))$

nest

Fixed-point combinator in λ_{letrec} (infinite unfolding)

For fix := λf . let r = f r in r we find:

fix =
$$\lambda f \cdot \det r = f r \ln r$$

$$\rightarrow_{\bigtriangledown}$$
 $\lambda f.$ let $r = fr \text{ in } fr$

 \rightarrow_{∇} $\lambda f.$ (let r = fr in f) (let r = fr in r)

$$\rightarrow_{\nabla} \quad \lambda f. \ f(\operatorname{let} r = f r \operatorname{in} r)$$

$$\twoheadrightarrow_{\nabla} \quad \lambda f. f(f(\operatorname{let} r = fr \operatorname{in} r))$$

- $\twoheadrightarrow_{\nabla}$ $\lambda f. f(f(\dots f(\operatorname{let} r = fr \operatorname{in} r)))$
- $\twoheadrightarrow_{\nabla} \lambda f. f(f(\ldots f(\ldots)))$

$$= [[fix]]_{\lambda^{\infty}}$$

ess max-share

pret collapse

e readback com

demo desid./results nest

sum/res

Fixed-point combinator in $\lambda_{ ext{letrec}}$

For fix := λf . let r = f r in r we find: fix M

ess max-share

pret collapse

e readback com

desid./results nest sum/res

demo

Fixed-point combinator in $oldsymbol{\lambda}_{ ext{letrec}}$

For fix := λf . let r = f r in r we find: fix M

 $M(\operatorname{fix} M)$

oress max-share

pret collapse

e readback comp

demo desid./results nest

sum/res

Fixed-point combinator in $oldsymbol{\lambda}_{ ext{letrec}}$

For fix := λf . let r = f r in r we find:

 $\operatorname{fix} M = (\lambda f. \operatorname{let} r = f r \operatorname{in} r) M$

$M(\operatorname{fix} M)$

kpress max-share

rpret collaps

e readback comp

demo desid./results nest

sum/res

Fixed-point combinator in $oldsymbol{\lambda}_{ ext{letrec}}$

For fix := λf . let r = fr in r we find: fix $M = (\lambda f$. let r = fr in r) M \rightarrow_{β} let r = Mr in r

 $M(\operatorname{fix} M)$
aim/ov λ_{letrec}

ress max-share

rpret collaps

e readback compl

demo desid./results nest

Fixed-point combinator in $oldsymbol{\lambda}_{ ext{letrec}}$

For fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr

 $M(\operatorname{fix} M)$

im/ov $\lambda_{ ext{letrec}}$ express

s max-share

rpret collapse

se readback comp

demo desid./results nest

Fixed-point combinator in $\lambda_{ ext{letrec}}$

For fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr
 \rightarrow_{∇} (let $r = Mr$ in M) (let $r = Mr$ in r)

 $M(\operatorname{fix} M)$

 $aim/ov = \lambda_{\text{letrec}}$

ess max-share

rpret collapse

se readback compl

demo desid./results nest

Fixed-point combinator in $\lambda_{ ext{letrec}}$

For fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr
 \rightarrow_{∇} (let $r = Mr$ in M) (let $r = Mr$ in r)
 \rightarrow_{∇} M (let $r = Mr$ in r)

 $M(\operatorname{fix} M)$

ress max-share

erpret collaps

e readback compl

demo desid./results nest

st sum/res

Fixed-point combinator in $\lambda_{ ext{letrec}}$

For fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr
 \rightarrow_{∇} (let $r = Mr$ in M) (let $r = Mr$ in r)
 \rightarrow_{∇} M (let $r = Mr$ in r)
 \leftarrow_{β} M ((λf . let $r = fr$ in r) M)
 M (fix M)

ress max-share

erpret collaps

e readback compl

demo desid./results nest

Fixed-point combinator in $oldsymbol{\lambda}_{\mathsf{letrec}}$

For fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr
 \rightarrow_{∇} (let $r = Mr$ in M) (let $r = Mr$ in r)
 \rightarrow_{∇} M (let $r = Mr$ in r)
 \leftarrow_{β} M ((λf . let $r = fr$ in r) M)
 $= M$ (fix M)

ress max-share

erpret collapse

e readback compl

demo desid./results nest sum/res

Fixed-point combinator in $oldsymbol{\lambda}_{ ext{letrec}}$

For fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr
 \rightarrow_{∇} (let $r = Mr$ in M) (let $r = Mr$ in r)
 \rightarrow_{∇} M (let $r = Mr$ in r)
 \leftarrow_{β} M ((λf . let $r = fr$ in r) M)
 $= M$ (fix M)

 $\operatorname{fix} M \Leftrightarrow_{\beta_{\nabla}}^{*} M(\operatorname{fix} M)$

F

oress max-share

erpret collaps

e readback compl

desid./results nest su

demo

Fixed-point combinator in $\lambda_{ ext{letrec}}$

or fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr
 \rightarrow_{∇} (let $r = Mr$ in M) (let $r = Mr$ in r)
 \rightarrow_{∇} M (let $r = Mr$ in r)
 \leftarrow_{β} M ($(\lambda f$. let $r = fr$ in r) M)
 $= M$ (fix M)

$$\begin{split} \operatorname{fix} M & \leftrightarrow^*_{\beta_{\nabla}} \quad M\left(\operatorname{fix} M\right) \\ & \leftrightarrow^*_{\beta_{\nabla}} \quad M\left(M\left(\ldots\left(M\left(\operatorname{fix} M\right)\right)\ldots\right)\right) \end{split}$$

press max-share

erpret collapse

e readback compl

omplexity demo desid./results

nest sum/res

Fixed-point combinator in $oldsymbol{\lambda}_{\mathsf{letrec}}$

For fix :=
$$\lambda f$$
. let $r = fr$ in r we find:
fix $M = (\lambda f$. let $r = fr$ in r) M
 \rightarrow_{β} let $r = Mr$ in r
 \rightarrow_{∇} let $r = Mr$ in Mr
 \rightarrow_{∇} (let $r = Mr$ in M) (let $r = Mr$ in r)
 \rightarrow_{∇} M (let $r = Mr$ in r)
 \leftarrow_{β} M ((λf . let $r = fr$ in r) M)
 $= M$ (fix M)

$$\begin{split} \mathsf{fix}\, M & \leftrightarrow^*_{\beta_{\nabla}} \quad M\,(\mathsf{fix}\,M) \\ & \leftrightarrow^*_{\beta_{\nabla}} \quad M\,(M\,(\dots\,(M\,(\mathsf{fix}\,M))\,\dots)) \\ & (\rightarrow^+_{\beta_{\nabla}}\cdot\leftarrow_{\beta})^{\omega} \quad M\,(M\,(\dots\,(M\,(\dots))\,\dots)) \end{split}$$

Expressibility of λ_{letrec} via unfolding

(joint work with Jan Rochel)

ss max-share

t collapse

readback co

nplexity demo

desid./results nest

sum/res

Which infinite λ -terms are expressible finitely in λ_{letrec} ?

Example

let $f = \lambda x. \lambda y. f y x$ in f

ss max-share

t collapse

readback co

nplexity demo

desid./results nest

sum/res

Which infinite λ -terms are expressible finitely in λ_{letrec} ?

Example

let $f = \lambda x. \lambda y. f y x$ in f

ss max-share

et collapse

readback co

nplexity demo

Which infinite λ -terms are expressible finitely in λ_{letrec} ?

Example

$$\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \ f \quad \twoheadrightarrow_{\nabla} \quad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x$$

ss max-share

et collapse

readback co

Which infinite λ -terms are expressible finitely in λ_{letrec} ?

Example

 $\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \ f \quad \twoheadrightarrow_{\nabla} \quad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x$

ss max-share

et collapse

readback co

Which infinite λ -terms are expressible finitely in λ_{letrec} ?

Example

$$\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \ f \quad \twoheadrightarrow_{\nabla} \quad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x$$

ss max-share

et collapse

readback co

nplexity demo

Which infinite λ -terms are expressible finitely in λ_{letrec} ?

Example

$$\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \ f \qquad \twoheadrightarrow_{\nabla} \qquad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x$$

λ_{letrec} -Expressible 'regular' λ^{∞} -term

term graph syntax tree

aim/ov λ_{letrec}

e readback com

nest

max-share

ret collapse

e readback coi

mplexity demo desid./results

nest sum/res

max-share

ret collapse

e readback coi

complexity demo

o desid./results nest

sum/res

aim/ov Aletrec express max-share interpret collapse readback complexity demo desid

t sum/res

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid.

desid./results nes

t sum/res

Not λ_{letrec} -expressible 'regular' λ^{∞} -term

syntax tree

im/ov A_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not λ_{letrec} -expressible 'regular' λ^{∞} -term

syntax tree bindings

Not λ_{letrec} -expressible 'regular' λ^{∞} -term

syntax tree bindings infinitely entangled

max-share

express

et collapse

readback co

demo desid./results

nest sum/res

Deconstructing/observing λ^{∞} -terms

 $()\lambda x.\lambda y.xxy$

Deconstructing/observing λ^{∞} -terms

 $()\lambda x. \lambda y. x x y \to_{\lambda}$ $(x) \lambda y. x x y$

$(x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0$

Deconstructing/observing λ^{∞} -terms

 $\begin{array}{l} ()\lambda x. \lambda y. x x y \rightarrow_{\lambda} \\ (x)\lambda y. x x y \rightarrow_{\lambda} \\ (xy)x x y \end{array}$

$(x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0$

Deconstructing/observing λ^{∞} -terms

 $\begin{array}{l} ()\lambda x. \lambda y. x x y \rightarrow_{\lambda} \\ (x)\lambda y. x x y \rightarrow_{\lambda} \\ (xy) x x y \rightarrow_{\mathbb{Q}_{0}} \\ (xy) x x \end{array}$

$$(x_1 \dots x_n) M_0 M_1 \rightarrow_{\mathbb{Q}_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\})$$
$$(x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0$$

Deconstructing/observing λ^{∞} -terms

 $()\lambda x. \lambda y. x x y \rightarrow_{\lambda}$ $(x)\lambda y. x x y \rightarrow_{\lambda}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x \rightarrow_{\mathbb{S}}$ (x) x x

$$\begin{array}{rcl} (x_1 \dots x_n) M_0 M_1 & \rightarrow_{@_i} & (x_1 \dots x_n) M_i & (i \in \{0, 1\}) \\ (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 & \rightarrow_{\lambda} & (x_1 \dots x_{n+1}) M_0 \\ & (x_1 \dots x_n x_{n+1}) M_0 & \rightarrow_{\mathsf{S}} & (x_1 \dots x_n) M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

Deconstructing/observing λ^{∞} -terms

 $()\lambda x. \lambda y. x x y \rightarrow_{\lambda}$ $(x) \lambda y. x x y \rightarrow_{\lambda}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x \rightarrow_{\mathbb{S}}$ $(x) x x \rightarrow_{\mathbb{Q}_{0}}$ (x) x

$$\begin{array}{ll} (x_1 \dots x_n) M_0 M_1 \rightarrow_{\textcircled{}_i} (x_1 \dots x_n) M_i & (i \in \{0, 1\}) \\ (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0 \\ (x_1 \dots x_n x_{n+1}) M_0 \rightarrow_{\mathsf{S}} (x_1 \dots x_n) M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

Deconstructing/observing λ^{∞} -terms

 $()\lambda x. \lambda y. x x y \rightarrow_{\lambda}$ $(x)\lambda y. x x y \rightarrow_{\lambda}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x \rightarrow_{\mathbb{S}}$ $(x) x x \rightarrow_{\mathbb{Q}_{0}}$ (x) x

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. x x y$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{aligned} & (x_1 \dots x_n) M_0 M_1 \to_{@_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\}) \\ & (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \to_{\lambda} (x_1 \dots x_{n+1}) M_0 \\ & (x_1 \dots x_n x_{n+1}) M_0 \to_{\mathsf{S}} (x_1 \dots x_n) M_0 \quad (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{aligned}$$

Deconstructing/observing λ^{∞} -terms

 $()\lambda x. \lambda y. x x y \rightarrow_{\lambda}$ $(x) \lambda y. x x y \rightarrow_{\lambda}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x y \rightarrow_{\mathbb{Q}_{0}}$ $(xy) x x \rightarrow_{\mathbb{S}}$ $(x) x x \rightarrow_{\mathbb{Q}_{0}}$ (x) x

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. x x y$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{aligned} & (x_1 \dots x_n) M_0 M_1 \rightarrow_{@_i} (x_1 \dots x_n) M_i & (i \in \{0, 1\}) \\ & (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0 \\ & (x_1 \dots x_n x_{n+1}) M_0 \rightarrow_{\mathsf{S}} (x_1 \dots x_n) M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{aligned}$$

formalized as a CRS, e.g. rule:

$$\operatorname{pre}_{n}([x_{1} \dots x_{n}]\operatorname{abs}([x_{n+1}]Z(\vec{x}))) \to \operatorname{pre}_{n+1}([x_{1} \dots x_{n+1}]Z(\vec{x}))$$

aim/ov λ_{letree}

Deconstructing/observing λ^{∞} -terms

$()\lambda x. \lambda y. x x y \to_{\lambda} (x) \lambda y. x x y \to_{\lambda}$	$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x)\lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{\lambda} $	$()\lambda x. \lambda y. x x y \to_{\lambda} (x) \lambda y. x x y \to_{\lambda} (x) \lambda y. x x y \to_{\lambda} $
$(xy) x x y \to_{@_1} (xy) y$	$(xy) x x y \to_{\mathbb{Q}_0} (xy) x x \to_{S} $	$(xy) x x y \to_{@_0} (xy) x x \to_{S} $
	$(x) x x \to @_0 (x) x$	$(x) x x \to_{@_1} (x) x$

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. x x y$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{aligned} & (x_1 \dots x_n) M_0 M_1 \rightarrow_{@_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\}) \\ & (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0 \\ & (x_1 \dots x_n x_{n+1}) M_0 \rightarrow_{\mathsf{S}} (x_1 \dots x_n) M_0 \quad (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{aligned}$$

formalized as a CRS, e.g. rule:

$$\mathsf{pre}_{n}([x_{1}\dots x_{n}]\mathsf{abs}([x_{n+1}]Z(\vec{x}))) \to \mathsf{pre}_{n+1}([x_{1}\dots x_{n+1}]Z(\vec{x}))$$

aim/ov demo desid./results nest sum/res λ_{letree}

Generated subterms

$$\begin{array}{ll} ()\lambda x. \lambda y. x x y \rightarrow_{\lambda} \\ (x)\lambda y. x x y \rightarrow_{\lambda} \\ (x)\lambda y. x x y \rightarrow_{\lambda} \\ (xy)x x y \rightarrow_{\mathbb{Q}_{1}} \\ (xy)y \end{array} \qquad \begin{array}{ll} ()\lambda x. \lambda y. x x y \rightarrow_{\lambda} \\ (x)\lambda y. x x y \rightarrow_{\lambda} \\ (xy)x x y \rightarrow_{\mathbb{Q}_{0}} \\ (xy)x x y \rightarrow_{\mathbb{Q}_{0}} \\ (xy)x x \rightarrow_{\mathbb{S}} \\ (xy)x x \rightarrow_{\mathbb{S}} \\ (x)x x \rightarrow_{\mathbb{Q}_{0}} \\ (x)x x \rightarrow_{\mathbb{Q}_{1}} \\ (x)x \end{array}$$

$$\begin{aligned} & (x_1 \dots x_n) M_0 M_1 \rightarrow_{\textcircled{0}_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\}) \\ & (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0 \\ & (x_1 \dots x_n x_{n+1}) M_0 \rightarrow_{\texttt{S}} (x_1 \dots x_n) M_0 \quad (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{aligned}$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above <u>plus</u>:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0 \quad (\text{if } \lambda x_i \text{ is vacuous})$$
aim/ov demo desid./results nest sum/res λ_{letrec}

Generated subterms

$$\begin{array}{ll} ()\lambda x. \lambda y. x x y \rightarrow_{\lambda} \\ (x) \lambda y. x x y \rightarrow_{\lambda} \\ (x) \lambda y. x x y \rightarrow_{\lambda} \\ (xy) x x y \rightarrow_{\alpha_{1}} \\ (xy) y \\ (xy) y \\ (xy) x x \rightarrow_{\alpha_{0}} \\ (x) x \\ (x) x \\ (x) x \\ (x) x \end{array}$$

$$(x_1 \dots x_n) M_0 M_1 \rightarrow_{@_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\})$$

$$(x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above <u>plus</u>:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0 \quad (\text{if } \lambda x_i \text{ is vacuous})$$

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res	
Concreted subtorms												

Generated subterms

$$(x_1 \dots x_n) M_0 M_1 \rightarrow_{\textcircled{0}_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\})$$
$$(x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above <u>plus</u>:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0 \quad (\text{if } \lambda x_i \text{ is vacuous})$$

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Con	orato	d cul	htarm	~							

Generated subterms

$() \lambda x \lambda y x x y \rightarrow $	$()\lambda x.\lambda y.xxy \to_{\lambda}$	$()\lambda x.\lambda y.xxy \to_{\lambda}$
$(\gamma) \lambda u x x u \rightarrow \lambda$	$(x)\lambda y.xxy\to_\lambda$	$(x)\lambda y.xxy \to_{\lambda}$
$(x) \land y \cdot x \cdot x \cdot y \rightarrow \lambda$ $(xy) x \cdot x \cdot y \rightarrow \lambda$	$(xy) x x y \rightarrow_{@_0}$	$(xy) x x y \rightarrow_{@_0}$
$(xy) x x y \rightarrow \mathbb{Q}_1$	$(xy) x x \rightarrow_{S}$	$(xy) x x \rightarrow_{S}$
$(xy)y \rightarrow del$	$(x) x x \rightarrow_{\mathbb{Q}_0}$	$(x) x x \rightarrow_{@_1}$
(g)g	(x)x	(x)x

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. x x y$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{array}{ll} (x_1 \dots x_n) M_0 M_1 \rightarrow_{\textcircled{}_{i}} & (x_1 \dots x_n) M_i & (i \in \{0, 1\}) \\ (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} & (x_1 \dots x_{n+1}) M_0 \\ & (x_1 \dots x_n x_{n+1}) M_0 \rightarrow_{\mathsf{S}} & (x_1 \dots x_n) M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above <u>plus</u>:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0 \quad (\text{if } \lambda x_i \text{ is vacuous})$$

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Con	orato	d cul	htarm	~							

Generated subterms

$() \) a \) a \ a \ a \ a \) a$	$()\lambda x.\lambda y.xxy\to_{\lambda}$	$()\lambda x.\lambda y.xxy\to_{\lambda}$
$()\lambda x \cdot \lambda y \cdot x \cdot y \rightarrow \lambda$	$(x)\lambda y.xxy\to_{\lambda}$	$(x)\lambda y.xxy \to_{\lambda}$
$(x) \land y. x x y \rightarrow_{\lambda}$	$(xy) x x y \rightarrow_{@_0}$	$(xy) x x y \rightarrow_{@_0}$
$(xy) x x y \to_{\mathbb{Q}_1}$	$(xy) x x \rightarrow_{S}$	$(xy) x x \rightarrow_{S}$
$(xy)y \rightarrow_{del}$	$(x)xx \rightarrow_{@_0}$	$(x) x x \rightarrow_{@_1}$
(y)y	(x)x	(x)x

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. x x y$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{array}{ll} (x_1 \dots x_n) M_0 M_1 \rightarrow_{@_i} (x_1 \dots x_n) M_i & (i \in \{0, 1\}) \\ (x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0 \\ (x_1 \dots x_n x_{n+1}) M_0 \rightarrow_{\mathsf{S}} (x_1 \dots x_n) M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above <u>plus</u>:

 $(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0$ (if λx_i is vacuous) We use <u>eager application of scope-closure rules</u> for $\rightarrow_{\mathsf{reg}^+}$ and $\rightarrow_{\mathsf{reg}}$.

Regularity and strong regularity

An infinite first-order term t is regular if:

t has only finitely many subterms.

Definition

1 A λ^{∞} -term *M* is strongly regular if:

() M has only finitely many \rightarrow_{reg^+} -generated subterms.

Regularity and strong regularity

An infinite first-order term t is regular if:

t has only finitely many subterms.

Definition

• A λ^{∞} -term M is strongly regular if:

() *M* has only finitely many \rightarrow_{reg^+} -generated subterms.

2 A λ^{∞} -term N is regular if:

() N has only finitely many \rightarrow_{reg} -generated subterms.

 λ_{letrec}

demo desid./results

nest

Strongly regular λ^{∞} -term

$$()M = ()\lambda xy. Myx$$

 $M = \lambda xy. M y x$

 λ_{letrec}

nest

Strongly regular λ^{∞} -term

$$()M = ()\lambda xy. Myx \rightarrow_{\lambda} (x)\lambda y. Myx$$

 $M = \lambda xy. M y x$

nest

Strongly regular λ^{∞} -term

()M $()\lambda xy. Myx$ = $(x) \lambda y. M y x$ \rightarrow_{λ} (xy)Myx \rightarrow_{λ}

 $M = \lambda xy. M y x$

nest

Strongly regular λ^{∞} -term

()M $()\lambda xy. Myx$ = $(x) \lambda y. M y x$ \rightarrow_{λ} (xy)Myx \rightarrow_{λ} $(\mathbf{x}y)My$ $\rightarrow_{@0}$

 $M = \lambda x y. M y x$

nest

Strongly regular λ^{∞} -term

()M $()\lambda xy. Myx$ = $(x) \lambda y. M y x$ \rightarrow_{λ} (xy)Myx \rightarrow_{λ} (xy)My $\rightarrow_{@0}$ (xy)M $\rightarrow_{@_0}$

 $M = \lambda x y. M y x$

 \rightarrow_{reg^+} -generated subterms

()M

Strongly regular λ^{∞} -term

 $()\lambda xy. Myx$ = $(x) \lambda y. M y x$ \rightarrow_{λ} (xy)Myx \rightarrow_{λ} (xy)My $\rightarrow_{@0}$ (xy)M $\rightarrow_{@_0}$ $(\mathbf{x})M$ →s

 $M = \lambda x y. M y x$

()M

nest

Strongly regular λ^{∞} -term

 $()\lambda xy. Myx$ = $(x) \lambda y. M y x$ \rightarrow_{λ} (xy)Myx \rightarrow_{λ} (xy)My $\rightarrow_{@_0}$ (xy)M $\rightarrow_{@_0}$ $(\mathbf{x})M$ →s ()M→s

 $M = \lambda x y. M y x$

()M

nest

Strongly regular λ^{∞} -term

 $()\lambda xy. Myx$ = $(x) \lambda y. M y x$ \rightarrow_{λ} (xy)Myx \rightarrow_{λ} (xy)My $\rightarrow_{@_0}$ (xy)M $\rightarrow_{@_0}$ $(\mathbf{x})M$ →s ()M→s

. . .

 $M = \lambda x y. M y x$

 \rightarrow_{reg^+} -generated subterms

nest

Strongly regular λ^{∞} -term

 $M = \lambda x y. M y x$

finitely many \rightarrow_{reg^+} -generated subterms $\implies M$ is strongly regular

$$N = (\lambda a. \lambda b. (\dots) a$$

λ^{∞} -term N

N $= ()\lambda a. \lambda b. (\dots) a$ $(a) \lambda b. (\lambda c. \ldots) a$ \rightarrow_{λ}

 λ^{∞} -term N

→_{reg⁺}-generated subterms

$$N = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$$

 λ^{∞} -term N

$$N = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab)(\lambda c. (...) b) a$$

$$\rightarrow_{@_{0}} (ab)\lambda c. (\lambda d. ...) b$$

λ^{∞} -term N

 $N = ()\lambda a. \lambda b. (...) a$ $\rightarrow_{\lambda} (a) \lambda b. (\lambda c. ...) a$ $\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$ $\rightarrow_{\mathbb{Q}_{0}} (ab) \lambda c. (\lambda d. ...) b$ $\rightarrow_{\lambda} (abc) (\lambda d. (...) c) b$

 λ^{∞} -term N

→_{reg⁺}-generated subterms

 $N = ()\lambda a. \lambda b. (...) a$ $\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$ $\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$ $\rightarrow_{@_{0}} (ab)\lambda c. (\lambda d. ...) b$ $\rightarrow_{\lambda} (abc) (\lambda d. (...) c) b$

$$\rightarrow_{@_0}$$
 (*abc*) $\lambda d. (\lambda e. ...) c$

 λ^{∞} -term N

→_{reg⁺}-generated subterms

 $N = ()\lambda a. \lambda b. (...) a$

$$\rightarrow_{\lambda} \quad (a)\,\lambda b.\,(\lambda c.\,\ldots)\,a$$

$$\rightarrow_{\lambda}$$
 $(ab)(\lambda c.(...)b)a$

$$\rightarrow_{@_0}$$
 (*ab*) $\lambda c. (\lambda d. ...) b$

$$\rightarrow_{\lambda}$$
 (*abc*) ($\lambda d. (...) c$) b

$$\rightarrow_{@_0}$$
 (*abc*) $\lambda d. (\lambda e. ...) c$

$$\rightarrow_{\lambda}$$
 (*abcd*) ($\lambda e. (...) d$) c

 λ^{∞} -term N

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ^{∞} -term

$$N = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab)(\lambda c. (...) b) a$$

$$\rightarrow_{0} (ab)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{\lambda} (abc)(\lambda d. (...) c) b$$

$$\rightarrow_{0} (abc)\lambda d. (\lambda e. ...) c$$

$$\rightarrow_{\lambda} (abcd)(\lambda e. (...) d) c$$

$$\rightarrow_{0} (abcd)\lambda e. (\lambda f. ...) d$$

 λ^{∞} -term N infinitely many $\rightarrow_{\mathsf{reg}^+}$ -generated subterms $\implies N$ is not strongly regular

. . .

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	ular	l∞_+c	rm								

-λd

à

 $N = (\lambda a. \lambda b. (\dots) a$

 λ^{∞} -term N

c

b

λd

→_{reg}-generated subterms

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Dag	lar	$1 \infty + c$									

Regular λ^{∞} -term

$$N = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a) \lambda b. (\lambda c. ...) a$$

 λ^{∞} -term N

$_{ m aim/ov}$ $\lambda_{ m letrec}$	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Regular)∞_+c	rm								

$$N = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a) \lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$$

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Reg	ular	λ∞-te	erm								

$$N = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$$

$$\rightarrow_{@_0} (ab)\lambda c. (\lambda d. ...) b$$

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Reg	ular .	λ∞-te	erm								

Λ

$$V = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$$

$$\rightarrow_{@_{0}} (ab)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{del} (b)\lambda c. (\lambda d. ...) b$$

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Reg	ular	λ^∞ -te	erm								

$$= ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$$

$$\rightarrow_{@0} (ab)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{del} (b)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{\lambda} (bc) (\lambda d. (...) c) b$$

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Reg	ular	λ^∞ -te	erm								

$$= ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab)(\lambda c. (...) b) a$$

$$\rightarrow_{\mathbb{Q}_{0}} (ab)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{del} (b)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{\lambda} (bc)(\lambda d. (...) c) b$$

$$\rightarrow_{\mathbb{Q}_{0}} (bc)\lambda d. (\lambda d. ...) c$$

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Reg	ular	λ∞-te	erm								

$$= ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a) \lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$$

$$\rightarrow_{@0} (ab) \lambda c. (\lambda d. ...) b$$

$$\rightarrow_{del} (b) \lambda c. (\lambda d. ...) b$$

$$\rightarrow_{\lambda} (bc) (\lambda d. (...) c) b$$

$$\rightarrow_{@0} (bc) \lambda d. (\lambda d. ...) c$$

$$\rightarrow_{del} (c) \lambda d. (\lambda e. ...) d$$

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Regi	ılar	λ∞_te	rm								

$$= ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a)\lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab)(\lambda c. (...) b) a$$

$$\rightarrow_{@0} (ab)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{del} (b)\lambda c. (\lambda d. ...) b$$

$$\rightarrow_{\lambda} (bc)(\lambda d. (...) c) b$$

$$\rightarrow_{@0} (bc)\lambda d. (\lambda d. ...) c$$

$$\rightarrow_{del} (c)\lambda d. (\lambda e. ...) d$$

$$\rightarrow_{\lambda} (cd)(\lambda e. (...) d) c$$

 λ^{∞} -term N

$_{ m aim/ov}$ $\lambda_{ m letrec}$	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Regular	λ∞_+e	rm								

$$\begin{array}{l} \rightarrow_{\lambda} & (a)\,\lambda b.\,(\lambda c.\,\dots)\,a \\ \rightarrow_{\lambda} & (ab)\,(\lambda c.\,(\dots)\,b)\,a \\ \rightarrow_{@_{0}} & (ab)\,\lambda c.\,(\lambda d.\,\dots)\,b \\ \rightarrow_{del} & (b)\,\lambda c.\,(\lambda d.\,\dots)\,b \\ \rightarrow_{\lambda} & (bc)\,(\lambda d.\,(\dots)\,c)\,b \\ \rightarrow_{@_{0}} & (bc)\,\lambda d.\,(\lambda d.\,\dots)\,c \\ \rightarrow_{del} & (c)\,\lambda d.\,(\lambda e.\,\dots)\,d \end{array}$$

 $N = (\lambda a. \lambda b. (\dots) a$

$$\rightarrow_{\lambda} \quad (cd) (\lambda e. (\ldots) d) c \rightarrow_{\mathbb{Q}_0} \quad (cd) \lambda e. (\lambda f. \ldots) d$$

 \rightarrow_{reg} -generated subterms

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Reg	ular	λ^{∞} -te	rm								

Λ

_

. . .

$$\begin{array}{c}
\lambda a \\
\lambda b \\
0 \\
0 \\
0 \\
0 \\
c
\end{array}$$

$$= ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} \quad (a)\,\lambda b.\,(\lambda c.\,\ldots)\,a$$

$$\rightarrow_{\lambda} \quad (ab) \left(\lambda c. \left(\dots \right) b \right) a$$

$$\bullet_{@_0}$$
 (ab) $\lambda c. (\lambda d. ...) b$

$$\rightarrow_{\mathsf{del}}$$
 (b) $\lambda c. (\lambda d. \dots) b$

$$\rightarrow_{\lambda} \quad (bc)(\lambda d.(\ldots)c)b$$

$$\rightarrow_{@_0}$$
 (bc) $\lambda d. (\lambda d. ...) c$

$$\rightarrow_{\mathsf{del}} \quad (c)\,\lambda d.\,(\lambda e.\,\ldots)\,d$$

$$\rightarrow_{\lambda} \quad (cd)(\lambda e.(\ldots)d)c$$

$$\xrightarrow{\otimes_0} (cd) \lambda e. (\lambda f. ...) d \xrightarrow{del} (d) \lambda e. (\lambda f. ...) d$$

 \rightarrow_{reg} -generated subterms

 λ^{∞} -term N

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res

Regular λ^{∞} -term

$$\begin{split} \lambda^{\infty}\text{-term } & N \\ \left\{ \begin{matrix} N = \lambda xy. \, R(y) \, x, \\ R(z) = \lambda u. \, R(u) \, z \end{matrix} \right\} \end{split}$$

finitely many \rightarrow_{reg} -generated subterms $\implies M$ is regular

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Stro	ongly	regu	$lar \Rightarrow$	regu	lar						

Proposition

- Every strongly regular λ^{∞} -term is also regular.
- Finite λ -terms are both regular and strongly regular.
| aim/ov | λ_{letrec} | express | max-share | interpret | collapse | readback | complexity | demo | desid./results | nest | sum/res |
|-----------------------------|---------------------------|---------|-----------|-----------|----------|----------|------------|------|----------------|------|---------|
| $oldsymbol{\lambda}_{letr}$ | _{rec} -Ex | pres | sibility | , | | | | | | | |

Proposition

- Every strongly regular λ^{∞} -term is also regular.
- Finite λ -terms are both regular and strongly regular.

Theorem (λ_{letrec} -expressibility)

An λ^{∞} -term is λ_{letrec} -expressible if and only if it is strongly regular.

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res

Binding-capturing chains

Definition (Melliés, van Oostrom)

For positions p, q, r, s:

 $p \sim q : \iff$ binder at p binds variable occurrence at position q

 $r \rightarrow s$: \iff variable occurrence at r is captured by binding at s

Binding-capturing chains: $p_0 \leftarrow p_1 \rightarrow p_2 \leftarrow p_3 \rightarrow p_4 \leftarrow \dots$

aim/ov .	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
----------	--------------------	---------	-----------	-----------	----------	----------	------------	------	----------------	------	---------

Binding-capturing chains

Definition (Melliés, van Oostrom)

For positions p, q, r, s:

 $p \sim q : \iff$ binder at p binds variable occurrence at position q

 $r \rightarrow s$: \iff variable occurrence at r is captured by binding at s

Binding-capturing chains: $p_0 \leftarrow p_1 \rightarrow p_2 \leftarrow p_3 \rightarrow p_4 \leftarrow \dots$

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Mai	n the	eorem	n (exte	ended)						

Theorem (binding-capturing chains) For all λ^{∞} -term M: M is strongly regular \iff M is regular, and M has only finite binding-capturing chains.

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Mai	n the	eorem	n (exte	ended)						

Theorem (binding-capturing chains) For all λ^{∞} -term M: M is strongly regular $\iff M$ is regular, and M has only finite binding-capturing chains.

Theorem (λ_{letrec} -expressibility, extended)

For all λ^{∞} -terms M the following are equivalent:

- (i) M is λ_{letrec} -expressible.
- (ii) M is strongly regular.
- (iii) M is regular, and it only contains finite binding-capturing chains.

Maximal sharing of functional programs

(joint work with Jan Rochel)

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res

Motivation, questions, and results

Motivation

- desirable: increase sharing in programs
 - code that is as compact as possible
 - avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

Questions

- (1): how to maximize sharing in programs?
- (2): how to check for unfolding equivalence?

We restrict to λ_{letrec} , the λ -calculus with letrec

as abstraction & syntactical core of functional languages

Results:

• efficient methods solving questions (1) and (2) for λ_{letrec}

- Methods consist of the steps:
 - 1. interpretation of λ_{letrec} -terms as term graphs
 - higher-order term graphs: λ -ho-term-graphs
 - first-order term graphs : λ -term-graphs
 - deterministic finite-state automata: λ -DFAs
 - 2. bisimilarity & bisimulation collapse of λ -term-graphs
 - implemented as: DFA-minimization of λ -DFAs
 - 3. readback of λ -term-graphs as λ_{letrec} -terms
- Haskell implementation
- Complexity

 $aim/ov \rightarrow_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res Maximal sharing: example (fix)

 λf . let r = f(f r) in r

L

 $aim/ov \rightarrow_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res Maximal sharing: example (fix)

 λf . let r = f(f r) in r

L

 L_0

 λf . let r = f r in r

 $aim/ov \rightarrow_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res Maximal sharing: the method

Lunfold \bigvee Munfold \bigwedge L_0

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

 λf . let r = f(f r) in r

L

 L_0

 λf . let r = f r in r

 L_0

 λf . let r = f r in r

Maximal sharing: the method

Maximal sharing: the method

a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$

 $aim/ov \rightarrow_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res Maximal sharing: the method

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$

 $\frac{\partial m}{\partial v} = \frac{\partial v}{\partial v} \frac{\partial v}{\partial v}$ demo $\frac{\partial v}{\partial v} \frac{\partial v}{\partial v}$ max-share interpret collapse readback complexity demo $\frac{\partial v}{\partial v}$ demo $\frac{\partial v}{\partial v}$ mest sum/res

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_T$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$. aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res Unfolding equivalence: example

 L_1 unfold $\sqrt{?}$ Munfold \uparrow ? L_2

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

$$\begin{array}{c}
L_1 \\
\llbracket \cdot \rrbracket_{\lambda^{\infty}} \bigvee ? \\
M \\
\llbracket \cdot \rrbracket_{\lambda^{\infty}} \bigwedge ? \\
L_2
\end{array}$$

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term L_1 and L_2 as: a. higher-order term graphs $\mathcal{G}_1 = \llbracket L_1 \rrbracket_{\mathcal{H}}$ b. first-order term graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/n

Unfolding equivalence: the method

- 1. term graph interpretation [[·]]. of λ_{letrec} -term L_1 and L_2 as:
 - a. higher-order term graphs $\mathcal{G}_1 = \llbracket L_1 \rrbracket_{\mathcal{H}}$ and $\mathcal{G}_2 = \llbracket L_2 \rrbracket_{\mathcal{H}}$
 - b. first-order term graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}} \text{ and } G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

Unfolding equivalence: the method

 λ_{letrec}

1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term L_1 and L_2 as: a. higher-order term graphs $\mathcal{G}_1 = \llbracket L_1 \rrbracket_{\mathcal{H}}$ and $\mathcal{G}_2 = \llbracket L_2 \rrbracket_{\mathcal{H}}$ b. first-order term graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

nest

2. check bisimilarity

of f-o term graphs G_1 and G_2

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Inte	rpret	ation	l								

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rur	ining	exan	nple								

 $\begin{array}{ll} \text{instead of:} \\ \lambda f. \, \text{let } r = f\left(f\,r\right) \, \text{in } r & \longmapsto_{\text{max-sharing}} & \lambda f. \, \text{let } r = f\,r \, \text{in } r \\ \text{we use:} \\ \lambda x. \, \lambda f. \, \text{let } r = f\left(f\,r\,x\right) x \, \text{in } r & \longmapsto_{\text{max-sharing}} & \lambda x. \, \lambda f. \, \text{let } r = f\,r\,x \, \text{in } r \\ L & \longmapsto_{\text{max-sharing}} & L_0 \end{array}$

aim/ov λ_{letrec}

s max-share

interpret collapse

readback com

demo desid./results

sum/res

nest

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

aim/ov λ_{letrec}

is max-share

interpret collapse

e readback com

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \operatorname{let} \mathbf{r} = f \mathbf{r} x \operatorname{in} \mathbf{r}$

syntax tree

aim/ov λ_{letrec}

is max-share

interpret collapse

e readback com

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)
s max-share

interpret collapse

e readback com

demo desid./results nest

t sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)

s max-share

interpret collapse

e readback com

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink, + scopes)

is max-share

interpret collapse

e readback com

demo desid./results

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink, + scopes, + binding links)

ss max-share

interpret collapse

e readback com

demo desid./results

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

ss max-share

interpret collapse

e readback com

demo desid./results

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

is max-share

interpret collapse

e readback com

demo desid./results

sum/res

nest

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ scope sets)

is max-share

interpret collapse

e readback com

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, Blom [2003])

is max-share

interpret collapse

e readback com

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, Blom [2003])

ss max-share

interpret collapse

e readback com

demo desid./results

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, + abstraction-prefix function)

ess max-share

interpret collapse

e readback comp

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with abstraction-prefix function)

ss max-share

interpret collapse

e readback com

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -higher-order-term-graph $\llbracket L_0 \rrbracket_{\mathcal{H}}$

ss max-share

interpret collapse

e readback com

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ abstraction-prefix function)

ss max-share

interpret collapse

e readback com

demo desid./results

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

ss max-share

interpret collapse

e readback com

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks (+ scope sets)

ss max-share

interpret collapse

e readback com

demo desid./results

sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks

ss max-share

interpret collapse

e readback com

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -term-graph $\llbracket L_0 \rrbracket_{\mathcal{T}}$

ss max-share

interpret collapse

e readback com

demo desid./results

nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

incomplete DFA

ss max-share

interpret collapse

e readback com

demo desid./results

sum/res

nest

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

incomplete λ -DFA

ss max-share

interpret collapse

e readback com

demo desid./results

sum/res

nest

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

s max-share

interpret collapse

readback com

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \operatorname{let} r = f(frx) x \operatorname{in} r$

ss max-share

interpret collapse

e readback com

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } \mathbf{r} = f(f\mathbf{r}x)x \text{ in } \mathbf{r}$

syntax tree

ss max-share

interpret collapse

e readback com

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \operatorname{let} r = f(frx) x \operatorname{in} r$

syntax tree (+ recursive backlink)

ss max-share

interpret collapse

e readback com

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \operatorname{let} r = f(f r x) x \operatorname{in} r$

syntax tree (+ recursive backlink)

is max-share

interpret collapse

e readback com

nest

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \operatorname{let} r = f(frx) x \operatorname{in} r$

syntax tree (+ recursive backlink, + scopes)

ss max-share

interpret collapse

e readback com

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \operatorname{let} r = f(frx) x \operatorname{in} r$

syntax tree (+ recursive backlink, + scopes, + binding links)

ss max-share

interpret collapse

e readback com

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

first-order term graph with binding backlinks (+ scope sets)

ss max-share

interpret collapse

e readback con

sum/res

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

first-order term graph with binding backlinks (+ scope sets)

ss max-share

interpret collapse

e readback con

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

first-order term graph (+ scope sets)

ss max-share

interpret collapse

e readback con

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

higher-order term graph (with scope sets, Blom [2003])

ss max-share

interpret collapse

e readback com

nest

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

higher-order term graph (with scope sets, Blom [2003])

ss max-share

interpret collapse

e readback com

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

higher-order term graph (with scope sets, + abstraction-prefix function)

ss max-share

interpret collapse

e readback com

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

higher-order term graph (with abstraction-prefix function)

ss max-share

interpret collapse

e readback com

Graph interpretation (example 2)

λ -higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

ss max-share

interpret collapse

e readback com

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

first-order term graph (+ abstraction-prefix function)

ss max-share

interpret collapse

e readback con

sum/res

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

first-order term graph with binding backlinks (+ scope sets)

ss max-share

interpret collapse

e readback com

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

first-order term graph with scope vertices with backlinks (+ scope sets)
ss max-share

interpret collapse

e readback con

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

first-order term graph with scope vertices with backlinks

ss max-share

interpret collapse

e readback cor

sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

λ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

ss max-share

interpret collapse

e readback com

nest

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

incomplete DFA

ss max-share

interpret collapse

e readback com

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

s max-share

interpret collapse

e readback com

Graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx) xin r

Graph interpretation (examples 1 and 2)

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

interpret

aim/ov

 λ_{letrec}

 $\llbracket L
rbracket_{\mathcal{T}}$

demo

desid./results

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpret

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

 λ_{letrec}

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

 $\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_2 \rrbracket_{\mathcal{T}}$

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpret

max-share

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

 λ_{letrec}

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

 $\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_2 \rrbracket_{\mathcal{T}}$

interpret

demo

desid./results

nest

structure constraints (L'Aquila)

ess max-share

interpret collapse

readback co

complexity demo

mo desid./results

nest sum/res

higher-order as first-order term graphs

let $f = \lambda x. (\lambda y. f x) x$ in f

higher-order term graph higher-order term graph first-order term graph [Blom '03] (abstraction-prefix funct.)

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Call	2000										
COII	apse										

 λ_{letrec} Bisimulation check between λ -term-graphs

collapse

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

aim/ov

demo

desid./results

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

 $\llbracket L \rrbracket_{\mathcal{T}}$

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ -term-graphs

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

 $\llbracket L \rrbracket_{\mathcal{T}}$

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/rest

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

Bisimulation check between λ -term-graphs

 $\llbracket L \rrbracket_{\mathcal{T}}$

n/ov $oldsymbol{\lambda}_{ ext{letrec}}$ express m

max-share ii

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

t collapse

e readback

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

Bisimulation check between λ -term-graphs

 $\llbracket L \rrbracket_{\mathcal{T}}$

 λ_{letrec} collapse

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

nest

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

Bisimulation check between λ -term-graphs

collapse

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

n/ov λ_{letrec} express

max-share

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

t collapse

e readback

Bisimulation check between λ -term-graphs

 $\llbracket L \rrbracket_{\mathcal{T}}$

collapse

nest

Bisimulation check between λ -term-graphs

collapse

nest

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

nest

Bisimulation check between λ -term-graphs

collapse

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

nest

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

nest

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

nest

Bisimulation check between λ -term-graphs

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

collapse

nest

Bisimulation check between λ -term-graphs

im/ov $oldsymbol{\lambda}_{ ext{letrec}}$ ex

max-share

t collapse

e readback

Bisimulation check between λ -term-graphs

collapse

nest

m/ov λ_{letrec} express

max-share

t collapse

e readback

collapse

collapse

collapse

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/results nest sum results nest sum

Bisimilarity between λ -term-graphs

Functional bisimilarity and bisimulation collapse

Bisimulation collapse: property

Theorem

The class of eager-scope λ -term-graphs is closed under functional bisimilarity \Rightarrow .

 \implies For a $\lambda_{ ext{letrec}}$ -term L

the bisimulation collapse of $\llbracket L \rrbracket_{\mathcal{T}}$ is again an eager-scope λ -term-graph.

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
λ -D	FA-N	/inim	nizatio	n							

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k									

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k									

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k									

Theorem

For all eager-scope λ -term-graphs G:

 $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

Theorem

For all eager-scope λ -term-graphs G:

 $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

idea:

- 1. construct a spanning tree T of G
- 2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k: ex	ample	e (fix)							

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k: ex	ample	e (fix)							

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k: ex	ample	e (fix)							

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k: ex	ample	e (fix)							

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k: ex	ample	e (fix)							

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k: ex	ample	e (fix)							

 $aim/ov \rightarrow_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res Readback: example (fix)

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Rea	dbac	k: ex	ample	(fix)							

 $aim/ov \rightarrow_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res readback: example (fix)

 $\lambda_{\text{letrec}} = express max-share interpret collapse readback complexity demo desid./results nest sum/rest readback: example (fix)$

 $\lambda_{\text{letrec}} = express max-share interpret collapse readback complexity demo desid./results nest sum/res readback: example (fix)$

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
read	lback	: exa	ample	(fix)							

Maximal sharing: complexity

- 1. interpretation of λ_{letrec} -term Las λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph *G* into *G*₀
- 3. readback rb

Maximal sharing: complexity

- 1. interpretation of λ_{letrec} -term Las λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph *G* into *G*₀
- 3. readback rb

Maximal sharing: complexity

- 1. interpretation
 - of λ_{letrec} -term L with |L| = n
 - as λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0
- 3. readback rb

Maximal sharing: complexity

- 1. interpretation
 - of λ_{letrec} -term L with |L| = n
 - as λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0
 - in time $O(|G|\log|G|) = O(n^2\log n)$
- 3. readback rb

Maximal sharing: complexity

- 1. interpretation
 - of $\lambda_{\mathsf{letrec}}$ -term L with |L| = n
 - as λ -term-graph $G = \llbracket L \rrbracket_T$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0
 - in time $O(|G|\log|G|) = O(n^2\log n)$
- 3. readback rb

of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

• in time $O(|G|\log|G|) = O(n^2\log n)$
Maximal sharing: complexity

- 1. interpretation
 - of $\lambda_{\mathsf{letrec}}$ -term L with |L| = n
 - as λ -term-graph $G = \llbracket L \rrbracket_T$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
 - in time $O(|G|\log|G|) = O(n^2\log n)$
- 3. readback rb

of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

• in time $O(|G|\log|G|) = O(n^2\log n)$

Theorem

Computing a maximally compact form $L_0 = (rb \circ |\downarrow \circ [\![\cdot]\!]_{\mathcal{T}})(L)$ of L for a λ_{letrec} -term L requires time $O(n^2 \log n)$, where |L| = n.

Unfolding equivalence: complexity

1. interpretation

of $oldsymbol{\lambda}_{ ext{letrec}}$ -term L_1 , L_2

as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

2. check bisimilarity $\mbox{ of } \lambda\mbox{-term-graphs } G_1 \mbox{ and } G_2$

aim/ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res Unfolding equivalence: complexity

 $1. \ interpretation$

of λ_{letrec} -term L_1 , L_2 with $n = \max \{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

• in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$.

2. check bisimilarity

of λ -term-graphs G_1 and G_2

 $aim/ov \lambda_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res Unfolding equivalence: complexity

 $1. \ interpretation$

of λ_{letrec} -term L_1 , L_2 with $n = \max \{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

• in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$.

2. check bisimilarity

of λ -term-graphs G_1 and G_2

• in time $O(|G_i|\alpha(|G_i|)) = O(n^2\alpha(n))$

 $aim/ov \lambda_{letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res Unfolding equivalence: complexity

1. interpretation

of λ_{letrec} -term L_1 , L_2 with $n = \max \{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

▶ in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$.

2. check bisimilarity of λ -term-graphs G_1 and G_2

• in time $O(|G_i|\alpha(|G_i|)) = O(n^2\alpha(n))$

Theorem

Deciding whether λ_{letrec} -terms L_1 and L_2 are unfolding-equivalent requires almost quadratic time $O(n^2\alpha(n))$ for $n = \max\{|L_1|, |L_2|\}$.

Demo: console output

```
ian:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
\lambda-letrec-term:
\lambda x. \lambda f. let r = f(f r x) x in r
derivation:
            ---- 0
                       ---- 0
            (x f[r]) f (x f[r]) r (x) x
            (x f[r]) f r (x f[r]) x
. . . . . . . . . . . . . . 0
                                               ---- 0
(x f[r]) f (x f[r]) f r x
                                              (X) X
               (x f[r]) f (f r x)
                                              (x f[r]) x
               (x f[r]) f (f r x) x
                                                           (x f[r]) r
                                                                --- let
(x f) let r = f (f r x) x in r
                           λ
(x) \lambda f. let r = f (f r x) x in r
                               .....λ
() \lambda x. \lambda f. let r = f (f r x) x in r
writing DFA to file: running-dfa.pdf
readback of DFA:
\lambda x, \lambda y, let F = v (v F x) x in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
\lambda x. \lambda y. let F = y F x in F
jan:~/papers/maxsharing-ICFP/talks/ICFP-2014>
```

Demo: generated λ -DFAs

collapse

readback co

sum/res

Desiderata → results: structure-constrained term graphs

 λ -calculus with letrec under unfolding semantics $\llbracket \cdot \rrbracket_{\lambda^{\infty}}$

Not available: term graph semantics that is studied under \Leftrightarrow

 graph representations used by compilers were not intended for use under ↔

readback c

Desiderata \rightarrow results: structure-constrained term graphs

 $\lambda\text{-calculus}$ with letrec under unfolding semantics $[\![\cdot]\!]_{\lambda^\infty}$

Not available: term graph semantics that is studied under \Leftrightarrow

 graph representations used by compilers were not intended for use under ↔

Desired: term graph semantics that:

- natural correspondence with terms in λ_{letrec}
- supports compactification under \leq
- efficient translation and readback

readback c

sum/res

Desiderata → results: structure-constrained term graphs

 $\lambda\text{-calculus}$ with letrec under unfolding semantics $[\![\cdot]\!]_{\lambda^\infty}$

Not available: term graph semantics that is studied under \Leftrightarrow

▶ graph representations used by compilers were not intended for use under ⇔

Desired: term graph semantics that:

- natural correspondence with terms in λ_{letrec}
- supports compactification under \leq
- efficient translation and readback

$Defined: \text{ int's } \llbracket \cdot \rrbracket_{\mathcal{H}} / \llbracket \cdot \rrbracket_{\mathcal{T}} \text{ as higher-order} / \text{first-order } \lambda \text{-term graphs}$

- closed under \Rightarrow (hence under collapse)
- ▶ back-/forth correspondence with λ -calculus with letrec
 - efficient translation and readback
 - translation is inverse of readback

readback co

complexity d

sum/re

Desiderata --> results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity \Leftrightarrow)

Given: process graph interpretation $\llbracket \cdot \rrbracket_P$, studied under \Leftrightarrow

▶ not closed under \Rightarrow , and \Leftrightarrow , modulo \Leftrightarrow incomplete

Desiderata --> results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ↔)

 λ_{letrec}

Given: process graph interpretation $\llbracket \cdot \rrbracket_P$, studied under \Leftrightarrow

▶ not closed under \Rightarrow , and \Leftrightarrow , modulo \Leftrightarrow incomplete

desid./results

nest

Desired: reason with graphs that are $[\cdot]_P$ -expressible modulo \Leftrightarrow (at least with 'sufficiently many')

understand incompleteness by a structural graph property

Desiderata --> results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ↔)

max-share

 λ_{letrec}

Given: process graph interpretation $\llbracket \cdot \rrbracket_P$, studied under \Leftrightarrow

▶ not closed under \Rightarrow , and \Leftrightarrow , modulo \Leftrightarrow incomplete

desid./results

nest

Desired: reason with graphs that are [[·]]_P-expressible modulo ↔ (at least with 'sufficiently many') understand incompleteness by a structural graph property

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \geq (hence under collapse)
- back-/forth correspondence with 1-return-less expr's

Nested Term Graphs

(joint work with Vincent van Oostrom)

Nested scopes in λ_{letrec} terms

First-order term graph over $\Sigma = \{\lambda/1, @/2, 0/0\}$

Nested scopes in λ_{letrec} terms

$$\lambda x. (\lambda y. \text{ let } \alpha = x \alpha \text{ in } \alpha) (\lambda z. \text{ let } \beta = x (\lambda u. u) \beta \text{ in } \beta)$$

Nested scopes in λ_{letrec} terms

Nested scopes in λ_{letrec} terms

Nested scopes in λ_{letrec} terms

Nested scopes in λ_{letrec} terms

Nested scopes in λ_{letrec} terms

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
N I			• •								

m/ον λ_{letrec} *express max-share* interpret collapse readback complexity demo desid./results *nest* sum/r

Nested scopes \rightarrow nested term graph

gletrec

$$\begin{array}{rcl} \mathsf{n}() &=& \lambda x.\mathsf{f}_1(x)\mathsf{f}_2(x,\mathsf{g}()) \\ \mathsf{f}_1(X_1) &=& \lambda x.\mathsf{let}\,\alpha = X_1\alpha\,\mathsf{in}\,\alpha \\ \mathsf{f}_2(X_1,X_2) &=& \lambda y.\mathsf{let}\,\beta = X_1(X_2\beta)\,\mathsf{in}\,\beta \\ & \mathsf{g}() &=& \lambda z.z \\ \mathsf{n} \end{array}$$

n()

A signature for nested term graphs (ntg-signature) is a signature Σ that is partitioned into:

- *atomic* symbol alphabet Σ_{at}
- *nested* symbol alphabet Σ_{ne}

Additionally used:

- *interface* symbols alphabet $OI = O \cup I$
 - $O = \{o\}$ with o unary
 - $I = \{i_1, i_2, i_3, \ldots\}$ with i_j nullary

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res

Definition Let Σ be an ntg-signature. A recursive graph specification (a rgs) $\mathcal{R} = \langle rec, r \rangle$ consists of: - specification function $rec : \Sigma_{ne} \longrightarrow TG(\Sigma \cup OI)$ $f/k \longmapsto rec(f) = F \in TG(\Sigma \cup \{o, i_1, \dots, i_k\})$ where F contains precisely one vertex labeled by o, the root, and one vertex each labeled by i_j , for $j \in \{1, \dots, k\}$; - nullary root symbol $r \in \Sigma_{ne}$.

$$\begin{split} \Sigma_{\mathsf{at}} &= \{\lambda/1, \ @/2, \ \mathsf{0}/0\}, \ \Sigma_{\mathsf{ne}} = \{\mathsf{r}_0/0, \ \mathsf{f}_2/2, \ \mathsf{g}/0\}, \ O = \{\mathsf{o}/1\}, \\ I &= \{\mathsf{i}_1/0, \mathsf{i}_2/0, \ldots\}. \end{split}$$

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res

Definition Let Σ be an ntg-signature. A recursive graph specification (a rgs) $\mathcal{R} = \langle rec, r \rangle$ consists of: - specification function $rec: \Sigma_{ne} \longrightarrow TG(\Sigma \cup OI)$ $f/k \longmapsto rec(f) = F \in TG(\Sigma \cup \{o, i_1, \dots, i_k\})$ where F contains precisely one vertex labeled by o, the root, and one vertex each labeled by i_i , for $i \in \{1, \dots, k\}$; - nullary root symbol $r \in \Sigma_{ne}$.

rooted *dependency* ARS \sim of \mathcal{R} :

- \blacktriangleright objects: nested symbols in $\Sigma_{\rm ne}$
- steps: for all $f, g \in \Sigma_{ne}$:

 $p: f \sim g \iff g$ occurs in the term graph rec(f) at position p

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
--------	---------------------------	---------	-----------	-----------	----------	----------	------------	------	----------------	------	---------

t sum/res

Nested term graph: intensional definition

Definition

Let Σ be an ntg-signature. A *nested term graph* over Σ is an rgs $\mathcal{N} = \langle rec, r \rangle$ such that the rooted dependency ARS \sim is a tree.

Clemens Grabmayer Modeling 7

Nested term graph (intensionally)

aim/ov λ_{letrec}

ress max-share

rpret collap

e readback

demo desid./results

nest sum/res

Nested term graph (intensionally)

infinite λ -term (infinitely nested scopes)

Nested term graph (intensionally)

(infinitely nested scopes) Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

Nested term graph (intensionally)

Nested term graph: extensional definition

Nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup OI$ (not root-connected) with vertex set V enriched by:

▶ *call* : $V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)

Nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup OI$ (not root-connected) with vertex set V enriched by:

- ▶ *call* : $V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)
- *return* : $V \rightarrow V$, (v with output vertex i_j) \mapsto

(j-th successor of vertex into which the graph containing v is nested)

Nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup OI$ (not root-connected) with vertex set V enriched by:

- ▶ *call* : $V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)
- return: V → V, (v with output vertex i_j) → (j-th successor of vertex into which the graph containing v is nested)
- $anc: V \rightarrow V^*$ ancestor function: $v \mapsto \text{word } anc(v) = v_1 \cdots v_n$ of the vertices in which v is nested

Nested term graphs: intensional vs. extensional definition

desid./results

sum/res

nest

Proposition

 λ_{letrec}

- Every nested term graph has an extensional description.
- ▶ For every entg *G* there is a nested term graph for which *G* is the extensional description.

aim/ov	λ_{letrec}	express	max-share	interpret	collapse	readback	complexity	demo	desid./results	nest	sum/res
Bisi	mula	tion									

aim/ov λ_{letrec}

readback

desid./results

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

 λ_{letrec}

nest

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label

 λ_{letrec}

nest

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs

 λ_{letrec}

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

 λ_{letree}

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

 λ_{letree}

Bisimulation (for extensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the vertices of \mathcal{N}_1 , and let V_2 be the vertices of \mathcal{N}_2 .

- roots are related
- related vertices either both have nested labels, or both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

 λ_{letrec}

demo

desid./results

nest

sum/res

aim/ov

 λ_{letrec}

demo

desid./results

aim/ov

 λ_{letrec}

demo

desid./results

aim/ov

 λ_{letrec}

readback

demo

desid./results

aim/ov

 λ_{letrec}

demo

desid./results

• Expressibility of λ_{letrec} via unfolding

• Maximal sharing of functional programs in λ_{letrec}

Nested term graphs

- Expressibility of λ_{letrec} via unfolding
 - Characterizations of infinite λ-terms that are unfoldings of λ_{letrec}-terms as:
 - strongly regular λ^{∞} -terms,
 - regular λ^{∞} -terms with finite binding–capturing chains.
- Maximal sharing of functional programs in λ_{letrec}

Nested term graphs

- Expressibility of λ_{letrec} via unfolding
 - Characterizations of infinite λ-terms that are unfoldings of λ_{letrec}-terms as:
 - strongly regular λ^{∞} -terms,
 - regular λ^{∞} -terms with finite binding–capturing chains.
- Maximal sharing of functional programs in λ_{letrec}
 - Maximal compactification of λ_{letrec}-terms while preserving their nested scope-structure, by:
 - formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / complexity / Haskell implementation

Nested term graphs

- Expressibility of λ_{letrec} via unfolding
 - Characterizations of infinite λ-terms that are unfoldings of λ_{letrec}-terms as:
 - strongly regular λ^{∞} -terms,
 - regular λ^{∞} -terms with finite binding–capturing chains.
- Maximal sharing of functional programs in λ_{letrec}
 - Maximal compactification of λ_{letrec}-terms while preserving their nested scope-structure, by:
 - formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / complexity / Haskell implementation

Nested term graphs

Basic ideas for a general framework

for graph representations of terms with nested scopes

- papers and reports
 - ► G: Modeling Terms by Graphs with Structure Constraints
 - TERMGRAPH 2018 post-proceedings in in EPTCS 288
 - ▶ G, Rochel: Maximal Sharing in the Lambda Calculus with Letrec
 - ICFP 2014 paper, extending report arXiv:1401.1460
 - ▶ G, Rochel: Term Graph Representations for Cyclic Lambda Terms
 - TERMGRAPH 2013 proceedings, report arXiv:1308.1034
 - G, Vincent van Oostrom: Nested Term Graphs
 - TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
 - Unfolding Semantics of the Untyped λ -Calculus with letrec
 - Ph.D. Thesis, Utrecht University, 2016
- tools by Jan Rochel
 - maxsharing on hackage.haskell.org
 - port graph rewriting