
Modeling Terms in the λ-Calculus with letrec
(by Term Graphs and Finite-State Automata)

Clemens Grabmayer

Gran Sasso Science Institute

L’Aquila, Italy

Computational Logic & Applications

Université de Versailles

July 1–2, 2019

λ

λ

@

@

0

0

λ

λ

@0

@0

@1

S0

@1

0 S1 0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Aim

Explain graph representations for (abstracted) functional programs

(λ-terms with recursive bindings) that:

▸ are faithful to the unfolding semantics,

▸ facilitate use of standard methods for term graphs and DFAs,

▸ stay close to the term notation:

▸ use

extended-

scope sharing,

▸ not context sharing from optimal λ-reduction.

Results from the interdisciplinary research project

ROS (Realising Optimal Sharing, Utrecht University, 2009–2014/16),

which brought together:

▸ term rewriters and logicians (philosophy department, UU)

▸ Vincent van Oostrom, CG

▸ Haskell implementors (CS department, UU)

▸ Doaitse Swierstra, Atze Dijkstra, Jan Rochel

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Aim

Explain graph representations for (abstracted) functional programs

(λ-terms with recursive bindings) that:

▸ are faithful to the unfolding semantics,

▸ facilitate use of standard methods for term graphs and DFAs,

▸ stay close to the term notation:

▸ use

extended-

scope sharing,

▸ not context sharing from optimal λ-reduction.

Results from the interdisciplinary research project

ROS (Realising Optimal Sharing, Utrecht University, 2009–2014/16),

which brought together:

▸ term rewriters and logicians (philosophy department, UU)

▸ Vincent van Oostrom, CG

▸ Haskell implementors (CS department, UU)

▸ Doaitse Swierstra, Atze Dijkstra, Jan Rochel

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Aim

Explain graph representations for (abstracted) functional programs

(λ-terms with recursive bindings) that:

▸ are faithful to the unfolding semantics,

▸ facilitate use of standard methods for term graphs and DFAs,

▸ stay close to the term notation:

▸ use extended-scope sharing,

▸ not context sharing from optimal λ-reduction.

Results from the interdisciplinary research project

ROS (Realising Optimal Sharing, Utrecht University, 2009–2014/16),

which brought together:

▸ term rewriters and logicians (philosophy department, UU)

▸ Vincent van Oostrom, CG

▸ Haskell implementors (CS department, UU)

▸ Doaitse Swierstra, Atze Dijkstra, Jan Rochel

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Aim

Explain graph representations for (abstracted) functional programs

(λ-terms with recursive bindings) that:

▸ are faithful to the unfolding semantics,

▸ facilitate use of standard methods for term graphs and DFAs,

▸ stay close to the term notation:

▸ use extended-scope sharing,

▸ not context sharing from optimal λ-reduction.

Results from the interdisciplinary research project

ROS (Realising Optimal Sharing, Utrecht University, 2009–2014/16),

which brought together:

▸ term rewriters and logicians (philosophy department, UU)

▸ Vincent van Oostrom, CG

▸ Haskell implementors (CS department, UU)

▸ Doaitse Swierstra, Atze Dijkstra, Jan Rochel

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Aim

Explain graph representations for (abstracted) functional programs

(λ-terms with recursive bindings) that:

▸ are faithful to the unfolding semantics,

▸ facilitate use of standard methods for term graphs and DFAs,

▸ stay close to the term notation:

▸ use extended-scope sharing,

▸ not context sharing from optimal λ-reduction.

Results from the interdisciplinary research project

ROS (Realising Optimal Sharing, Utrecht University, 2009–2014/16),

which brought together:

▸ term rewriters and logicians (philosophy department, UU)

▸ Vincent van Oostrom, CG

▸ Haskell implementors (CS department, UU)

▸ Doaitse Swierstra, Atze Dijkstra, Jan Rochel

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Overview

▸ λ-calculus with letrec (λletrec)

▸ Expressibility of λletrec via unfolding

▸ Which infinite λ-terms are unfoldings of λletrec-terms?

▸ strongly regular λ∞-terms

▸ Maximal sharing of functional programs in λletrec

▸ How can λletrec-terms be compressed maximally
while preserving their nested scope-structure?

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Nested term graphs

▸ How to get a general framework for terms with nested scopes?

▸ term graphs with inbuilt nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Overview

▸ λ-calculus with letrec (λletrec)

▸ Expressibility of λletrec via unfolding

▸ Which infinite λ-terms are unfoldings of λletrec-terms?

▸ strongly regular λ∞-terms

▸ Maximal sharing of functional programs in λletrec

▸ How can λletrec-terms be compressed maximally
while preserving their nested scope-structure?

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Nested term graphs

▸ How to get a general framework for terms with nested scopes?

▸ term graphs with inbuilt nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Overview

▸ λ-calculus with letrec (λletrec)

▸ Expressibility of λletrec via unfolding

▸ Which infinite λ-terms are unfoldings of λletrec-terms?

▸ strongly regular λ∞-terms

▸ Maximal sharing of functional programs in λletrec

▸ How can λletrec-terms be compressed maximally
while preserving their nested scope-structure?

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Nested term graphs

▸ How to get a general framework for terms with nested scopes?

▸ term graphs with inbuilt nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Overview

▸ λ-calculus with letrec (λletrec)

▸ Expressibility of λletrec via unfolding

▸ Which infinite λ-terms are unfoldings of λletrec-terms?

▸ strongly regular λ∞-terms

▸ Maximal sharing of functional programs in λletrec

▸ How can λletrec-terms be compressed maximally
while preserving their nested scope-structure?

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Nested term graphs

▸ How to get a general framework for terms with nested scopes?

▸ term graphs with inbuilt nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Overview

▸ λ-calculus with letrec (λletrec)

▸ Expressibility of λletrec via unfolding

▸ Which infinite λ-terms are unfoldings of λletrec-terms?

▸ strongly regular λ∞-terms

▸ Maximal sharing of functional programs in λletrec

▸ How can λletrec-terms be compressed maximally
while preserving their nested scope-structure?

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Nested term graphs

▸ How to get a general framework for terms with nested scopes?

▸ term graphs with inbuilt nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus with letrec

(λf. letrec r = f r in r)M

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus with letrec

(λf. let r = f r in r)M

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus

with letrec

Terms in the λ-calculus

(λletrec) with letrec

(over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ let B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λletrec:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus

with letrec

Terms in the λ-calculus

(λletrec) with letrec

(over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ let B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λ:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus

with letrec

Terms in the λ-calculus

(λletrec) with letrec

(over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ let B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λ:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus with letrec

Terms in the λ-calculus (λletrec) with letrec (over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ letrec B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λ:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus with letrec

Terms in the λ-calculus (λletrec) with letrec (over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ letrec B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λ:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus with letrec

Terms in the λ-calculus (λletrec) with letrec (over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ let B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λ:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus with letrec

Terms in the λ-calculus (λletrec) with letrec (over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ let B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λ:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The λ-Calculus with letrec

Terms in the λ-calculus (λletrec) with letrec (over set Var of variables):

(term) M ∶∶= x (variable, x ∈ Var)

∣ M1M2 (application)

∣ λx.M (abstraction)

∣ let B in M (letrec)

(binding group) B ∶∶= f1 =M1, . . . , fn =Mn (bindings, f1, . . . , fn ∈ Var)

Notation: letrec = let (like in Haskell).

Rewriting in λletrec:

(λx.M)N →β M[x ∶= N] (β-reduction step)

λx.M →α λy.M[x ∶= y] (α-conversion step)

let B in M →▽ . . . (unfolding steps)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

(infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix

= λf. let r = f r in r

→▽

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽

↠▽

↠▽

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽

↠▽

↠▽

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽

↠▽

↠▽

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽

↠▽

↠▽

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽ λf. f (let r = f r in r)

↠▽

↠▽

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽ λf. f (let r = f r in r)

↠▽ λf. f (f (let r = f r in r))

↠▽

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽ λf. f (let r = f r in r)

↠▽ λf. f (f (let r = f r in r))

↠▽ λf. f (f (. . . f (let r = f r in r)))

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽ λf. f (let r = f r in r)

↠▽ λf. f (f (let r = f r in r))

↠▽ λf. f (f (. . . f (let r = f r in r)))

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽ λf. f (let r = f r in r)

↠▽ λf. f (f (let r = f r in r))

↠▽ λf. f (f (. . . f (let r = f r in r)))

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽ λf. f (let r = f r in r)

↠▽ λf. f (f (let r = f r in r))

↠▽ λf. f (f (. . . f (let r = f r in r)))

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec (infinite unfolding)

For fix ∶= λf. let r = f r in r we find:

fix = λf. let r = f r in r

→▽ λf. let r = f r in f r

→▽ λf. (let r = f r in f) (let r = f r in r)

→▽ λf. f (let r = f r in r)

↠▽ λf. f (f (let r = f r in r))

↠▽ λf. f (f (. . . f (let r = f r in r)))

↠↠▽ λf. f (f (. . . f (. . .)))

= JfixKλ∞

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM

= (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

= M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM

= (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

=

M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

=

M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

=

M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

=

M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

=

M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

=

M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

=

M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

= M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

= M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

= M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Fixed-point combinator in λletrec

For fix ∶= λf. let r = f r in r we find:

fixM = (λf. let r = f r in r)M

→β let r =M r in r

→▽ let r =M r in M r

→▽ (let r =M r in M) (let r =M r in r)

→▽ M (let r =M r in r)

←β M ((λf. let r = f r in r)M)

= M (fixM)

fixM ↔∗
β▽ M (fixM)

↔∗
β▽ M (M (. . . (M (fixM)) . . .))

(→+
β▽⋅←β)ω M (M (. . . (M (. . .)) . . .)) .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Expressibility of λletrec via unfolding
(joint work with Jan Rochel)

λ

λ

@

@

λ

λ

@

@

...

λ

λ

@

λ

@

λ

@

...

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Which infinite λ-terms are expressible finitely in λletrec?

Example

let f = λx.λy. f y x in f

↠↠▽ λxy. (λxy. (λxy. (. . .) y x) y x) y x

λx

λy

@

@

f y

x

↠↠▽

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

Ð→○ β

λx

λy

@

λz

@

λw

@
... z

y

x Ð→○ β

λx

λy
...

↞↞▽
λx

λy

λx.λy. let f = f in f

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Which infinite λ-terms are expressible finitely in λletrec?

Example

let f = λx.λy. f y x in f

↠↠▽ λxy. (λxy. (λxy. (. . .) y x) y x) y x

λx

λy

@

@

y

x

↠↠▽

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

Ð→○ β

λx

λy

@

λz

@

λw

@
... z

y

x Ð→○ β

λx

λy
...

↞↞▽
λx

λy

λx.λy. let f = f in f

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Which infinite λ-terms are expressible finitely in λletrec?

Example

let f = λx.λy. f y x in f ↠↠▽ λxy. (λxy. (λxy. (. . .) y x) y x) y x

λx

λy

@

@

y

x

↠↠▽

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

Ð→○ β

λx

λy

@

λz

@

λw

@
... z

y

x Ð→○ β

λx

λy
...

↞↞▽
λx

λy

λx.λy. let f = f in f

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Which infinite λ-terms are expressible finitely in λletrec?

Example

let f = λx.λy. f y x in f ↠↠▽ λxy. (λxy. (λxy. (. . .) y x) y x) y x

λx

λy

@

@

y

x

↠↠▽

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

Ð→○ β

λx

λy

@

λz

@

λw

@
... z

y

x

Ð→○ β

λx

λy
...

↞↞▽
λx

λy

λx.λy. let f = f in f

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Which infinite λ-terms are expressible finitely in λletrec?

Example

let f = λx.λy. f y x in f ↠↠▽ λxy. (λxy. (λxy. (. . .) y x) y x) y x

λx

λy

@

@

y

x

↠↠▽

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

Ð→○ β

λx

λy

@

λz

@

λw

@
... z

y

x Ð→○ β

λx

λy
...

↞↞▽
λx

λy

λx.λy. let f = f in f

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Which infinite λ-terms are expressible finitely in λletrec?

Example

let f = λx.λy. f y x in f ↠↠▽ λxy. (λxy. (λxy. (. . .) y x) y x) y x

λx

λy

@

@

y

x

↠↠▽

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

Ð→○ β

λx

λy

@

λz

@

λw

@
... z

y

x Ð→○ β

λx

λy
...

↞↞▽
λx

λy

λx.λy. let f = f in f

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λletrec-Expressible ‘regular’ λ∞-term

let f = λxy. f y x in f

λx

λy

@

@

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λ

λ

@

@

λ

λ

@

@

...

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

term graph syntax tree

bindings

finite
entanglement

scopes scope+s

finite
nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λletrec-Expressible ‘regular’ λ∞-term

let f = λxy. f y x in f

λx

λy

@

@

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λ

λ

@

@

λ

λ

@

@

...

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

term graph syntax tree bindings

finite
entanglement

scopes scope+s

finite
nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λletrec-Expressible ‘regular’ λ∞-term

let f = λxy. f y x in f

λx

λy

@

@

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λ

λ

@

@

λ

λ

@

@

...

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

term graph syntax tree bindings
finite

entanglement

scopes scope+s

finite
nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λletrec-Expressible ‘regular’ λ∞-term

let f = λxy. f y x in f

λx

λy

@

@

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λ

λ

@

@

λ

λ

@

@

...

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

term graph syntax tree bindings
finite

entanglement

scopes

scope+s

finite
nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λletrec-Expressible ‘regular’ λ∞-term

let f = λxy. f y x in f

λx

λy

@

@

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λ

λ

@

@

λ

λ

@

@

...

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

term graph syntax tree bindings
finite

entanglement

scopes scope+s

finite
nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λletrec-Expressible ‘regular’ λ∞-term

let f = λxy. f y x in f

λx

λy

@

@

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λ

λ

@

@

λ

λ

@

@

...

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

term graph syntax tree bindings
finite

entanglement

scopes scope+s
finite

nesting
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not λletrec-expressible ‘regular’ λ∞-term

λx

λy

@

λx

@

λy

@

... x

y

x

λ

λ

@

λ

@

λ

@

...

λx

λy

@

λx

@

λy

@
... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

syntax tree

bindings

infinitely entangled

scopes scope+s

infinite nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not λletrec-expressible ‘regular’ λ∞-term

λx

λy

@

λx

@

λy

@

... x

y

x

λ

λ

@

λ

@

λ

@

...

λx

λy

@

λx

@

λy

@
... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

syntax tree bindings

infinitely entangled

scopes scope+s

infinite nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not λletrec-expressible ‘regular’ λ∞-term

λx

λy

@

λx

@

λy

@

... x

y

x

λ

λ

@

λ

@

λ

@

...

λx

λy

@

λx

@

λy

@
... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

syntax tree bindings

infinitely entangled

scopes scope+s

infinite nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not λletrec-expressible ‘regular’ λ∞-term

λx

λy

@

λx

@

λy

@

... x

y

x

λ

λ

@

λ

@

λ

@

...

λx

λy

@

λx

@

λy

@
... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

syntax tree bindings

infinitely entangled

scopes

scope+s

infinite nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not λletrec-expressible ‘regular’ λ∞-term

λx

λy

@

λx

@

λy

@

... x

y

x

λ

λ

@

λ

@

λ

@

...

λx

λy

@

λx

@

λy

@
... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

syntax tree bindings

infinitely entangled

scopes scope+s

infinite nesting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy

→λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy

→λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})

(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy

→@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})

(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx

→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx

→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

formalized as a CRS, e.g. rule:

pren([x1 . . . xn]abs([xn+1]Z(x⃗))) → pren+1([x1 . . . xn+1]Z(x⃗))

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Deconstructing/observing λ∞-terms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

formalized as a CRS, e.g. rule:

pren([x1 . . . xn]abs([xn+1]Z(x⃗))) → pren+1([x1 . . . xn+1]Z(x⃗))

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Generated subterms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Generated subterms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y

→del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Generated subterms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y →del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Generated subterms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y →del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Generated subterms

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@1

(xy)y →del

(y)y

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@0

(x)x

()λx.λy. xxy →λ
(x)λy. xxy →λ
(xy)xxy →@0

(xy)xx→S

(x)xx→@1

(x)x

→reg+ -generated subterms of λx.λy. xxy w.r.t. rewrite relation →reg+ :

(x1 . . . xn)M0M1 →@i (x1 . . . xn)Mi (i ∈ {0,1})
(x1 . . . xn)λxn+1.M0 →λ (x1 . . . xn+1)M0

(x1 . . . xnxn+1)M0 →S (x1 . . . xn)M0 (if λxn+1 is vacuous)

→reg-generated subterms w.r.t. rewrite relation →reg, rules above plus:

(x1 . . . xi . . . xn+1)M0 →del (x1 . . . xi−1xi+1 . . . xn+1)M0 (if λxi is vacuous)

We use eager application of scope-closure rules for →reg+ and →reg.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regularity and strong regularity

An infinite first-order term t is regular if:

t has only finitely many subterms.

Definition

1 A λ∞-term M is strongly regular if:

()M has only finitely many →reg+ -generated subterms.

2 A λ∞-term N is regular if:

()N has only finitely many →reg-generated subterms.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regularity and strong regularity

An infinite first-order term t is regular if:

t has only finitely many subterms.

Definition

1 A λ∞-term M is strongly regular if:

()M has only finitely many →reg+ -generated subterms.

2 A λ∞-term N is regular if:

()N has only finitely many →reg-generated subterms.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M
→S (x)M
→S ()M
. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M
→S (x)M
→S ()M
. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M
→S (x)M
→S ()M
. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M
→S (x)M
→S ()M
. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M

→S (x)M
→S ()M
. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M
→S (x)M

→S ()M
. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M
→S (x)M
→S ()M

. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()M = ()λxy.M y x

→λ (x)λy.M y x

→λ (xy)M yx

→@0 (xy)M y

→@0 (xy)M
→S (x)M
→S ()M
. . .

M = λxy.M y x

finitely many

→reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ∞-term

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

()

(λ) λ

λ

(λ)

λ

(λ)

@0

(λ)

@0

(λ)

S

S

(λ)

@1

(λ)

@1

(λ)

S

T y x

xy

y

y

T y x

T yxy xy

x

x

T

T

Txy xy x x

x

M = λxy.M y x finitely many →reg+-generated subterms

Ô⇒ M is strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a

→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→λ (abc)(λd. (. . .) c) b
→@0 (abc)λd. (λe. . . .) c
→λ (abcd)(λe. (. . .)d) c
→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N

infinitely many

→reg+ -generated subterms

Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a

→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→λ (abc)(λd. (. . .) c) b
→@0 (abc)λd. (λe. . . .) c
→λ (abcd)(λe. (. . .)d) c
→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N

infinitely many

→reg+ -generated subterms

Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a

→@0 (ab)λc. (λd. . . .) b
→λ (abc)(λd. (. . .) c) b
→@0 (abc)λd. (λe. . . .) c
→λ (abcd)(λe. (. . .)d) c
→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N

infinitely many

→reg+ -generated subterms

Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b

→λ (abc)(λd. (. . .) c) b
→@0 (abc)λd. (λe. . . .) c
→λ (abcd)(λe. (. . .)d) c
→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N

infinitely many

→reg+ -generated subterms

Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→λ (abc)(λd. (. . .) c) b

→@0 (abc)λd. (λe. . . .) c
→λ (abcd)(λe. (. . .)d) c
→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N

infinitely many

→reg+ -generated subterms

Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→λ (abc)(λd. (. . .) c) b
→@0 (abc)λd. (λe. . . .) c

→λ (abcd)(λe. (. . .)d) c
→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N

infinitely many

→reg+ -generated subterms

Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→λ (abc)(λd. (. . .) c) b
→@0 (abc)λd. (λe. . . .) c
→λ (abcd)(λe. (. . .)d) c

→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N

infinitely many

→reg+ -generated subterms

Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Not strongly regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→λ (abc)(λd. (. . .) c) b
→@0 (abc)λd. (λe. . . .) c
→λ (abcd)(λe. (. . .)d) c
→@0 (abcd)λe. (λf. . . .)d
. . .

λ∞-term N infinitely many →reg+ -generated subterms
Ô⇒ N is not strongly regular

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a

→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a

→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a

→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b

→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b

→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b

→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c

→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d

→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c

→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d

→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λa

λb

@

λc

@

λd

@
... c

b

a

λa

λb

@

λc

@

λd

@

... c

b

a

N = ()λa.λb. (. . .)a
→λ (a)λb. (λc. . . .)a
→λ (ab)(λc. (. . .) b)a
→@0 (ab)λc. (λd. . . .) b
→del (b)λc. (λd. . . .) b
→λ (bc)(λd. (. . .) c) b
→@0 (bc)λd. (λd. . . .) c
→del (c)λd. (λe. . . .)d
→λ (cd)(λe. (. . .)d) c
→@0 (cd)λe. (λf. . . .)d
→del (d)λe. (λf. . . .)d
. . .

λ∞-term N

finitely many

→reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Regular λ∞-term

λx

λy

@

λx

@

λy

@

... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

()

(λ)

λ

(λ)

λ

(λ)

@0

(λ)

(λ)

@1

(λ)

U

xxR(y)y

xxyR(y)xy

R(y) xxy

R(x)x

del del

λ∞-term N finitely many →reg-generated subterms

{N = λxy.R(y)x, Ô⇒ M is regular

R(z) = λu.R(u) z}
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular ⇒ regular

Proposition

▸ Every strongly regular λ∞-term is also regular.

▸ Finite λ-terms are both regular and strongly regular.

Theorem (λletrec-expressibility)

An λ∞-term is λletrec-expressible if and only if it is strongly regular.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λletrec-Expressibility

Proposition

▸ Every strongly regular λ∞-term is also regular.

▸ Finite λ-terms are both regular and strongly regular.

Theorem (λletrec-expressibility)

An λ∞-term is λletrec-expressible if and only if it is strongly regular.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Binding–capturing chains

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

λx

@

λy

@

... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

Definition (Melliés, van Oostrom)

For positions p, q, r, s:

p⟜ q ∶⇐⇒ binder at p binds variable occurrence at position q

r ⇢ s ∶⇐⇒ variable occurrence at r is captured by binding at s

Binding–capturing chains: p0 ⟜ p1 ⇢ p2 ⟜ p3 ⇢ p4 ⟜ . . .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Binding–capturing chains

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

@

λx

λy

@

@

... y

x

y

x

λx

λy

@

λx

@

λy

@

... x

y

x

λx

λy

@

λx

@

λy

@
... x

y

x

Definition (Melliés, van Oostrom)

For positions p, q, r, s:

p⟜ q ∶⇐⇒ binder at p binds variable occurrence at position q

r ⇢ s ∶⇐⇒ variable occurrence at r is captured by binding at s

Binding–capturing chains: p0 ⟜ p1 ⇢ p2 ⟜ p3 ⇢ p4 ⟜ . . .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Main theorem (extended)

Theorem (binding–capturing chains)

For all λ∞-term M :

M is strongly regular ⇐⇒ M is regular, and

M has only finite binding–capturing chains.

Theorem (λletrec-expressibility, extended)

For all λ∞-terms M the following are equivalent:

(i) M is λletrec-expressible.

(ii) M is strongly regular.

(iii) M is regular, and it only contains finite binding–capturing chains.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Main theorem (extended)

Theorem (binding–capturing chains)

For all λ∞-term M :

M is strongly regular ⇐⇒ M is regular, and

M has only finite binding–capturing chains.

Theorem (λletrec-expressibility, extended)

For all λ∞-terms M the following are equivalent:

(i) M is λletrec-expressible.

(ii) M is strongly regular.

(iii) M is regular, and it only contains finite binding–capturing chains.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing of functional programs
(joint work with Jan Rochel)

L G

L0 G0

interpret

readback

collapse

λ

λ

@

@

0

0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Motivation, questions, and results

Motivation

▸ desirable: increase sharing in programs

▸ code that is as compact as possible
▸ avoid duplication of reduction work at run-time

▸ useful: check equality of unfolding semantics of programs

Questions

(1): how to maximize sharing in programs?

(2): how to check for unfolding equivalence?

We restrict to λletrec, the λ-calculus with letrec

▸ as abstraction & syntactical core of functional languages

Results:

▸ efficient methods solving questions (1) and (2) for λletrec

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

The method

▸ Methods consist of the steps:

1. interpretation of λletrec-terms as term graphs

▸ higher-order term graphs: λ-ho-term-graphs

▸ first-order term graphs : λ-term-graphs

▸ deterministic finite-state automata: λ-DFAs

2. bisimilarity & bisimulation collapse of λ-term-graphs

▸ implemented as: DFA-minimization of λ-DFAs

3. readback of λ-term-graphs as λletrec-terms

▸ Haskell implementation

▸ Complexity

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: example (fix)

L

G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λf. let r = f r in r
λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: example (fix)

L

G G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λf. let r = f r in r

λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L

G G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λf. let r = f r in r

λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L

G G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λf. let r = f r in r

λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L

G

G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r

λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r
λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r
λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r
λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L G

G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L G G

M

L0 G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L G G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: example

L1

G1 G1

M

L2

G2 G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?

unfold ?

unfold ?

λf. let r = f (f r) in r

λf. let r = f r in r

λf. f (f (. . .))

J⋅Kλ∞

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: example

L1

G1

G1

M

L2

G2 G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?

unfold ?

unfold ?

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r

λf. f (f (. . .))

J⋅Kλ∞

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

L1

G1

G1

M

L2

G2

G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?

unfold ?

unfold ?

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r
λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

L1

G1

G1

M

L2

G2

G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?
unfold ?

unfold ?

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r
λ

@

0

λf. f (f (. . .))

J⋅Kλ∞

J⋅KT

J⋅Kλ∞

J⋅KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

L1

G1 G1

M

L2

G2 G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?
unfold ?

unfold ?

1. term graph interpretation J⋅K⋅
of λletrec-term L1 and L2 as:

a. higher-order term graphs

G1 = JL1KH

and G2 = JL2KH

b. first-order term graphs

G1 = JL1KT

and G2 = JL2KT

2. check bisimilarity

of f-o term graphs G1 and G2

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

L1 G1 G1

M

L2

G2 G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?
unfold ?

unfold ?

1. term graph interpretation J⋅K⋅
of λletrec-term L1 and L2 as:

a. higher-order term graphs

G1 = JL1KH

and G2 = JL2KH

b. first-order term graphs

G1 = JL1KT

and G2 = JL2KT

2. check bisimilarity

of f-o term graphs G1 and G2

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

L1 G1 G1

M

L2 G2 G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?
unfold ?

unfold ?

1. term graph interpretation J⋅K⋅
of λletrec-term L1 and L2 as:

a. higher-order term graphs

G1 = JL1KH and G2 = JL2KH
b. first-order term graphs

G1 = JL1KT and G2 = JL2KT

2. check bisimilarity

of f-o term graphs G1 and G2

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: the method

L1 G1 G1

M

L2 G2 G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH

J⋅KH

?

J⋅KT

J⋅KT

interpret

interpret

check?
unfold ?

unfold ?

1. term graph interpretation J⋅K⋅
of λletrec-term L1 and L2 as:

a. higher-order term graphs

G1 = JL1KH and G2 = JL2KH
b. first-order term graphs

G1 = JL1KT and G2 = JL2KT

2. check bisimilarity

of f-o term graphs G1 and G2

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Interpretation

L G

L0 G0

interpret

readback

collapse

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Running example

instead of:

λf. let r = f (f r) in r z→max-sharing λf. let r = f r in r

we use:

λx.λf. let r = f (f r x)x in r z→max-sharing λx.λf. let r = f r x in r

L z→max-sharing L0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ-DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@ x

f r

r

syntax tree

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@ x

f

r

syntax tree (+ recursive backlink)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@

f

x

syntax tree (+ recursive backlink)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@

f

x

syntax tree (+ recursive backlink, + scopes)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@

f

x

syntax tree (+ recursive backlink, + scopes, + binding links)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph with binding backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph with binding backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

higher-order term graph (with scope sets, Blom [2003])

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

higher-order term graph (with scope sets, Blom [2003])

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

higher-order term graph (with scope sets, + abstraction-prefix function)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

higher-order term graph (with abstraction-prefix function)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

λ-higher-order-term-graph JL0KH

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

first-order term graph (+ abstraction-prefix function)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph with binding backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0 S

0

first-order term graph with scope vertices with backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0 S

0

first-order term graph with scope vertices with backlinks

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0 S

0

λ-term-graph JL0KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@0

@0

@1

S0

@1

0 S1 0

incomplete DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@0

@0

@1

S0

@1

0 S1 0

incomplete λ-DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@0

@0

@1

S0

@1

0 S1 0

0,@0/1,S0/1

0,@0/1,S0/1

λ,0,S0/1

λ,0,S0/1

λ,@0/1,S0/1 λ, 0, @0/1

λ, @0/1, S0/1

λ, 0, @0/1, S0/1 λ-DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ-DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@ x

f @

@ x

f r

r

syntax tree

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@ x

f @

@ x

f

r

syntax tree (+ recursive backlink)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@

@

@

f f

x x

syntax tree (+ recursive backlink)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@

@

@

f f

x x

syntax tree (+ recursive backlink, + scopes)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@

@

@

f f

x x

syntax tree (+ recursive backlink, + scopes, + binding links)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

first-order term graph with binding backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

first-order term graph with binding backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

first-order term graph (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

higher-order term graph (with scope sets, Blom [2003])

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

higher-order term graph (with scope sets, Blom [2003])

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

higher-order term graph (with scope sets, + abstraction-prefix function)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

higher-order term graph (with abstraction-prefix function)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

λ-higher-order-term-graph JLKH

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

(v0)

(v0v1)

(v0v1)

first-order term graph (+ abstraction-prefix function)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

first-order term graph with binding backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0 S S

0 0

first-order term graph with scope vertices with backlinks (+ scope sets)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0 S S

0 0

first-order term graph with scope vertices with backlinks

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0 S S

0 0

λ-term-graph JLKT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@0

@0

@1

@1

@1

@1

@0

@0

S0 S0

S1

S10 0

0

0

incomplete DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@0

@0

@1

@1

@1

@1

@0

@0

S0 S0

S1

S10 0

0

0
incomplete λ-DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@0

@0

@1

@1

@1

@1

@0

@0

S0 S0

S1

S10 0

0

0
λ-DFA

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (examples 1 and 2)

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Interpretation J⋅KT : properties (cont.)

interpretation λletrec-term L z→ λ-term-graph JLKT
▸ defined by induction on structure of L

▸ similar analysis as fully-lazy lambda-lifting

▸ yields eager-scope λ-term-graphs: ∼ minimal scopes

Theorem

For λletrec-terms L1 and L2 it holds: Equality of infinite unfolding
coincides with bisimilarity of λ-term-graph interpretations:

JL1Kλ∞ = JL2Kλ∞ ⇐⇒ JL1KT ↔ JL2KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Interpretation J⋅KT : properties (cont.)

interpretation λletrec-term L z→ λ-term-graph JLKT
▸ defined by induction on structure of L

▸ similar analysis as fully-lazy lambda-lifting

▸ yields eager-scope λ-term-graphs: ∼ minimal scopes

Theorem

For λletrec-terms L1 and L2 it holds: Equality of infinite unfolding
coincides with bisimilarity of λ-term-graph interpretations:

JL1Kλ∞ = JL2Kλ∞ ⇐⇒ JL1KT ↔ JL2KT

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

structure constraints (L’Aquila)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

higher-order as first-order term graphs

let f = λx. (λy. f x)x in f

λ

@

λ

@

0

0

higher-order term graph
[Blom ’03]

(1–1)
z→
←Ð [
(1–1)

λ() va

@(va)

λ(va) vb 0(va)

0(va)

@(va)

higher-order term graph
(abstraction-prefix funct.)

(section)
z→
←Ð [

(retraction)

λ

@

0

0

S

@

λ

@

S

first-order term graph

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Collapse

L G

L0 G0

interpret

readback

collapse

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimilarity between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

↔

JL0KT ↔ JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Functional bisimilarity and bisimulation collapse

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT ← JLKT
Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation collapse: property

Theorem

The class of eager-scope λ-term-graphs
is closed under functional bisimilarity →.

Ô⇒ For a λletrec-term L

the bisimulation collapse of JLKT is again an eager-scope λ-term-graph.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

λ-DFA-Minimization

λ

λ

@0

@0

@1

S0

@1

0 S1 0

⇐Ôminimize

λ

λ

@0

@0

@1

@1

@1

@1

@0

@0

S0 S0

S1

S10 0

0

0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback

L G

L0 G0

interpret

readback

collapse

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

λ
f()

@
(f)

0
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

λ
f()

|
r(f)

@
(f)

0
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

λ
f()

|
r(f)

@
(f)

0
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

λ
f()

|
r(f)

@
(f)

0

()f
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

λ
f()

|
r(f)

@
(f) (f[r =?])r

0

()f
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

λ
f()

|
r(f)

@
(f)

(f[r =?])f r

(f[r =?])r

0

()f
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

λ
f()

|
r(f)

@
(f)

(f[r = f r])r

(f[r =?])f r

(f[r =?])r

0

()f
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback: example (fix)

()λf. let r = f r in r

λ
f()

|
r(f)

@
(f)

(f[r = f r])r

(f[r =?])f r

(f[r =?])r

0

()f
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

readback: example (fix)

λ
f()

|
r(f)

@
(f)

0
(f)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

readback: example (fix)

λ
f()

|
r(f)

@
(f)

0

()f
(f)

0
(v1⋯vn)

(v1[] ⋯ vn[])vn

λ
vn

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

readback: example (fix)

λ
f()

|
r(f)

@
(f) (f[r =?])r

0

()f
(f)

|
(v1⋯vnvn+1) r

(v1[] ⋯ vn[] vn+1[r = ?])r

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

readback: example (fix)

λ
f()

|
r(f)

@
(f)

(f[r =?])f r

(f[r =?])r

0

()f
(f)

@
(v⃗)

(p⃗0 ∪⃗ p⃗1)L0L1

(p⃗0)L0 (p⃗1)L1

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

readback: example (fix)

λ
f()

|
r(f)

@
(f)

(f[r = f r])r

(f[r =?])f r

(f[r =?])r

0

()f
(f)

|
(vs(p⃗) vn+1) r

(p⃗ vn+1[B, r = L])r

(p⃗ vn+1[B, (r = ?)])L

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

readback: example (fix)

()λf. let r = f r in r

λ
f()

|
r(f)

@
(f)

(f[r = f r])r

(f[r =?])f r

(f[r =?])r

0

()f
(f)

λ
vn(vs(p⃗))

(p⃗)λvn. let B in L

(p⃗ vn[B])L

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L

with ∣L∣ = n

as λ-term-graph G = JLKT

▶ in time O(n2), size ∣G∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT)(L) of L

for a
λletrec-term L requires time O(n2 logn), where ∣L∣ = n.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L

with ∣L∣ = n

as λ-term-graph G = JLKT

▶ in time O(n2), size ∣G∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT)(L) of L

for a
λletrec-term L requires time O(n2 logn), where ∣L∣ = n.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L with ∣L∣ = n
as λ-term-graph G = JLKT

▶ in time O(n2), size ∣G∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT)(L) of L

for a
λletrec-term L requires time O(n2 logn), where ∣L∣ = n.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L with ∣L∣ = n
as λ-term-graph G = JLKT

▶ in time O(n2), size ∣G∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT)(L) of L

for a
λletrec-term L requires time O(n2 logn), where ∣L∣ = n.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L with ∣L∣ = n
as λ-term-graph G = JLKT

▶ in time O(n2), size ∣G∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT)(L) of L

for a
λletrec-term L requires time O(n2 logn), where ∣L∣ = n.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L with ∣L∣ = n
as λ-term-graph G = JLKT

▶ in time O(n2), size ∣G∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT)(L) of L for a
λletrec-term L requires time O(n2 logn), where ∣L∣ = n.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: complexity

L1

G1

G1

M

L2

G2

G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH HT

J⋅KH HT

?

?

J⋅KT

J⋅KT

1. interpretation

of λletrec-term L1, L2

with n = max{∣L1∣, ∣L2∣}

as λ-term-graphs G1 = JL1KT and G2 = JL2KT

▶ in time O(n2), sizes ∣G1∣, ∣G2∣ ∈ O(n2).

2. check bisimilarity

of λ-term-graphs G1 and G2

▶ in time O(∣Gi∣α(∣Gi∣)) = O(n2 α(n))

Theorem

Deciding whether λletrec-terms L1 and L2 are unfolding-equivalent

requires almost quadratic time O(n2α(n)) for n = max{∣L1∣, ∣L2∣}.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: complexity

L1

G1

G1

M

L2

G2

G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH HT

J⋅KH HT

?

?

J⋅KT

J⋅KT

1. interpretation

of λletrec-term L1, L2 with n = max{∣L1∣, ∣L2∣}
as λ-term-graphs G1 = JL1KT and G2 = JL2KT

▶ in time O(n2), sizes ∣G1∣, ∣G2∣ ∈ O(n2).

2. check bisimilarity

of λ-term-graphs G1 and G2

▶ in time O(∣Gi∣α(∣Gi∣)) = O(n2 α(n))

Theorem

Deciding whether λletrec-terms L1 and L2 are unfolding-equivalent

requires almost quadratic time O(n2α(n)) for n = max{∣L1∣, ∣L2∣}.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: complexity

L1

G1

G1

M

L2

G2

G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH HT

J⋅KH HT

?

?

J⋅KT

J⋅KT

1. interpretation

of λletrec-term L1, L2 with n = max{∣L1∣, ∣L2∣}
as λ-term-graphs G1 = JL1KT and G2 = JL2KT

▶ in time O(n2), sizes ∣G1∣, ∣G2∣ ∈ O(n2).

2. check bisimilarity

of λ-term-graphs G1 and G2

▶ in time O(∣Gi∣α(∣Gi∣)) = O(n2 α(n))

Theorem

Deciding whether λletrec-terms L1 and L2 are unfolding-equivalent

requires almost quadratic time O(n2α(n)) for n = max{∣L1∣, ∣L2∣}.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Unfolding equivalence: complexity

L1

G1

G1

M

L2

G2

G2

J⋅Kλ∞ ?

J⋅Kλ∞ ?

J⋅KH HT

J⋅KH HT

?

?

J⋅KT

J⋅KT

1. interpretation

of λletrec-term L1, L2 with n = max{∣L1∣, ∣L2∣}
as λ-term-graphs G1 = JL1KT and G2 = JL2KT

▶ in time O(n2), sizes ∣G1∣, ∣G2∣ ∈ O(n2).

2. check bisimilarity

of λ-term-graphs G1 and G2

▶ in time O(∣Gi∣α(∣Gi∣)) = O(n2 α(n))

Theorem

Deciding whether λletrec-terms L1 and L2 are unfolding-equivalent
requires almost quadratic time O(n2α(n)) for n = max{∣L1∣, ∣L2∣}.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Demo: console output

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Demo: generated λ-DFAs

[1]

[3]

L

[9,6]

L

[10,7]

A0

[13,15]

A1A1

[11,8]

A0

S1

[14,16]

S0

0

0

1

3

L

6

L

7

A0

15

A1

8

A0

9

A1

0

10

A0

13

A1

A1

11

A0

0

S1

14

S0

0

S1

16

S0

0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Desiderata _ results: structure-constrained term graphs

λ-calculus with letrec under unfolding semantics J⋅Kλ∞

Not available: term graph semantics that is studied under ↔
▸ graph representations used by compilers

were not intended for use under ↔

Desired: term graph semantics that:

▸ natural correspondence with terms in λletrec

▸ supports compactification under ↔
▸ efficient translation and readback

Defined: int’s J⋅KH/J⋅KT as higher-order/first-order λ-term graphs

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with λ-calculus with letrec

▸ efficient translation and readback
▸ translation is inverse of readback

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Desiderata _ results: structure-constrained term graphs

λ-calculus with letrec under unfolding semantics J⋅Kλ∞

Not available: term graph semantics that is studied under ↔
▸ graph representations used by compilers

were not intended for use under ↔

Desired: term graph semantics that:

▸ natural correspondence with terms in λletrec

▸ supports compactification under ↔
▸ efficient translation and readback

Defined: int’s J⋅KH/J⋅KT as higher-order/first-order λ-term graphs

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with λ-calculus with letrec

▸ efficient translation and readback
▸ translation is inverse of readback

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Desiderata _ results: structure-constrained term graphs

λ-calculus with letrec under unfolding semantics J⋅Kλ∞

Not available: term graph semantics that is studied under ↔
▸ graph representations used by compilers

were not intended for use under ↔

Desired: term graph semantics that:

▸ natural correspondence with terms in λletrec

▸ supports compactification under ↔
▸ efficient translation and readback

Defined: int’s J⋅KH/J⋅KT as higher-order/first-order λ-term graphs

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with λ-calculus with letrec

▸ efficient translation and readback
▸ translation is inverse of readback

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Desiderata _ results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ↔)

Given: process graph interpretation J⋅KP , studied under ↔
▸ not closed under →, and ↔, modulo ↔ incomplete

Desired: reason with graphs that are J⋅KP -expressible modulo ↔
(at least with ‘sufficiently many’)

understand incompleteness by a structural graph property

Defined: class of process graphs with LEE / (layered) LEE-witness

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with 1-return-less expr’s

▸ contains the collapse of a process graph G
⇐⇒ G is J⋅K1r/⋆P -expressible modulo ↔

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Desiderata _ results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ↔)

Given: process graph interpretation J⋅KP , studied under ↔
▸ not closed under →, and ↔, modulo ↔ incomplete

Desired: reason with graphs that are J⋅KP -expressible modulo ↔
(at least with ‘sufficiently many’)

understand incompleteness by a structural graph property

Defined: class of process graphs with LEE / (layered) LEE-witness

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with 1-return-less expr’s

▸ contains the collapse of a process graph G
⇐⇒ G is J⋅K1r/⋆P -expressible modulo ↔

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Desiderata _ results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ↔)

Given: process graph interpretation J⋅KP , studied under ↔
▸ not closed under →, and ↔, modulo ↔ incomplete

Desired: reason with graphs that are J⋅KP -expressible modulo ↔
(at least with ‘sufficiently many’)

understand incompleteness by a structural graph property

Defined: class of process graphs with LEE / (layered) LEE-witness

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with 1-return-less expr’s

▸ contains the collapse of a process graph G
⇐⇒ G is J⋅K1r/⋆P -expressible modulo ↔

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested Term Graphs
(joint work with Vincent van Oostrom)

n

o

λ

0

G

o

λ

@

@

i1 i2

F2

o

λ

@

i1

F1

o

λ

@

f1 f2

0 0 g

N

rec

rec

rec

rec

o

λ

@

o o

λ λ

@ @

i1 @

0 i1 i2

0 o

λ

0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λletrec terms

λ

@

λ λ

@ @

@

0 0 λ

0

First-order term graph over Σ = {λ/1, @/2, 0/0}

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λletrec terms

λx

@

λy λz

@ @

@

x x λu

u

λx. (λy. let α = xα in α) (λz. let β = x (λu.u)β in β)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λletrec terms

λx

@

λy λz

@ @

@

x x λu

u

λx. (λy. let α = xα in α) (λz. let β = x (λu.u)β in β)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λletrec terms

λx

@

λy λz

@ @

@

x x λu

u

λx. (λy. let α = xα in α) (λz. let β = x (λu.u)β in β)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λletrec terms

λx

@

λy λz

@ @

@

x x λu

u

λx. (λy. let α = xα in α) (λz. let β = x (λu.u)β in β)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λletrec terms

λx

@

λy λz

@ @

@

x x λu

u

λx. (λy. let α = xα in α) (λz. let β = x (λu.u)β in β)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λletrec terms

λ

@

λ λ

@ @

@

0 0 λ

0

λx. (λy. let α = xα in α) (λz. let β = x (λu.u)β in β)

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λ-terms

λ

@

λ λ

@ @

@

0 0 λ

0

o

λ

@

o o

λ λ

@ @

i1 @

0 i1 i2

0 o

λ

0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes _ nested term graph

λ

@

λ λ

@ @

@

0 0 λ

0

o

λ

@

o o

λ λ

@ @

i1 @

0 i1 i2

0 o

λ

0

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

nested term graph

gletrec
n() = λx.f1(x)f2(x,g())

f1(X1) = λx.letα =X1α inα
f2(X1,X2) = λy.letβ =X1(X2β) inβ

g() = λz.z
in

n()

o

λ

@

o o

λ λ

@ @

i1 @

0 i1 i2

0 o

λ

0

n

f1

g

f2

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

nested term graph

o

λ

@

o o

λ λ

@ @

i1 @

0 i1 i2

0 o

λ

0

n

o

λ

0

G

o

λ

@

@

i1 i2

F2

o

λ

@

i1

F1

o

λ

@

f1 f2

0 0 g

N

rec

rec

rec

rec

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Signature

A signature for nested term graphs (ntg-signature) is a signature Σ
that is partitioned into:

▸ atomic symbol alphabet Σat

▸ nested symbol alphabet Σne

Additionally used:

▸ interface symbols alphabet OI = O ∪ I

O = {o} with o unary
I = {i1, i2, i3, . . .} with ij nullary

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Recursive graph specification

Definition

Let Σ be an ntg-signature.
A recursive graph specification (a rgs) R = ⟨rec, r⟩ consists of:

– specification function

rec ∶ Σne Ð→ TG(Σ ∪OI)
f /k z→ rec(f) = F ∈ TG(Σ ∪ {o, i1, . . . , ik})

where F contains precisely one vertex labeled by o, the root,
and one vertex each labeled by ij , for j ∈ {1, . . . , k};

– nullary root symbol r ∈ Σne.

rooted dependency ARS ⟜ of R:

▸ objects: nested symbols in Σne

▸ steps: for all f, g ∈ Σne:

p ∶ f ⟜ g ⇐⇒ g occurs in the term graph rec(f) at position p

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Recursive graph specification

r0

o

λ

@

f2 f2

0 0 g

R0

rec0

o

λ

0

Grec0

o

λ

@

@

i1 i2

F2

rec0

rec0

Σat = {λ/1, @/2, 0/0}, Σne = {r0/0, f2/2, g/0}, O = {o/1},
I = {i1/0, i2/0, . . .}.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Recursive graph specification

Definition

Let Σ be an ntg-signature.
A recursive graph specification (a rgs) R = ⟨rec, r⟩ consists of:

– specification function

rec ∶ Σne Ð→ TG(Σ ∪OI)
f /k z→ rec(f) = F ∈ TG(Σ ∪ {o, i1, . . . , ik})

where F contains precisely one vertex labeled by o, the root,
and one vertex each labeled by ii, for i ∈ {1, . . . , k};

– nullary root symbol r ∈ Σne.

rooted dependency ARS ⟜ of R:

▸ objects: nested symbols in Σne

▸ steps: for all f, g ∈ Σne:

p ∶ f ⟜ g ⇐⇒ g occurs in the term graph rec(f) at position p

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Recursive graph specification

r0

o

λ

@

f2 f2

0 0 g

R0

rec0

o

λ

0

Grec0

o

λ

@

@

i1 i2

F2

rec0

rec0

dependency ARS: f2
⊸
⊸ r0 ⟜ g is a dag (but not a tree).

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph: intensional definition

Definition

Let Σ be an ntg-signature.
A nested term graph over Σ is an rgs N = ⟨rec, r⟩ such that
the rooted dependency ARS ⟜ is a tree.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph (intensionally)

n

o

λ

0

G

o

λ

@

@

i1 i2

F2

o

λ

@

i1

F1

o

λ

@

f1 f2

0 0 g

N

rec

rec

rec

rec

dependency ARS: f1 ⊸ n
⟜ f2
⟜ g

is a tree.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph (intensionally)

n

o

λ

0

G

o

λ

@

@

i1 i2

F2

o

λ

@

i1

F1

o

λ

@

f1 f2

0 0 g

N

rec

rec

rec

rec

o

λ

@

o o

λ λ

@ @

i1 @

0 i1 i2

0 o

λ

0

dependency ARS: f1 ⊸ n
⟜ f2
⟜ g

is a tree.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph (intensionally)

λx0

λx1

@ x0

λx2

@ x1

λx3

@ x2

λx4

@ x3

⋮

f0

f1

f2

f3

infinite λ-term

(infinitely nested scopes)

f0 o

λ

f1

0

F0

o

λ

@

f2

0

i1

F1

o

λ

@

f3

0

i1

F2 F3

nested term graph with infinite nesting
dependency ARS: f0 ⟜ f1 ⟜ f2 ⟜ f3 ⟜ . . .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph (intensionally)

λx0

λx1

@ x0

λx2

@ x1

λx3

@ x2

λx4

@ x3

⋮

f0

f1

f2

f3

infinite λ-term

(infinitely nested scopes)

f0 o

λ

f1

0

F0

o

λ

@

f2

0

i1

F1

o

λ

@

f3

0

i1

F2 F3

nested term graph with infinite nesting
dependency ARS: f0 ⟜ f1 ⟜ f2 ⟜ f3 ⟜ . . .

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph (intensionally)

n

o

λ

0

G

o

λ

@

@

i1 i2

F2

o

λ

@

i1

F1

o

λ

@

f1 f2

0 0 g

N

rec

rec

rec

rec

o

λ

@

o o

λ λ

@ @

i1 @

0 i1 i2

0 o

λ

0

dependency ARS: f1 ⊸ r0
⟜ f2
⟜ g

is a tree.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph: extensional definition

o o n o o

λ λ λ λ

@ @ 0 @

i1 f1 f2 @

0 0 g i1 i2

v0(ε)(v0)

(v0)

(v0)

(v0) (v0)

(v0) (v0) (v0)

(v0v1)

(v0v1)

(v0v1)

(v0v1)

(v0v3)

(v0v3)

(v0v3)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

v1
v2

v3

call

call

call

call

return
return

return

An extensional description of an ntg (an entg) over Σ is a term graph over
Σ ∪OI (not root-connected) with vertex set V enriched by:

▸ call ∶ V ⇀ V , (v with nested symbol) ↦ (root of graph nested into v)

▸ return ∶ V ⇀ V , (v with output vertex ij) ↦
(j-th successor of vertex into which the graph containing v is nested)

▸ anc ∶ V → V ∗ ancestor function:
v ↦ word anc(v) = v1⋯vn of the vertices in which v is nested

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph: extensional definition

o o n o o

λ λ λ λ

@ @ 0 @

i1 f1 f2 @

0 0 g i1 i2

v0(ε)(v0)

(v0)

(v0)

(v0) (v0)

(v0) (v0) (v0)

(v0v1)

(v0v1)

(v0v1)

(v0v1)

(v0v3)

(v0v3)

(v0v3)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

v1
v2

v3

call

call

call

call

return
return

return

An extensional description of an ntg (an entg) over Σ is a term graph over
Σ ∪OI (not root-connected) with vertex set V enriched by:

▸ call ∶ V ⇀ V , (v with nested symbol) ↦ (root of graph nested into v)

▸ return ∶ V ⇀ V , (v with output vertex ij) ↦
(j-th successor of vertex into which the graph containing v is nested)

▸ anc ∶ V → V ∗ ancestor function:
v ↦ word anc(v) = v1⋯vn of the vertices in which v is nested

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph: extensional definition

o o n o o

λ λ λ λ

@ @ 0 @

i1 f1 f2 @

0 0 g i1 i2

v0(ε)(v0)

(v0)

(v0)

(v0) (v0)

(v0) (v0) (v0)

(v0v1)

(v0v1)

(v0v1)

(v0v1)

(v0v3)

(v0v3)

(v0v3)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

v1
v2

v3

call

call

call

call

return
return

return

An extensional description of an ntg (an entg) over Σ is a term graph over
Σ ∪OI (not root-connected) with vertex set V enriched by:

▸ call ∶ V ⇀ V , (v with nested symbol) ↦ (root of graph nested into v)

▸ return ∶ V ⇀ V , (v with output vertex ij) ↦
(j-th successor of vertex into which the graph containing v is nested)

▸ anc ∶ V → V ∗ ancestor function:
v ↦ word anc(v) = v1⋯vn of the vertices in which v is nested

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph: extensional definition

o o n o o

λ λ λ λ

@ @ 0 @

i1 f1 f2 @

0 0 g i1 i2

v0(ε)(v0)

(v0)

(v0)

(v0) (v0)

(v0) (v0) (v0)

(v0v1)

(v0v1)

(v0v1)

(v0v1)

(v0v3)

(v0v3)

(v0v3)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

v1
v2

v3

call

call

call

call

return
return

return

An extensional description of an ntg (an entg) over Σ is a term graph over
Σ ∪OI (not root-connected) with vertex set V enriched by:

▸ call ∶ V ⇀ V , (v with nested symbol) ↦ (root of graph nested into v)

▸ return ∶ V ⇀ V , (v with output vertex ij) ↦
(j-th successor of vertex into which the graph containing v is nested)

▸ anc ∶ V → V ∗ ancestor function:
v ↦ word anc(v) = v1⋯vn of the vertices in which v is nested

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graphs: intensional vs. extensional definition

Proposition

▸ Every nested term graph has an extensional description.

▸ For every entg G there is a nested term graph for which G is
the extensional description.

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation

(for intensional ntg-definition)

Let N1 and N2 be nested term graphs. Let V1 be the disjoint union
of the vertices of term graphs in N1. Similar for V2 w.r.t. N2.

N1 and N2 are bisimilar (denoted by N1 ↔ N2) if there is a bisimulation
between N1 and N2, i.e. a binary relation B betw. V1 and V2 such that:
▸ roots are related
▸ related vertices either both have nested labels, or both have

interface labels, or both have the same atomic label
▸ progression on atomic vertices: as for f-o term graphs
▸ progression on nested vertices: interface clause

G1 G2

f1 w1

1 i n1

o

i1 ii in1

F1

rec1

call

return

f2 w2

1 j n2

o

i1 ij in2

F2rec2

call

return

B B

BB

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation (for intensional ntg-definition)

Let N1 and N2 be nested term graphs. Let V1 be the disjoint union
of the vertices of term graphs in N1. Similar for V2 w.r.t. N2.

N1 and N2 are bisimilar (denoted by N1 ↔ N2) if there is a bisimulation
between N1 and N2, i.e. a binary relation B betw. V1 and V2 such that:
▸ roots are related
▸ related vertices either both have nested labels, or both have

interface labels, or both have the same atomic label
▸ progression on atomic vertices: as for f-o term graphs
▸ progression on nested vertices: interface clause

G1 G2

f1 w1

1 i n1

o

i1 ii in1

F1

rec1

call

return

f2 w2

1 j n2

o

i1 ij in2

F2rec2

call

return

B B

BB

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation (for intensional ntg-definition)

Let N1 and N2 be nested term graphs. Let V1 be the disjoint union
of the vertices of term graphs in N1. Similar for V2 w.r.t. N2.

N1 and N2 are bisimilar (denoted by N1 ↔ N2) if there is a bisimulation
between N1 and N2, i.e. a binary relation B betw. V1 and V2 such that:
▸ roots are related
▸ related vertices either both have nested labels, or both have

interface labels, or both have the same atomic label

▸ progression on atomic vertices: as for f-o term graphs
▸ progression on nested vertices: interface clause

G1 G2

f1 w1

1 i n1

o

i1 ii in1

F1

rec1

call

return

f2 w2

1 j n2

o

i1 ij in2

F2rec2

call

return

B B

BB

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation (for intensional ntg-definition)

Let N1 and N2 be nested term graphs. Let V1 be the disjoint union
of the vertices of term graphs in N1. Similar for V2 w.r.t. N2.

N1 and N2 are bisimilar (denoted by N1 ↔ N2) if there is a bisimulation
between N1 and N2, i.e. a binary relation B betw. V1 and V2 such that:
▸ roots are related
▸ related vertices either both have nested labels, or both have

interface labels, or both have the same atomic label
▸ progression on atomic vertices: as for f-o term graphs

▸ progression on nested vertices: interface clause

G1 G2

f1 w1

1 i n1

o

i1 ii in1

F1

rec1

call

return

f2 w2

1 j n2

o

i1 ij in2

F2rec2

call

return

B B

BB

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation (for intensional ntg-definition)

Let N1 and N2 be nested term graphs. Let V1 be the disjoint union
of the vertices of term graphs in N1. Similar for V2 w.r.t. N2.

N1 and N2 are bisimilar (denoted by N1 ↔ N2) if there is a bisimulation
between N1 and N2, i.e. a binary relation B betw. V1 and V2 such that:
▸ roots are related
▸ related vertices either both have nested labels, or both have

interface labels, or both have the same atomic label
▸ progression on atomic vertices: as for f-o term graphs
▸ progression on nested vertices: interface clause

G1 G2

f1 w1

1 i n1

o

i1 ii in1

F1

rec1

call

return

f2 w2

1 j n2

o

i1 ij in2

F2rec2

call

return

B B

BB

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation (for intensional ntg-definition)

Let N1 and N2 be nested term graphs. Let V1 be the disjoint union
of the vertices of term graphs in N1. Similar for V2 w.r.t. N2.

N1 and N2 are bisimilar (denoted by N1 ↔ N2) if there is a bisimulation
between N1 and N2, i.e. a binary relation B betw. V1 and V2 such that:
▸ roots are related
▸ related vertices either both have nested labels, or both have

interface labels, or both have the same atomic label
▸ progression on atomic vertices: as for f-o term graphs
▸ progression on nested vertices: interface clause

G1 G2

f1 w1

1 i n1

o

i1 ii in1

F1

rec1

call

return

f2 w2

1 j n2

o

i1 ij in2

F2rec2

call

return

B B

BB

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation (for extensional ntg-definition)

Let N1 and N2 be nested term graphs. Let V1 be the vertices of N1, and
let V2 be the vertices of N2.

N1 and N2 are bisimilar (denoted by N1 ↔ N2) if there is a bisimulation
between N1 and N2, i.e. a binary relation B betw. V1 and V2 such that:
▸ roots are related
▸ related vertices either both have nested labels, or both have

interface labels, or both have the same atomic label
▸ progression on atomic vertices: as for f-o term graphs
▸ progression on nested vertices: interface clause

G1 G2

f1 w1

1 i n1

o

i1 ii in1

F1

rec1

call

return

f2 w2

1 j n2

o

i1 ij in2

F2

rec2

call

return

B B

BB

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Implementation by first-order term graph (via entg)

o o n o o

λ λ λ λ

@ @ 0 @

i1 f1 f2 @

0 0 g i1 i2

v0(ε)(v0)

(v0)

(v0)

(v0) (v0)

(v0) (v0) (v0)

(v0v1)

(v0v1)

(v0v1)

(v0v1)

(v0v3)

(v0v3)

(v0v3)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

v1
v2

v3

call

call

call

call

return
return

return

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Implementation by first-order term graph (via entg)

o o n o o

λ λ λ λ

@ @ 0 @

i f1 f2 @

0 0 g i i

call

call

callcall

return

return

return

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Implementation by first-order term graph (via entg)

o o o o

λ λ λ λ

@ @ 0 @

i @

0 0 i i

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Implementation by first-order term graph (via entg)

or

o o o

λ λ λ λ

@ @ 0 @

i @

0 0 i i

ir

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Implementation by first-order term graph (via entg)

or

λ

@

o o

λ λ

@ @

i @

0 i i

0 o

λ

0

i

ir

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Summary

▸ Expressibility of λletrec via unfolding

▸ Characterizations of infinite λ-terms

that are unfoldings of λletrec-terms as:

▸ strongly regular λ∞-terms,

▸ regular λ∞-terms with finite binding–capturing chains.

▸ Maximal sharing of functional programs in λletrec

▸ Maximal compactification of λletrec-terms

while preserving their nested scope-structure, by:

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / complexity / Haskell implementation

▸ Nested term graphs

▸ Basic ideas for a general framework

for graph representations of terms with nested scopes

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Summary

▸ Expressibility of λletrec via unfolding

▸ Characterizations of infinite λ-terms

that are unfoldings of λletrec-terms as:

▸ strongly regular λ∞-terms,

▸ regular λ∞-terms with finite binding–capturing chains.

▸ Maximal sharing of functional programs in λletrec

▸ Maximal compactification of λletrec-terms

while preserving their nested scope-structure, by:

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / complexity / Haskell implementation

▸ Nested term graphs

▸ Basic ideas for a general framework

for graph representations of terms with nested scopes

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Summary

▸ Expressibility of λletrec via unfolding

▸ Characterizations of infinite λ-terms

that are unfoldings of λletrec-terms as:

▸ strongly regular λ∞-terms,

▸ regular λ∞-terms with finite binding–capturing chains.

▸ Maximal sharing of functional programs in λletrec

▸ Maximal compactification of λletrec-terms

while preserving their nested scope-structure, by:

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / complexity / Haskell implementation

▸ Nested term graphs

▸ Basic ideas for a general framework

for graph representations of terms with nested scopes

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Summary

▸ Expressibility of λletrec via unfolding

▸ Characterizations of infinite λ-terms

that are unfoldings of λletrec-terms as:

▸ strongly regular λ∞-terms,

▸ regular λ∞-terms with finite binding–capturing chains.

▸ Maximal sharing of functional programs in λletrec

▸ Maximal compactification of λletrec-terms

while preserving their nested scope-structure, by:

▸ formalization as (higher-/first-order) term graphs and DFAs

▸ minimization / readback / complexity / Haskell implementation

▸ Nested term graphs

▸ Basic ideas for a general framework

for graph representations of terms with nested scopes

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

aim/ov λletrec express max-share interpret collapse readback complexity demo desid./results nest sum/res

Resources

▸ papers and reports

▸ G: Modeling Terms by Graphs with Structure Constraints

▸ TERMGRAPH 2018 post-proceedings in in EPTCS 288

▸ G, Rochel: Maximal Sharing in the Lambda Calculus with Letrec

▸ ICFP 2014 paper, extending report arXiv:1401.1460

▸ G, Rochel: Term Graph Representations for Cyclic Lambda Terms

▸ TERMGRAPH 2013 proceedings, report arXiv:1308.1034

▸ G, Vincent van Oostrom: Nested Term Graphs

▸ TERMGRAPH 2014 post-proceedings in EPTCS 183

▸ thesis Jan Rochel

▸ Unfolding Semantics of the Untyped λ-Calculus with letrec

▸ Ph.D. Thesis, Utrecht University, 2016

▸ tools by Jan Rochel

▸ maxsharing on hackage.haskell.org

▸ port graph rewriting

Clemens Grabmayer Modeling Terms in the λ-Calculus with letrec

https://arxiv.org/pdf/1902.02010v1
http://arxiv.org/abs/1401.1460
http://arxiv.org/abs/1308.1034
http://eptcs.web.cse.unsw.edu.au/paper.cgi?TERMGRAPH2014.4.pdf
http://rochel.info/thesis/
https://hackage.haskell.org/package/maxsharing
hackage.haskell.org
http://hackage.haskell.org/package/graph-rewriting

	Aim, and Overview
	The Lambda Calculus with letrec
	Expressibility
	Maximal Sharing
	Interpretation
	Collapse
	Readback
	Complexity
	Tool demonstration
	Desiderata and results
	Nested Term Graphs
	Summary and Resources

