

A characterization of regular expressions under bisimulation

Citation for published version (APA):
Baeten, J. C. M., Corradini, F., & Grabmayer, C. A. (2005). A characterization of regular expressions under
bisimulation. (Computer science reports; Vol. 0527). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 18. Dec. 2022

https://research.tue.nl/en/publications/171a7f01-f959-473d-a864-56f70a8dcc55

A Characterization of Regular Expressions under Bisimulation

J.C.M. Baeten
Divison of Computer Science, Technische Universiteit Eindhoven

josb@win.tue.nl

F. Corradini
Department of Mathematics and Computer Science, Università di Camerino

flavio.corradini@unicam.it

C.A. Grabmayer∗

Department of Computer Science, Vrije Universiteit, Amsterdam
clemens@cs.vu.nl

Abstract

We solve an open question of Milner ([15]). We define a
set of so-called well-behaved finite automata that, modulo
bisimulation equivalence, corresponds exactly to the set of
regular expressions, and we show how to determine whether
a given finite automaton is in this set. As an application, we
consider the star height problem.

1 Introduction

Automata and formal language theory have a place in ev-
ery undergraduate computer science curriculum, as this pro-
vides students with a simple model of computation, and an
understanding of computability. This simple model of com-
putation does not include the notion of interaction, which
is more and more important at a time when computers are
always connected, and not many batch processes remain.
Adding interaction to automata theory leads to concurrency
theory:

automata+ interaction= concurrency.

The basic ideas of concurrency theory should have a place
in every undergraduate curriculum, alongside automata the-
ory. Then, it helps to consider similarities and differences
between the two. Concurrency theory would benefit from
an approach more along the lines of automata theory. We
believe that this paper, besides solving a long-standing open
problem, opens the way to a deeper study of the relation-
ships between automata theory and concurrency theory.

∗Supported by the Netherlands Organisation for Scientific Research
NWO in project 612.000.313, GeoProc.

In formal language theory, there is a well-known corre-
spondence between the set of regular expressions and the
set of finite (non-deterministic) automata: for each regular
expression a finite automaton can be found that admits the
same language, and vice versa. But it is also well-known
that this correspondence breaks down if we consider other
notions of equivalence, other than language equivalence.
Of particular interest is bisimulation equivalence. Milner
proves in [15] that not every finite automaton is bisimulation
equivalent to a regular expression, a closed term in the pro-
cess algebra with atomic actions, successful and unsuccess-
ful termination, choice, sequential composition and itera-
tion. He poses the question how the set of finite behaviours
that are bisimulation equivalent to a regular expression can
be characterized. Here, we solve this open question. We de-
fine a set of so-calledwell-behavedfinite behaviours, that
corresponds exactly to the set of regular expressions. We
show how to determine whether a given finite behaviour is
well-behaved. As an application, we show how to deter-
mine the minimal star height (with respect to bisimulation)
of a regular expression. This paper extends [2], where well-
behaved specifications were introduced. For other related
work, see [10].

1.1 Acknowledgements

We thank Colin Stirling (University of Edinburgh), Bas
Luttik (Technische Universiteit Eindhoven), Wan Fokkink
(Vrije Universiteit, Amsterdam) and Luca Aceto (Reykjavik
University) for their useful remarks and suggestions.

2 Process Algebra

We start out from the equational theory BPA∗0,1. Closed
terms in this theory correspond exactly to the regular ex-
pressions of formal language theory. We use notations from
regular expressions mainly, but want to emphasise the fact
that we consider bisimulation equivalence as our notion of
equivalence, and not language equivalence. BPA∗

0,1 extends
the basic process algebra BPA (see [6]) with constants0 and
1 and iteration operator∗. We assume we have given a set
of actionsA. This set, usually (but not necessarily) finite,
is considered a parameter of the theory. The signature ele-
ments are:

• Binary operator+ denotesalternative compositionor
choice. Processx + y executes eitherx or y, but not
both. The choice is resolved upon execution of the first
action. Notation+ is also used for regular expressions.

• Binary operator· denotessequential composition. We
choose to have sequential composition as a basic op-
erator, different from CCS (see [16]). As a result, we
have a difference between successful termination (1)
and unsuccessful termination (0). As is done for regu-
lar expressions, this operator is sometimes not written.

• Constant0 denotesinaction (or deadlock), and is the
neutral element of alternative composition. This con-
stant is denotedδ in ACP-style process algebra [4].
Process0 cannot execute any action, and cannot ter-
minate. Notation0 is also used in language theory.

• Constant1 denotes theempty processor skip. It is the
neutral element of sequential composition. This con-
stant is denotedε in ACP-style process algebra [4].
Process1 cannot execute any action, but terminates
successfully. Notation1 is also used in language the-
ory.

• We have a constanta for eacha ∈ A, a so-called
atomic action. Processa executes actiona and then
terminates successfully. This coincides with the nota-
tion in language theory. The set of actionsA is consid-
ered a parameter of the theory.

• There is a unary operator∗ called iteration or Kleene
star. Processx∗ can executex any number of times,
but can also terminate successfully. This coincides
with the notation in language theory. In [5], abinary
version of this operator is used. We can use the unary
version, common in language theory, as we have a con-
stant1.

The equational theory BPA∗0,1 is given by axioms A1-9
and KS1-3 in Table 1. Axioms A1-9 are standard. Com-
pared to language theory, we do not have the lawx·(y+z) =

x · y + x · z (the ‘wrong’ distributivity, these terms differ in
the moment of choice), and the lawx · 0 = 0 (thus,0 is not
a ‘real’ zero); inx ·0, actions fromx can be executed but no
termination can take place). KS1 defines iteration in terms
of a recursive equation. Takingx = 0 yields0∗ = 1. KS2
expresses that immediate termination can be omitted in it-
eration behaviour (in language theory, we say that we can
assume that the iterated term does not have the empty word
property); takingx = 0 yields1∗ = 1. KS3 is the axiom of
Troeger ([19]).

Table 1. Axioms of BPA ∗
0,1.

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5
x + 0 = x A6
0 · x = 0 A7
1 · x = x A8
x · 1 = x A9
x∗ = 1 + x · x∗ KS1
(x + 1)∗ = x∗ KS2
x∗ · (y · (x + y)∗ + 1) = (x + y)∗ KS3

The regular expressions are theclosedterms over this
theory (i.e. the terms without variables). Many results
in process algebra, like the following normal form lemma,
only hold on the set of closed terms.

Definition 1 We define a set of normal forms inductively:

1. the constants0, 1 are normal forms;

2. if t, s are normal forms, anda is an atomic action, then
alsoa · t, t∗ · s andt + s are normal forms.

Proposition 2 Let t be a closed BPA∗0,1-term. There is an
effective algorithm producing a normal forms such that
BPA∗0,1 ` t = s.

Proof We can turn the axioms A3-9 of BPA∗0,1 into
rewrite rules, by orienting them from left to right. We
obtain a confluent and terminating term rewrite system
modulo A1-2. Then, reducet to normal form. The result
may still contain summands of the forma (only an atomic
action) ora∗ (only an iteration). These have to be replaced
by a · 1 anda∗ · 1, respectively. This proof is like several
examples in [4] or [3]. �

As a consequence of this proposition, each closed term
over BPA∗0,1 can be written as0, 1 or in the form

a1 · t1 + . . . an · tn + u∗1 · v1 + . . . + u∗m · vm + {1},

for certainn, m ∈ IN with n + m > 0, certainai ∈ A and
normal formsti, uj , vj . The1 summand may or may not
occur.

We will have need to strengthen this result a little bit. For
this, we use a result of Milner, proposition 6.2 of [15]:

Proposition 3 [15]: For each closed BPA∗0,1-term t there
is an effective algorithm producing a closed BPA∗

0,1-terms
with

BPA∗0,1 ` t = s

ands has no subterm of the formf∗ with f = f + 1.

Using this result, we can require in the normal form in
addition that termsuj do not satisfyuj = uj + 1, i.e. these
terms do not have the empty word property. This will ensure
that the recursive specifications we define further down are
guarded.

Next, we provide a model for BPA∗0,1 on the basis of
structured operational rules (so-calledSOS rules) in the
style of Plotkin (see [17]). The rules in Table 2 define the
following relations on closed BPA∗0,1-terms: binary rela-

tions .
a→ . (for a ∈ A) and a unary relation↓. Intuitively,

they have the following meaning:

• x
a→ x′ means thatx can evolve intox′ by executing

atomic actiona;

• x ↓ means thatx has an option to terminate success-
fully (without executing an action)

Thus, the relations concern action execution and termi-
nation, respectively, we do not have need of a mixed relation
.

a→
√

as in [4] or [3].
The rules provide a transition system for each closed

term. Next, we define an equivalence relation on the re-
sulting transition systems in the standard way.

Definition 4 Let R be a binarysymmetric relation on
closed terms. We sayR is a bisimulationif the following
holds:

• wheneverR(x, y) andx
a→ x′ then there is a termy′

such thaty
a→ y′ andR(x′, y′)

• wheneverR(x, y) andx ↓ theny ↓

We say two closed termst, s arebisimulation equivalent
or bisimilar, notationt↔s if there is a bisimulationR with
R(s, t).

Table 2. Transition rules for BPA ∗
0,1 (a ∈ A).

1 ↓ x∗ ↓ a
a→ 1

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

x ↓
x + y ↓

y ↓
x + y ↓

x
a→ x′

x · y a→ x′ · y
x ↓, y a→ y′

x · y a→ y′
x ↓, y ↓
x · y ↓

x
a→ x′

x∗
a→ x′ · x∗

Proposition 5 Bisimulation equivalence is a congruence
relation on closed BPA∗0,1-terms.

Proof This is a standard result following from the
format of the deduction rules, see e.g. [3]. �

Theorem 6 The theory BPA∗0,1 is sound for the model of
transition systems modulo bisimulation, i.e. for all closed
termst, s we have

BPA∗0,1 ` t = s =⇒ t↔s

Proof This is also a standard result. �

Note that the reverse implication in the theorem above,
indicating completeness of the axiom system, does not hold.
In fact, a finite complete equational axiomatization is not
possible, as shown by Sewell ([18]). This impossibility is
due to the presence of the0 constant. In the absence of
0, more positive results can be found in [8] and [9] where a
complete axiomatization of regular expressions up to bisim-
ulation equivalence is given when the language satisfies the
so-called hereditary non-empty word property (essentially
requiring that the non-empty word property be satisfied at
any depth within a star context).

The first axiom of iteration is a specific instance of are-
cursive equation. It is standard to use recursive equations to
specify processes with possible infinite behaviour, see e.g.
[4] or [3]. We proceed to define recursion in our setting.

Let V be a set of variables ranging over processes. A
recursive specificationE = E(V) is a set of equationsE =
{X = tX | X ∈ V } where eachtX is a term over the
signature in question (in our case, BPA∗

0,1) and variables
from V . A solutionof a recursive specificationE(V) in our
theory is a set of processes{pX | X ∈ V } in some model

of the theory such that the equations ofE(V) hold, if for all
X ∈ V , pX is substituted forX. Mostly, we are interested
in one particular variableX ∈ V , called theinitial variable.

Let t be a term containing a variableX. We call an oc-
currence ofX in t guardedif this occurrence ofX is pre-
ceded by an atomic action (i.e.,t has a subterm of the form
a · s, and thisX occurs ins).

We call a recursive specificationguarded if all occur-
rences of all its variables in the right-hand sides of all its
equations are guarded or it can be rewritten to such a re-
cursive specification using the axioms of the theory and the
equations of the specification.

We can formulate the following principles:

• RDP (theRecursive Definition Principle): each recur-
sive specification has at least one solution;

• RSP (theRecursive Specification Principle): each
guardedrecursive specification has at most one solu-
tion.

Different models of BPA∗0,1 will satisfy none, one or both of
these principles. Let us look at the transition system models
in particular.

Consider a recursive specificationE. For each variable
X of E, we can add a new constant〈X|E〉 to our syntax.
Table 3 provides deduction rules for these constants. They
come down to looking upon〈X|E〉 as the process〈tX |E〉,
which is tX with, for all Y ∈ V , all occurrences ofY in
tX replaced by〈Y |E〉. To be more explicit, ifE is afinite
recursive specification over variablesX0, . . . , Xn−1, with
equationsXi = ti(X0, . . . , Xn−1) (i < n), then〈ti|E〉 is
defined to beti(〈X0|E〉, . . . , 〈Xn−1|E〉).

Table 3. Transition rules for recursion (a ∈ A).

〈tX |E〉
a→ y

〈X|E〉 a→ y

〈tX |E〉 ↓
〈X|E〉 ↓

Now if we add such constants〈X|E〉 for all specifica-
tions E to our syntax, we obtain a modelG∞ for BPA∗0,1

that satisfies RDP and RSP (see e.g. [4]). If we add con-
stants〈X|E〉 only for guardedE, we obtain a modelG
satisfying RSP. The modelG is really smaller thanG∞,
since using unguarded recursion we can specify infinitely
branching processes, whereas for guarded recursion we can
always get a finitely branching solution. Thus, RDP doesn’t
hold any more on the second model in full generality; still,
all guarded recursive specifications have a solution. We call
this RDP−:

• RDP− (theRestricted Recursive Definition Principle):
each guarded recursive specification has at least one
solution;

Note that, due to the presence of the constant1, a differ-
ence between BPA∗0,1 and the standard theory BPA is that
finite guarded recursion allows the specification of a pro-
cess with unbounded branching (see [7]).

The third possibility is adding still fewer constants,
adding only〈X|E〉 for so-calledregular recursive speci-
fications. We call an equationregular if it is in one of the
two forms

1. X = 0 + a1 ·X1 + · · ·+ an ·Xn, or

2. X = 1 + a1 ·X1 + · · ·+ an ·Xn,

for certainn ∈ IN, ai ∈ A,Xi ∈ V . In this case, each vari-
able corresponds directly to a state in the generated transi-
tion system. We usually present a regular equation as fol-
lows:

X =
∑

1≤i≤n

ai ·Xi + {1},

where an empty sum stands for0 and the1 summand is
optional.

The modelIR of BPA∗0,1 is obtained if we add constants
〈X|E〉 only for finite regularE. IR is the model ofregular
processes, it is equivalent to the model of finite transition
systems modulo bisimulation, see e.g. [6]. Again we can
establish thatIR is really smaller thanG, a process in the
difference is the counterC defined by the following speci-
fication (p standing for plus,m for minus):

C = T · C T = p · S S = m + T · S.

Finally, the term modelIP of BPA∗0,1 is even smaller than
IR. In [5] it is shown that there are regular processes that
cannot be defined just using iteration. In the modelIP, the
principle RSP boils down to the following conditional ax-
iom:

x = y · x + z guarded =⇒ x = y∗ · z RSP*.

The guardedness of this equation would be expressed in lan-
guage theory as follows:y does not have the empty word
property (y does not have1 as a summand). Operationally,
this is denotedy 6↓, so we will use the following formulation
of RSP*:

x = y · x + z & y 6↓ =⇒ x = y∗ · z RSP*.

It is an open problem whether the addition of principle
RSP* to the axiomatization BPA∗0,1 provides a complete ax-
iomatization of the modelIP.

3 Well-Behaved Specifications

We define a class of recursive specifications over BPA∗
0,1

that we will callwell-behaved. The idea is that the class of
well-behaved specifications corresponds exactly to the class
of closed BPA∗0,1-terms.

Consider sequences of natural numbers ranged over by
σ, ρ (sometimes with a prime or index) (σ, ρ ∈ IN∗). Call
a subsetS of IN∗ downwards closedif the empty sequence
ε ∈ S, and, wheneverσn ∈ S, alsoσ ∈ S andσk ∈ S for
all k < n.

Definition 7 A recursive specificationE over BPA∗0,1 is in
suitable formif

1. it is finite and guarded;

2. the set of variablesXσ is indexed by a downwards
closed subset ofIN∗;

3. each equation has the following form:

Xσ = eσ0 ·Xσ0 + . . . + eσ(m−1) ·Xσ(m−1)+

+ eσ ·Xσ + eρ ·Xρ + c,

wherem ≥ 0, eσi, eσ, eρ are closed BPA∗0,1-terms,c ∈
A ∪ {0, 1}, andρ is a proper prefix ofσ. The last
three terms may or may not be present (of course, if
m = 0, at least one of them must be present). If there
is a summand of the formeρ · Xρ present, we call the
variableXρ acyclingvariable;

4. whenXρ is a cycling variable (it occurs in the right-
hand side of an equation of a variable with longer in-
dex) then its equation is of the form

Xρ = 1 ·Xρ0 + 1 ·Xρ1,

i.e. m = 2, eρ0 = eρ1 = 1 and none of the optional
summands is present.

A recursive specification isin regular suitable formif it
is in suitable form and all the occurring closed termseσ are
constants, i.e. elements ofA ∪ {0, 1}.

Definition 8 Let E be a recursive specification in suitable
form over a set of variables{Xσ : σ ∈ S ⊂ IN∗}. As S is
finite, we can define a notion with induction on the depth of
the variable tree belowXσ (so, we define this first for the
maximalsequencesσ ∈ S).

Let ρ be a prefix ofσ. We sayXσ cycles back toXρ if:

• in caseXσ is cycling (so its equation is of the form
Xσ = 1 ·Xσ0 + 1 ·Xσ1), thenXσ cycles back toXρ

iff Xσ0 cycles back toXσ andXσ1 cycles back toXρ;

• in caseXσ is not cycling, we require that its equation
is of the form

Xσ = eσ0 ·Xσ0 + . . . + eσ(m−1) ·Xσ(m−1)+

+ eσ ·Xσ + eρ ·Xρ,

so there is no constant term present, the last two sum-
mands are optional, and allXσi cycle back toXρ.

Next, we define when a variableXσ is well-behaved,
again with induction on the depth of the variable tree be-
low Xσ. We sayXσ is well-behavedif:

• in caseXσ is cycling, we sayXσ is well-behaved iff
Xσ0 cycles back toXσ andXσ1 is well-behaved;

• in caseXσ is not cycling, we require that its equation
is of the form

Xσ = eσ0 ·Xσ0+. . .+eσ(m−1) ·Xσ(m−1)+eσ ·Xσ+c,

so there is no cycling variable present, the next to last
summand is optional, and allXσi are well-behaved.

Finally, we call a recursive specificationE in suitable
formwell-behavediff its initial variableXε is well-behaved.

Theorem 9 Every well-behaved recursive specificationE
has a closed term in BPA∗0,1 as a solution (up to bisimulation
equivalence).

In order to prove this theorem, we prove two lemmas.
The theorem will follow from the two lemmas (for, when
we have a closed term for each variable of the specification,
these closed terms together make up a solution inG, and
since bisimilarity of closed terms onG and IP coincides,
also a solution inIP).

In these lemmas, we will use the following notation.
Write Xσ ↓ Xρ if the equation ofXσ contains a summand
eρ · Xρ with eρ ↓. ⇓ denotes the transitive closure of the
relation↓ on recursion variables. A useful characerization
of guardedness is the following: a recursive specification in
suitable form is guarded if and only if for each variableXσ,
we have thatXσ 6⇓ Xσ.

Lemma 10 Let E be a recursive specification in suitable
form, and supposeXσ cycles back toXρ. Then there is a
closed terme over BPA∗0,1 such thatXσ = e · Xρ (here, =
denotes derivability in BPA∗0,1 + RDP− + RSP*). Moreover,
if Xσ 6⇓ Xρ, we can takee such thate 6↓.

Proof By induction on the depth of the variable tree
belowXσ.

In the base case, there are no variables belowXσ, so
the equation ofXσ must be eitherXσ = eρ · Xρ or Xσ =
eσ ·Xσ +eρ ·Xρ or Xσ = eσ ·Xσ. By guardedness,eσ 6↓. In

the first case, we are done immediately, in the second case,
it follows from RSP* thatXσ = e∗σ · eρ ·Xρ and in the third
case, we haveXσ = e∗σ · 0 ·Xρ. WhenXσ 6⇓ Xρ, we must
haveeρ 6↓, which impliese∗σ · eρ 6↓. Alwayse∗σ · 0 6↓.

In the induction case, there are two subcases.

• if Xσ is cycling, we haveXσ = 1 · Xσ0 + 1 · Xσ1

andXσ0 cycles back toXσ andXσ1 cycles back to
Xρ. SinceXσ ↓ Xσ0, we must haveXσ0 6⇓ Xσ. We
can apply the induction hypothesis toXσ0 andXσ1, so
there are closed termsf0, f1 such thatXσ0 = f0 ·Xσ

andXσ1 = f1 · Xρ andf0 6↓. Putting this together,
we obtainXσ = 1 · Xσ0 + 1 · Xσ1 = Xσ0 + Xσ1 =
f0 · Xσ + f1 · Xρ = f∗0 · f1 · Xρ. WhenXσ 6⇓ Xρ,
thenXσ1 6⇓ Xρ, and we can takef1 6↓, which implies
f∗0 · f1 6↓.

• if Xσ is not cycling, we haveXσ = eσ0 ·Xσ0 + . . . +
eσ(m−1) ·Xσ(m−1)+eσ ·Xσ+eρ ·Xρ and allXσi cycle
back toXρ. Again, eσ 6↓. By induction hypothesis
there are closed termsfi such thatXσi = fi ·Xρ. But
thenXσ = eσ0 ·Xσ0 + . . .+eσ(m−1) ·Xσ(m−1) +eσ ·
Xσ+eρ·Xρ = eσ0·f0·Xρ+. . .+eσ(m−1) ·fm−1·Xρ+
eσ ·Xσ + eρ ·Xρ = eσ ·Xσ +(eσ0 · f0 + . . . eσ(m−1) ·
fm−1 +eρ) ·Xρ = e∗σ ·(eσ0 ·f0 + . . . eσ(m−1) ·fm−1 +
eρ) ·Xρ. WhenXσ 6⇓ Xρ, theneρ 6↓, and moreover for
eachi < m we have eithereσi 6↓ or Xσi 6⇓ Xρ. In
the latter case we can takefi 6↓, so in all cases we have
eσi ·fi 6↓. Consequentlyeσ0 ·f0+ . . . eσ(m−1) ·fm−1+
eρ 6↓ and soe∗σ · (eσ0 · f0 + . . . eσ(m−1) · fm−1 + eρ) 6↓.

�

Lemma 11 Let E be a recursive specification in suitable
form, and suppose variableXσ is well-behaved. Then there
is a closed terme over BPA∗0,1 such thatXσ = e (= is again
derivability in BPA∗0,1 + RDP− + RSP*).

Proof By induction on the depth of the variable tree
belowXσ.

In the base case, there are no variables belowXσ, so the
equation ofXσ must be eitherXσ = c or Xσ = eσ ·Xσ + c
or Xσ = eσ ·Xσ. Noteeσ 6↓. In the first case, we are done
immediately, in the second case, it follows from RSP* that
Xσ = e∗σ · c, and in the third case,Xσ = e∗σ · 0.

In the induction case, there are two subcases.

• if Xσ is cycling, thenXσ = 1 · Xσ0 + 1 · Xσ1 and
Xσ0 cycles back toXσ andXσ1 is well-behaved. By
the definition of cycling back there is a closed termf
such thatXσ0 = f · Xσ. As Xσ ↓ Xσ0, we must
haveXσ0 6⇓ Xσ, and we can takef 6↓. By induction
hypothesis there is a closed termf ′ such thatXσ1 =
f ′. ThusXσ = Xσ0 + Xσ1 = f ·Xσ + f ′ = f∗ · f ′.

• if Xσ is not cycling, we haveXσ = eσ0 · Xσ0 +
. . . + eσ(m−1) · Xσ(m−1) + eσ · Xσ + c and allXσi

are well-behaved. By induction hypothesis this implies
that there are closed termsfi such thatXσi = fi. Thus
Xσ = eσ0 ·Xσ0+ . . .+eσ(m−1) ·Xσ(m−1)+eσ ·Xσ +
c = eσ0 · f0 + . . . + eσ(m−1) · fm−1 + eσ ·Xσ + c =
e∗σ · (eσ0 · f0 + . . . + eσ(m−1) · fm−1 + c).

�

Note 12 Our notion of cycling was inspired by (but is dif-
ferent from) the notion of ruling in [10]; our notion of well-
behaved was inspired by their notion of hierarchical. It
should be noted that they work in a different setting, as they
use the lawx · 0 = 0, which is invalid in the present setting.
(Another difference is that the lawx + x = x is not valid
in their setting, but this is not the crucial difference for the
present results.)

On the other hand, the present work also can be applied
in their setting. Adding the lawx · 0 = 0 amounts to con-
sidering the constant0 aspredictable failurein the words of
[1]. In [1], it is proven that using this law, every closed term
over BPA0 is either equal to0 or can be written without0.
This can be extended to BPA∗0,1 (crucial point:0∗ = 1), and
using a normal form without0 in the sequel will make all
results go through.

4 Regular Expressions

Now we consider the reverse direction, how to transform
a given regular expression into a well-behaved recursive
specification of a particular form. Recall from Section 2
that each closed term over BPA∗0,1 can be written as0, 1 or
in the form

a1 · t1 + . . . an · tn + u∗1 · v1 + . . . + u∗m · vm + {1},

for certainn, m ∈ IN with n + m > 0, certainai ∈ A and
normal formsti, uj , vj , with uj 6↓. The1 summand may or
may not occur.

Starting from such a normal form, we describe an al-
gorithm to arrive at a recursive specification. Consider an
example, taken from [10]. Takee = a(a∗b + c) + (c∗ +
a∗b)∗c∗ + a. This term is in normal form, but the star term
c∗ + a∗b has the empty word property, asc∗ ↓. Therefore,
we rewrite this term toe′ = a(a∗b+c)+(cc∗+a∗b)∗c∗+a.
Actually, the algorithm in Section 2 also rewrites constants
a to a · 1 and termsa∗ to a∗ · 1, but we ignore this in the
example. AssociateXε to e′.

1. Xε = aX0 + 1X1 + a. Thus,X0 is associated to
a∗b + c, X1 to (cc∗ + a∗b)∗c∗.

2. X0 = 1X00 + c. Thus,X00 is associated toa∗b.

3. X00 = X000 + X001. Each star-term is split into two
parts: a part where the loop is executed at least once,
and a part where the exit is chosen. Such a term will
turn into a cycling variable. Here,X000 corresponds to
a ·X00, andX001 corresponds tob.

4. X000 = aX00. VariableX000 cycles back toX00.

5. X001 = b.

6. X1 = X10 + X11. Again, a star-term is split into two
parts. Here,X10 corresponds to(cc∗ + a∗b) ·X1, and
X11 corresponds toc∗.

7. X10 = cX100 + X101. Here, X100 corresponds to
c∗ ·X1, andX101 corresponds toa∗b ·X1.

8. X100 = X1000 + X1001. Again, a star term.

9. X1000 = cX100. VariableX1000 cycles back toX100.

10. X1001 = X1. VariableX1001 cycles back toX1.

11. X101 = X1010 + X1011. Split of star.

12. X1010 = aX101. VariableX1010 cycles back toX101.

13. X1011 = bX1. VariableX1011 cycles back toX1.

14. X11 = X110 + X111. Split of star.

15. X110 = cX11.

16. X111 = 1.

Note that the resulting recursive specification is guarded.
Note that the resulting specification is much more restricted
than the general format of well-behaved specifications, in
the following way: an equation is required to be in the form

Xσ = eσ0 ·Xσ0 + . . . + eσ(m−1) ·Xσ(m−1)+

+ eσ ·Xσ + eρ ·Xρ + c.

Here, we have that all expressionseσi, eρ are constants, and
that termeσ ·Xσ does not occur (stated differently, we can
always takeeσ = 0). Moreover, we can require that the
constantc is either0 or 1. If Xσ has a summand of the
form a · Xτ , we write Xσ

a→ Xτ . The notationXσ ↓
Xτ used in the previous section now means thatXσ has a
summand of the form1 · Xτ . Note that ifXσ ↓ Xτ , then
eitherXσ or Xτ is a cycling variable. Let us call a well-
behaved specification in this restricted form a well-behaved
specificationin restricted form.

In general, we define a well-behaved recursive specifica-
tion in restricted form with solution a given BPA∗0,1-terme
by structural induction one.

Proposition 13 Let e be a closed BPA∗0,1-term. There is an
effective algorithm giving a well-behaved recursive specifi-
cation in restricted form with solutione.

Proof The proof goes by structural induction one, as-
suminge is given as a normal form as given in Section 2.
In the base case,e ∈ {0, 1}, and we get the specification
Xε = e, so the results are immediate (the variable is not
cycling).

In the induction step, we havee = a0 · t0 + . . . an−1 ·
tn−1 + u∗0 · v0 + . . . + u∗m−1 · vm−1 + {1} for certain
n, m ∈ IN with n + m > 0, certainai ∈ A and simpler
termsti, uj , vj , with uj 6↓. By induction hypothesis, we can
produce well-behaved recursive specificationsEi, Fj , Gj in
restricted form with these terms as solutions. We proceed to
define a recursive specification as follows:

1. Xε = a0·X0+. . . an−1·Xn−1+Xn+· · ·+Xn+m−1+
{1}.

2. For eachi = 0, . . . , n − 1, the set of equationsE′
i

which is produced fromEi by replacing each occur-
ring variableXσ by Xiσ.

3. For eachj = 0, . . . ,m − 1, the equationXn+j =
X(n+j)0 + X(n+j)1.

4. For eachj = 0, . . . ,m − 1, the set of equationsF ′
j

which is produced fromFj by replacing each occur-
ring variableXσ by X(n+j)0σ and replacing each con-
stant summandc by c ·Xn+j

5. For eachj = 0, . . . ,m − 1, the set of equationsG′
j

which is produced fromGj by replacing each occur-
ring variableXσ by X(n+j)1σ

Now fix j ∈ {0, . . . ,m− 1}, and consider the specifica-
tion defined forXn+j in the last three items.

First of all, note that this specification is guarded: for all
variablesX(n+j)1σ in G′

j we haveX(n+j)1σ 6⇓ X(n+j)1σ

asXσ 6⇓ Xσ in Gj ; on the other hand, if for some variable
X(n+j)0σ in F ′

j we would haveX(n+j)0σ ⇓ X(n+j)0σ, this
cannot be due to a cycle of1-steps inFj by the same ar-
gument, so we must haveX(n+j)0σ ⇓ Xn+j ⇓ X(n+j)0σ.
This impliesX(n+j)0 ⇓ Xn+j , and in turn that the initial
variable ofFj satisfies↓, which meansuj ↓ and this is
a contradiction. Finally, the guardedness ofX(n+j)1 and
X(n+j)0 imply the guardedness ofXn+j .

Next, variableXn+j is a cycling variable: its equation is
in the required form, and every exitc in Fj is turned into a
term c · Xn+j that cycles back. Further, cycling variables
in F ′

j , G
′
j exactly correspond to cycling variables inFj , Gj

(just a prefix added to the index). Thus, the specification of
Xn+j is in suitable form.

Further, variableXn+j is well-behaved: each variable
X(n+j)1σ is well-behaved inG′

j as the correspondingXσ

is well-behaved inGj , and each variableX(n+j)0σ cycles
back toXn+j as the correspondingXσ is well-behaved in
Fj . Takingσ = ε yields the well-behavedness ofXn+j . It
is easy to show that the specification is in restricted form.

Finally, using RDP and RSP, from the fact thatuj is a
solution ofFj we can inferX(n+j)0 = uj · Xn+j , and so
Xn+j = X(n+j)0 + X(n+j)1 = uj ·Xn+j + vj = u∗j · vj ,
where the last step follows from RSP* sinceuj 6↓.

Now this is established for eachj ∈ {0, . . . ,m − 1},
we can consider the whole specification. Establishing
guardedness and preservation of cycling variables is easier
than in the previous case, thus the specification is in
suitable form. All variablesXi are well-behaved, since
the initial variables ofEi are well-behaved, and soXε is
well-behaved. It is easy to show that the specification is in
restricted form. Finally, using RDP and RSP, from the fact
thatti is a solution ofEi we can inferXi = ti, and soXε =
a0 ·X0 + . . . an−1 ·Xn−1 + Xn + · · ·+ Xn+m−1 + {1} =
a0·t0+. . . an−1·tn−1+u∗0·v0+· · ·+u∗m−1·vm−1+{1} = e.

�

Thus, for each closed BPA∗0,1-term we can find a well-
behaved recursive specification in restricted form that has
this term as a solution.

5 A Decision Procedure

Next, we give a decision procedure in order to decide
whether a given finite automaton has a well-behaved recur-
sive specification or not. Suppose we have given a finite
transition system. We can assume this system is minimized,
i.e. the largest autobisimulation has been divided out. Then,
we can assume that all states are not bisimilar. However,
this is not necessary for the following procedure.

The following proposition is reminiscent of the pumping
lemma in formal language theory. It provides a bound on
the set of well-behaved recursive specifications we need to
consider.

Proposition 14 Let a finite transition system be given with
n states and branching degree ofk (k ≥ 2). If this transition
system is bisimilar to a well-behaved specification, then it
is bisimilar to a restricted well-behaved specification with
index setS where all sequences inS have length less than
(n + 1)3 · 23k and entries less thank.

Proof Let a finite transition system be given withn
states and branching degree ofk that is bisimilar to a well-
behaved specification. Due to the results of the previous
two sections, we can take arestrictedwell-behaved spec-
ification E that is bisimilar to the given transition system.
Each variable in the specification is bisimilar to a state or
a substate of the given transition system (if some outgoing

transitions of a state are omitted, we get a substate of this
state; thus, ifXσ ↓ Xρ, thenXρ corresponds to a substate
of the state given byXσ). A descending pathin the specifi-
cation is a sequence of variablesXσ, Xσi1 , Xσi1i2 . . . such
that for each pair of consecutive variablesXτ , Xτi we have
eitherXτ

a→ Xτi or Xτ ↓ Xτi. The proposition follows
from the following three key observations.

1. We can assume that each descending path of length
n + 1 contains a cycling variable.

2. We can assume that each equation of each variable has
at mostk summands.

3. We can assume that each descending path contains at
mostn2 · 23k cycling variables.

For, if we have these three observations, then we can as-
sume that each descending path starts with a series of steps
of at mostn + 1 to the first cycling variable, followed by a
series of steps of at mostn + 1 to the next cycling variable,
and so on, so we have at mostn2 ·23k +1 blocks between at
mostn2 · 23k cycling variables, and we can limit the length
of any descending path to(n + 1)3 · 23k. Thus, the index
set of variables only needs to contain sequences of length at
most(n + 1)3 · 23k, and the number of summands in any
given equation is bounded byk.

It remains to show the three observations. For the first
one, consider there is a descending path of lengthn + 1
without a cycling variable. By the restricted format, this
means that for each pair of consecutive variablesXτ , Xτi

there must be some atomic actiona such thatXτ
a→ Xτi,

and each variable in the descending path (except maybe the
first one) corresponds to a state in the given transition sys-
tem. As a result, two distinct variables in this path, sayXσ

andXσρ, must correspond to the same state in the given
transition system. Now consider the specification where the
part belowXσ is replaced by the part belowXσρ, i.e. we
throw out all equations of variables of the formXσπ, and
we put in new equations

Xσπ = c0 ·Xσπ0+ . . .+cm−1 ·Xσπ(m−1)+cm ·Xξ +cm+1

whenever there was an equation

Xσρπ = c0·Xσρπ0+. . .+cm−1·Xσρπ(m−1)+cm·Xξ′+cm+1

skipping theρ part in the summands. If an occurring cycling
variableXξ has aσρ prefix, then also there theρ part can
be skipped; otherwise, it must lie beforeXσ, and can re-
main unchanged. The resulting specification is again well-
behaved, and in restricted form, becauseE is in restricted
form andXσ, Xσρ are not cycling variables. This procedure
can be repeated until the specification has no descending
paths of lengthn + 1 without a cycling variable.

For the second observation, suppose there is a variable
Xσ whose equation contains more thank summands. But
Xσ must be bisimilar to a state or a substates of the given
transition system. This (sub)state has a number of transi-
tionss

a→ s′, and maybe a termination options ↓, number-
ing in total at mostk. By bisimulation, each of these tran-
sitions or termination option must be matched by at least
one of the summands ofXσ. For each of them, pick one
of the summands where it is matched, in total at mostk.
Now all other summands can be left out (together with their
entire subspecifications), resulting in an equivalent speci-
fication. Next, some renaming is required to obtain again
a downwards closed index set. Due to the fact that in this
simplification step cycling variables are only removed to-
gether with incoming transitions as well as with their entire
subspecifications, the resulting specification is again in re-
stricted form.

For the third observation, first we do both reductions of
the two previous cases, so we can assume that each descend-
ing path of lengthn+1 contains a cycling variable, and each
variable has at mostk summands.

Claim 15 Cycling variables can be nested onlyn·22k deep,
i.e. there are at mostn · 22k cycling variables where each
variable is in the cycling part of the previous one.

In order to prove the claim, suppose not. Each cycling
variable is bisimilar to a state or a substate of the given tran-
sition system. As this transition system has at mostn states,
and a branching degree at mostk, it has at mostn · 2k sub-
states. If there are more thann ·2k nested cycling variables,
there must be two that are bisimilar, so there areXσ, Xσρ

such thatXσρ is in the cycling part ofXσ, i.e. it is below
Xσ0. NowXσ, Xσρ are bisimilar, but it need not be the case
that Xσ0, Xσρ0 are bisimilar, as the split into the cycling
and the exit part can be done differently in the two cases.
But notice that there are only2k different cycling parts pos-
sible, as each outgoing transition will belong to the cycling
part or not. Thus, if there are more thann · 22k nested cy-
cling variables, there must be two that are bisimilar and that
moreover have bisimilar cycling parts. Thus, it must be the
case that there areXσ, Xσρ such thatXσρ is belowXσ0,
and Xσ, Xσρ are bisimilar, and moreoverXσ0, Xσρ0 are
bisimilar.

Now consider the specification where the part fromXσ0

is replaced by the part fromXσρ0, i.e. we replace the cy-
cling part of the cycling variableXσ and keep the exit part
(the part fromXσ1). This replacement is done in the same
way as outlined in the proof of the first observation, skip-
ping theρ part in the cycling variables. The result is a well-
behaved specification in restricted form that has fewer cy-
cling variables and still is bisimilar to the given transition
system. This means we have proved the claim.

Next, notice that we can assume that there are at most
n · 2k consecutive cycling variables on a descending path
such that each cycling variable is in the exit part of the
previous one. For, if not, then there must be two cycling
variables that correspond to the same substate of the given
transition system, and we can replace the first one by the
second one, resulting in a bisimilar well-behaved specifica-
tion in restricted form.

Now, given these observations, it can still occur that
there is a sequence of cycling variables, that alternatingly
occur in the cycling part and in the exit part. I.e. there can
be cycling variablesXσ, Xσρ, Xσρπ such thatXσ is bisim-
ilar to Xσρπ, Xσρ is belowXσ1 (the exit part ofXσ) and
Xσρπ is belowXσρ0 (the cycling part ofXσρ). To illustrate
this phenomenon, we give an example. Consider the regular
expressionab∗c(db∗c)∗e. This expression gives rise to the
following well-behaved recursive specification.

Xλ = aX0

X0 = X00 + X01

X00 = bX0

X01 = cX010

X010 = X0100 + X0101

X0100 = dX01000

X01000 = X010000 + X010001

X010000 = bX01000

X010001 = cX010

X0101 = e

Now cycling variablesX0 andX01000 correspond to bisim-
ilar states of the process. The second one occurs inside the
cycling part of variableX010, the first one does not. In the
case of this specification, it turns out that it cannot be re-
duced to a simpler well-behaved specification.

However, combining the last observation with the claim,
we see that the total number of cycling variables on a
descending path is bounded byn2 · 23k. For, the total
number of nested cycling variables is at mostn · 22k, and
between one of these and the following, there can be at
mostn · 2k cycling variables each of which is in the exit
part of the previous one. �

This proposition gives a bound on the size of the specifi-
cation that we need to consider. We expect that this bound
can be tightened further, in fact we have a further reduction
that reduces(n+1)3 · 23k to (n+1)3 · 22k. This bound im-
mediately gives rise to a decision procedure, as there are
only finitely many regular recursive specifications within
the bound. We can check for each one, whether or not it
is bisimilar to the given transition system, as bisimulation is
decidable on finite transition systems.

To give an example of a transformation into well-
behaved form, consider the guarded recursive specification
{X = aY, Y = bX + aZ, Z = cX + aY }. In this form,

it is not a well-behaved recursive specification. It turns into
one, by replacingX by aY everywhere on the right-hand
side. We get the following specification:

Xλ = aX0

X0 = X00 + X01

X00 = bX000 + aX001

X000 = aX0

X001 = cX0010 + aX0

X0010 = aX0

X01 = 0.

6 Star Height

In this section we consider some consequences of the re-
sults obtained. In particular, we look at the star height prob-
lem. The star height of a regular expression is the maximum
number of nested stars it contains. In formal language the-
ory, the notion of star height originates in [11].

Definition 16 Let t be a closed BPA∗0,1-term. Thestar
heightof t, sh(t) is defined inductively:

1. sh(0) = sh(1) = sh(a) = 0 (for all actionsa ∈ A);

2. sh(t + s) = sh(t · s) = max{sh(t), sh(s)};

3. sh(t∗) = 1 + sh(t).

Let t be a closed BPA∗0,1-term. We sayt hasminimal
star heightn iff n is the minimal number such that there
is regular expression equal tot (i.e., bisimilar tot) of star
heightn.

An obvious question is now how to determine the min-
imal star height of a given regular expression. In language
theory, this problem was solved in [12]. In our setting, using
bisimulation equivalence instead of language equivalence,
we can achieve the same result, by use of well-behaved
specifications.

Given the correspondence between regular expressions
and well-behaved specifications proved earlier, star height
can also be defined for well-behaved specifications. This
amounts to the following.

Definition 17 Let E be a recursive specification over
BPA∗0,1 in suitable form over variables{Xσ : σ ∈ S ⊂
IN∗}. Define, for each variableXσ, its star heightsh(Xσ)
by induction on the variable tree belowXσ:

• If Xσ is a cycling variable, definesh(Xσ) = max{1+
sh(Xσ0), sh(Xσ1)};

• If Xσ is not a cycling variable, its equation is of the
form

Xσ = eσ0 ·Xσ0 + . . . + eσ(m−1) ·Xσ(m−1)+

+ eσ ·Xσ + eρ ·Xρ + c,

and we define

sh(Xσ) = max{sh(eσ0), sh(Xσ0), . . . ,

sh(eσ(m−1)), sh(Xσ(m−1)), sh(e∗σ), sh(eρ)}.

Finally, the star height ofE is defined bysh(E) = sh(Xε).

Now Lemma’s 10 and 11 can be strengthened as follows,
by following the proofs step by step, using the definitions
just given.

Lemma 18 Let E be a recursive specification in suitable
form, and supposeXσ cycles back toXρ. Then there is a
closed terme over BPA∗0,1 with sh(e) = sh(Xσ) such that
Xσ = e ·Xρ.

Lemma 19 Let E be a recursive specification in suitable
form, and suppose variableXσ is well-behaved. Then there
is a closed terme over BPA∗0,1 with sh(e) = sh(Xσ) such
thatXσ = e.

Thus, the procedure of Theorem 9 assigns to each well-
behaved recursive specification a regular expression of the
same star height; conversely, the procedure of Section 4 as-
signs to each regular expression a well-behaved recursive
specification of the same star height. This is the statement of
the following lemma. The result can again be found by fol-
lowing the procedure step by step, checking that star height
is preserved at every step.

Lemma 20 Let e be a closed term over BPA∗0,1. Then there
is a well-behaved specificationE in restricted form withe
as a solution that satisfiessh(E) = sh(e).

With the help of these propositions, the star height prob-
lem can be solved.

Theorem 21 Let e be a closed term over BPA∗0,1. There is
an algorithm to find the minimal star height ofe.

Proof Let e be given. LetE be the restricted well-
behaved specification with solutione given by the proce-
dure in Section 4. By the reductions in Section 5,E can
be reduced to satisfy certain bounds, which depend one, on
the branching degree and the length of descending paths in
E. Note that none of these reductions increase star height.
They can reduce star height, though. The star height of the
reduced specification is the star height of some closed term
that is bisimilar toe.

Using this observation, it is a consequence of the pre-
vious lemma that there exists a well-behaved specification
in restricted form below the mentioned bounds that hase
as a solution and that has the minimal star height ofe as

its star height. Therefore it is enough to search through
all restricted well-behaved specifications below these
bounds for ones that have solutione, and to choose, among
the finitely many specifications with these properties, a
specification with the least possible star height. It follows
from the previous lemmas that the minimal star height of
e is equal to the star height of this specification, and from
this specification, a closed term can be constructed that is
bisimilar toe and that has star height equal to the minimal
star height ofe. �

Star height gives a hierarchy on regular expressions. In
language theory, for anyn, there is a regular expression with
minimal star heightn, as long as the alphabet has at least
two letters (|A| ≥ 2), but the hierarchy collapses if there is
just one action (if|A| = 1, then the minimal star height of
any regular expression is at most1) (see [11, 14]).

Milner [15] speculates that in the case of bisimulation,
the hierarchy is non-trivial, even in the case of a single-
ton alphabet, and gives a set of regular expressionspn that
should have minimal star heightn. Hirshfeld and Moller
prove in [13] that this is indeed the case. We give an alter-
native proof of this fact using our theory.

Proposition 22 Define the set of regular expressionspn in-
ductively:

• p1 = a∗

• pn+1 = (pn · a)∗.

Then the minimal star height ofpn is n.

Proof We give a proof sketch using well-behaved
specifications. Consider the following recursive specifica-
tion:

Yn = a · Y1 + . . . + a · Yn + 1
Yn−1 = a · Y1 + . . . + a · Yn

. . .

Y1 = a · Y1 + a · Y2.

Note that the different variablesYi are not bisimilar, i.e. the
system is minimized. Now the processespn, pn−1 · a · pn,
. . ., p1 · a · . . . · a · pn form a solution for the variables
Yn, Yn−1, . . . , Y1. This in turn, can be seen by noticing that
in BPA∗0,1 plus RSP*, it is derivable that

pn = ap1 . . . apn+ap2 . . . apn+. . .+apn−1apn+apn+1.

Now it is easy to see thatpn has star heightn. For
showing thatpn also has minimal star heightn, it suffices to
demonstrate that all restricted well-behaved specifications
with pn as solution have star height at leastn. Thus, letE
be such a specification. Then variableXε in E is equivalent

to variableYn in the specification above. It follows that
each variable inE is bisimilar to a (sub)state of one of the
variablesYi. It is not difficult to prove that if, for a variable
Xσ in E, i is minimal with the property thatXσ is bisimilar
to Yi or to a substate ofYi, then the star height ofXσ must
be at leasti. From this,sh(E) = sh(Xε) ≥ n follows. �

Finally notice that if the set of atomic actions is empty,
then the set of closed terms reduces to just{0, 1}, so all
closed terms have minimal star height0.

7 Conclusion

We have defined a set of well-behaved recursive specifi-
cations that corresponds exactly to the set of regular expres-
sions, using bisimulation as the notion of equivalence. The
same result holds if we restrict to the set of well-behaved
recursive specifications in restricted form, that have a rather
direct interpretation as a set of finite transition systems.
Thus, we can say that we have defined a structural property,
that characterizes the set of finite automata that are express-
ible by a regular expression (modulo bisimulation). This
means we have solved the open question of Milner ([15]).

Given a finite transition system, we have presented a de-
cision procedure to determine whether or not this transition
system is equivalent to a well-behaved specification. This
decision procedure may still require a large number of spec-
ifications to be checked. Note that Bosscher describes an al-
gorithm that decides the analogous problem in the absence
of the constant0, and another algorithm in the absence of
the two constants0, 1 (see [7]).

Our results can be adapted to the setting of [10], where
the constant0 really acts as the zero process.

As an application of our results, we give an algorithm
to determine the star height of a regular expression (under
bisimulation). We give an alternative proof of the fact that
the star height hierarchy is non-trivial, even in the case of a
singleton alphabet.

References

[1] J.C.M. Baeten and J.A. Bergstra. Process algebra with
a zero object. In J.C.M. Baeten and J.W. Klop, editors,
Proceedings CONCUR’90, number 458 in Lecture
Notes in Computer Science, pages 83–98. Springer
Verlag, 1990.

[2] J.C.M. Baeten and F. Corradini. Regular expressions
in process algebra. InProceedings LICS’05, pages
12–19. IEEE Computer Society, 2005. Also report
CS-R 05-11, Computer Science, Technische Univer-
siteit Eindhoven.

[3] J.C.M. Baeten and C. Verhoef. Concrete process al-
gebra. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors,Handbook of Logic in Computer
Science, volume 4, pages 149–269. Oxford University
Press, 1995.

[4] J.C.M. Baeten and W.P. Weijland.Process Algebra.
Number 18 in Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1990.

[5] J.A. Bergstra, I. Bethke, and A. Ponse. Process alge-
bra with iteration and nesting.The Computer Journal,
37(4):243–258, 1994.

[6] J.A. Bergstra and J.W. Klop. The algebra of recur-
sively defined processes and the algebra of regular
processes. In J. Paredaens, editor,Proceedings 11th
ICALP, number 172 in LNCS, pages 82–95. Springer
Verlag, 1984.

[7] D.J.B. Bosscher. Grammars Modulo Bisimulation.
PhD thesis, University of Amsterdam, 1997.

[8] F. Corradini. A step forward towards equational ax-
iomatizations of Milner bisimulation in Kleene star.
In Proceedings FICS 2000, 2000.

[9] F. Corradini, R. De Nicola, and A. Labella. An equa-
tional axiomatization of bisimulation over regular ex-
pressions.Journal of Logic and Computation, 12:301–
320, 2002.

[10] R. De Nicola and A. Labella. Nondeterministic regular
expressions as solutions of equational systems.Theo-
retical Computer Science, 203:179–189, 2003.

[11] L.C. Eggan. Transition graphs and the star-height
of regular events. Michigan Mathematics Journal,
10:385–397, 1963.

[12] K. Hashiguchi. Representation theorems on regular
languages. Journal of Computer System Sciences,
27:101–105, 1983.

[13] Y. Hirshfeld and F. Moller. On the star height of unary
regular behaviours. In G. Plotkin, C. Stirling, and
M. Tofte, editors,Proof, Language, and Interaction
(Essays in Honour of Robin Milner), Foundations of
Computing, chapter 16, pages 497–509. MIT Press,
2000.

[14] R. McNaughton. The loop complexity of regular
events. Technical Report Machine Structures Group
Memo 18, MIT, 1988.

[15] R. Milner. A complete inference system for a class of
regular behaviours.Journal of Comput. System Sci.,
28(3):439–466, 1984.

[16] R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[17] G.D. Plotkin. A structural approach to operational se-
mantics. Journal of Logic and Algebraic Program-
ming, 60:17–139, 2004. Reprint from 1981 in Special
Issue on Structural Operational Semantics.

[18] P. Sewell. Nonaxiomatisability of equivalences over
finite state processes.Annals of Pure and Applied
Logic, 90:163–191, 1997.

[19] D.R. Troeger. Step bisimulation is pomset equivalence
on a parallel language without explicit internal choice.
Math. Struct. Comput. Sci., 3(1):25–62, 1993.

