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Abstract
Robin Milner (1984) gave a sound proof system for bisimi-
larity of regular expressions interpreted as processes: Basic
Process Algebra with unary Kleene star iteration, deadlock
0, successful termination 1, and a fixed-point rule. He asked
whether this system is complete. Despite intensive research
over the last 35 years, the problem is still open.

This paper gives a partial positive answer to Milner’s prob-
lem. We prove that the adaptation of Milner’s system over
the subclass of regular expressions that arises by dropping
the constant 1, and by changing to binary Kleene star itera-
tion is complete. The crucial tool we use is a graph structure
property that guarantees expressibility of a process graph
by a regular expression, and that is preserved when going
over from a process graph to its bisimulation collapse.

CCS Concepts: • Theory of computationÑ Process cal-
culi; Equational logic and rewriting.
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1 Introduction
Regular expressions, introduced by Kleene [17], are widely
studied in formal language theory, notably for string search-
ing [29]. They are constructed from constants 0 (no strings),
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1 (the empty string), and 𝑎 (a single letter) from some alpha-
bet; binary operators` and ¨ (union and concatenation); and
the unary Kleene star ˚ (zero or more iterations).

Their interpretations are Kleene algebras with as prime ex-
ample the algebra of regular events, the language semantics
of regular expressions, which is closely linked with finite-
state automata. Aanderaa [1] and Salomaa [24] gave com-
plete axiomatizations for the language semantics of regular
expressions, with a non-algebraic fixed-point rule that has a
non-empty-word property as side condition. Krob [20] found
an infinitary algebraic axiomatization with equational impli-
cations, and Kozen [18] presented a finitary algebraic system.
Regular expressions also received significant attention

in the process algebra community [5], where they are in-
terpreted modulo the bisimulation process semantics [22].
Robin Milner [21] was the first to study regular expressions
in this setting, where he called them star expressions. Here
the interpretation of 0 is deadlock, 1 is (successful) termi-
nation, 𝑎 is an atomic action, and ` and ¨ are alternative
and sequential composition of two processes, respectively.
Milner adapted Salomaa’s axiomatization to obtain a sound
proof system for this setting, and posed the (still open) ques-
tion whether this axiomatization is complete, meaning that
if the process graphs of two star expressions are bisimilar,
then they can be proven equal.

Milner’s axiomatization contains a fixed-point rule, which
is inevitable because due to the presence of 0 the underly-
ing equational theory is not finitely based [25, 26]. Bergstra,
Bethke, and Ponse [4] studied star expressions without 0
and 1, replaced the unary by the binary Kleene star f, which
represents an iteration of the first argument, possibly eventu-
ally followed by the execution of the second argument. They
obtained an axiomatization by basically omitting the axioms
for 0 and 1 as well as the fixed-point rule from Milner’s ax-
iomatization, and adding Troeger’s axiom [30]. This purely
equational axiomatization was proven complete in [9, 11].
A sound and complete axiomatization for star expressions
without unary Kleene star, but with 0 and 1 and a unary per-
petual loop operator ˚0 (equivalently, unary star is restricted
to terms 𝑒˚ ¨ 0), was given in [8, 10].
In contrast to the formal languages setting, not all finite-

state process graphs can be expressed by a star expression
modulo bisimilarity. Milner posed a second question in [21],
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namely, to characterize which finite-state process graphs
can be expressed. This was shown to be decidable in [3] by
defining and using ‘well-behaved’ specifications.

In this paper we prove completeness of Milner’s axiomati-
zation (tailored to the adapted setting) for star expressions
with 0, but without 1 and with the binary Kleene star (note
that with the unary star, 1 can be constructed as 0˚). This is
substantially more difficult than in the absence of 0. Notably,
the normalization approach of [11] cannot be used. In par-
ticular, Lemma 6 in [11], that 𝑒 ¨ 𝑔 Ø 𝑓 ¨ 𝑔 implies 𝑒 Ø 𝑓 ,
whereØ means bisimilarity, fails with 0 for𝑔, 𝑎f𝑎 for 𝑒 , and
p𝑎 ¨ p𝑎 ` 𝑎 ¨ 0qqf𝑎 for 𝑓 (counterexample adapted from [7]).
Our result crucially extends the result proved in [10] for 0
and the perpetual loop operator ˚0 by permitting iteration
expressions with non-deadlocking exits (the extension [8]
of [10] including 1 is not covered directly).
While earlier completeness proofs focus on the manipu-

lation of terms, we follow in Milner’s footsteps and focus
on their process graphs. A key idea is to determine loops in
graphs associated with star expressions. By a loop we mean
a subgraph generated by a set of entry transitions from a
vertex 𝑣 in which (1) there is an infinite path from 𝑣 , (2) each
infinite path eventually returns to 𝑣 , and (3) termination is
not permitted. A graph is said to satisfy LLEE (Layered Loop
Existence and Elimination) if repeatedly eliminating the en-
try transitions of a loop, and performing garbage collection,
leads to a graph without infinite paths. LLEE offers a gener-
alization (and a more elegant definition) of the notion of a
well-behaved specification.

Our completeness proof roughly works as follows (for
more details see Sect. 4). Let 𝑒1 and 𝑒2 be star expressions
with bisimilar process graph interpretations𝐺1 and𝐺2. We
show that 𝐺1 and 𝐺2 satisfy LLEE. We moreover prove that
LLEE is preserved under bisimulation collapse. And we con-
struct for each graph that satisfies LLEE a star expression
that corresponds to this graph, modulo bisimilarity. In par-
ticular such a star expression 𝑓 can be constructed for the
bisimulation collapse 𝐶 of 𝐺1 and 𝐺2. We show that both 𝑒1
and 𝑒2 can be proven equal to 𝑓 , by a pull-back of 𝑓 over the
functional bisimulations from 𝐺1 and 𝐺2 to the bisimulation
collapse 𝐶 . This yields the desired completeness result.

In our proof, the minimization of terms (and thereby of the
associated process graphs) in the left-hand side of a binary
Kleene star modulo bisimilarity is partly inspired by [8, 10].
Interestingly, we will be able to use as running example the
process graph interpretation of the star expression that at the
end of [10] is mentioned as problematic for a completeness
proof for our current setting. Our crucial use of witnesses for
the graph property LLEE borrows from the representation
of cyclic 𝜆-terms [15] as structure-constrained term graphs,
as used for defining and implementing maximal sharing in
the 𝜆-calculus with letrec [16] (see also [13]).

The completeness result for star expressions with 0 but
without 1 and with the binary Kleene star settles a natu-
ral question. We are also hopeful that the property LLEE
provides a strong conceptual tool for approaching Milner’s
long-standing open question regarding the class of all star
expressions. The presence of 1-transitions in graphs presents
new challenges, such as that LLEE is not always preserved
under bisimulation collapse. In order to be able to still work
with this concept, we will need workarounds.

Please see the extended version [14] for details of proofs
that have been omitted or are only sketched.

2 Preliminaries
In this section we define star expressions, their process se-
mantics as ‘charts’, the proof system BBP for bisimilarity of
their chart interpretations, and provable solutions of charts.

Definition 2.1. Given a set 𝐴 of actions, the set StExppAq of
star expressions over A is generated by the grammar:
𝑒 ::“ 0 | 𝑎 | p𝑒1` 𝑒2q | p𝑒1 ¨ 𝑒2q | p𝑒1

f𝑒2q (with 𝑎 P 𝐴).
0 represents deadlock (i.e., does not perform any action), 𝑎
an atomic action,` alternative and ¨ sequential composition,
and f the binary Kleene star. Note that 1 (for empty steps)
is missing from the syntax.

ř𝑘
𝑖“1 𝑒𝑖 is defined recursively as

0 if 𝑘 “ 0, 𝑒1 if 𝑘 “ 1, and p
ř𝑘´1

𝑖“1 𝑒𝑖q ` 𝑒𝑘 if 𝑘 ą 1.
The star height |𝑒|f of a star expression 𝑒 P StExppAq de-

notes the maximum number of nestings of Kleene stars in 𝑒 :
it is defined by |0|f :“ |𝑎|f :“ 0, |𝑓 ` 𝑔|f :“ |𝑓 ¨ 𝑔|f :“
max t|𝑓 |f, |𝑔|fu, and |𝑓 f𝑔|f :“ max t|𝑓 |f ` 1, |𝑔|fu.

Definition 2.2. By a (finite sink-termination) chart C we
understand a 5-tuple x𝑉 ,

‘

, 𝑣s,A,𝑇 y where 𝑉 is a finite set
of vertices,

‘

is, in case
‘

P 𝑉 , a special vertex with no out-
going transitions (a sink) that indicates termination (in case
‘

R 𝑉 , the chart does not admit termination), 𝑣s P 𝑉 zt
‘

u

is the start vertex, A is a set actions, and 𝑇 Ď 𝑉 ˆ𝐴 ˆ𝑉 the
set of transitions. Since A can be reconstructed from 𝑇 , we
will frequently keep A implicit, denote a chart as a 4-tuple
x𝑉 ,

‘

, 𝑣s,𝑇 y. A chart is start-vertex connected if every vertex
is reachable by a path from the start vertex. This property can
be achieved by removing unreachable vertices (‘garbage col-
lection’). We will assume charts to be start-vertex connected.
In a chart C, let 𝑣 P 𝑉 and 𝑈 Ď 𝑇 be a set of transitions

from 𝑣 . By the x𝑣, 𝑈 y-generated subchart of C we mean the
chart C0 “ x𝑉0,

‘

, 𝑣,A,𝑇0ywith start vertex 𝑣 where𝑉0 is the
set of vertices and 𝑇0 the set of transitions that are on paths
in C from 𝑣 that first take a transition in𝑈 , and then, until 𝑣
is reached again, continue with other transitions of C.
We use the standard notation 𝑣 𝑎

ÝÑ 𝑣 1 in lieu of x𝑤, 𝑎, 𝑤 1y P 𝑇 .

Definition 2.3. Let C𝑖 “ x𝑉𝑖 ,
‘

, 𝑣s,𝑖 ,𝑇𝑖y for 𝑖 P t1, 2u be
two charts. A bisimulation between C1 and C2 is a relation
𝐵 Ď 𝑉1 ˆ𝑉2 that satisfies the following conditions:
(start) 𝑣s,1 𝐵 𝑣s,2 (it relates the start vertices),
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and for all 𝑣1, 𝑣2 P 𝑉 with 𝑣1 𝐵 𝑣2 :
(forth) for every transition 𝑣1

𝑎
ÝÑ 𝑣 1

1 inC1 there is a transition
𝑣2

𝑎
ÝÑ 𝑣 1

2 in C2 with 𝑣 1
1 𝐵 𝑣

1
2,

(back) for every transition 𝑣2
𝑎
ÝÑ 𝑣 1

2 in C2 there is a transition
𝑣1

𝑎
ÝÑ 𝑣 1

1 in C1 with 𝑣 1
1 𝐵 𝑣

1
2,

(termination) 𝑣1 “
‘

if and only if 𝑣2 “
‘

.
If there is a bisimulation between C1 and C2, then we write
C1 Ø C2 and say that C1 and C2 are bisimilar. If a bisimula-
tion is the graph of a function, we say that it is a functional
bisimulation. We write C1Ñ C2 if there is a functional bisim-
ulation between C1 and C2.

Definition 2.4. For every star expression 𝑒 P StExppAq the
chart interpretation Cp𝑒q “ x𝑉p𝑒q,

‘

, 𝑒,A,𝑇 p𝑒qy of 𝑒 is the
chart with start vertex 𝑒 that is specified by iteration via the
following transition rules, which form a transition system
specification (TSS), with 𝑒, 𝑒1, 𝑒2, 𝑒

1
1 P StExppAq, 𝑎 P A:

𝑎
𝑎
ÝÑ

‘

𝑒𝑖
𝑎
ÝÑ 𝜉

p𝑖 “ 1, 2q
𝑒1 ` 𝑒2

𝑎
ÝÑ 𝜉

𝑒1
𝑎
ÝÑ 𝑒 1

1

𝑒1 ¨ 𝑒2
𝑎
ÝÑ 𝑒 1

1 ¨ 𝑒2

𝑒1
𝑎
ÝÑ

‘

𝑒1 ¨ 𝑒2
𝑎
ÝÑ 𝑒2

𝑒1
𝑎
ÝÑ 𝑒 1

1

𝑒1
f𝑒2

𝑎
ÝÑ 𝑒 1

1 ¨ p𝑒1
f𝑒2q

𝑒1
𝑎
ÝÑ

‘

𝑒1
f𝑒2

𝑎
ÝÑ 𝑒1

f𝑒2

𝑒2
𝑎
ÝÑ 𝜉

𝑒1
f𝑒2

𝑎
ÝÑ 𝜉

with 𝜉 P StExppAq‘ :“ StExppAq Y t
‘

u, where
‘

indicates
termination. If 𝑒 𝑎

ÝÑ 𝜉 can be proved, 𝜉 is called an 𝑎-de-
rivative, or just derivative, of 𝑒 . The set 𝑉p𝑒q Ď StExppAq‘

consists of the iterated derivatives of 𝑒 . To see that Cp𝑒q is
finite, Antimirov’s result [2], that a regular expression has
only finitely many iterated derivatives, can be adapted.
We say that a star expression 𝑒 P StExppAq is normed if

there is a path of transitions from 𝑒 to
‘

in Cp𝑒q.

Example 2.5. The left chart below does not admit termi-
nation. The right chart is a double-exit graph with the sink
termination vertex

‘

at the bottom.

‘

𝑎

𝑎

𝑏 𝑐

𝑎

𝑏

𝑎

𝑐
𝑎 𝑎

These charts are not bisimilar to chart interpretations of star
expressions. For the left chart this was shown by Milner [21],
and for the right chart by Bosscher [6].

Example 2.6. By the rules in Def. 2.4, 𝑒0 :“ 𝑎 ¨ 𝑒 1
0 with

𝑒 1
0 :“ p𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qqqf0 has the chart Cp𝑒0q as be-
low, with 𝑣0 :“ 𝑒0, 𝑣1 :“ 𝑒 1

0 and 𝑣2 :“ p𝑏 ` 𝑏 ¨ 𝑎q ¨ 𝑒 1
0. This

chart is the bisimulation collapse of the charts Cp𝑒1q and
Cp𝑒2q of star expressions 𝑒1 :“ p𝑎 ¨ pp𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qqf𝑐qqf0 ,

and 𝑒2 :“ 𝑎 ¨ pp𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ¨ 𝑎 ¨ pp𝑐 ¨ 𝑎qf𝑎qqf𝑏qf0q. Bisim-
ulations between Cp𝑒1q and Cp𝑒0q, and between Cp𝑒0q and
Cp𝑒1q are indicated by the broken lines. The chart Cp𝑒0q was
considered problematic in [10].

𝑎

𝑎

𝑐

𝑏

𝑏

𝑎

Cp𝑒1q

𝑣0

𝑎

𝑣1

𝑎

𝑐

𝑣2𝑏 𝑏

Cp𝑒0q

𝑎

𝑎

𝑐

𝑎

𝑏

𝑏

𝑎

𝑐

𝑎

𝑎

Cp𝑒2q

Definition 2.7. The proof system BBP or the class of star
expressions has the axioms (B1)–(B6), (BKS1), (BKS2), the
inference rules of equational logic, and the rule RSPf:

pB1q 𝑥 ` 𝑦 “ 𝑦 ` 𝑥

pB2q p𝑥 ` 𝑦q ` 𝑧 “ 𝑥 ` p𝑦 ` 𝑧q

pB3q 𝑥 ` 𝑥 “ 𝑥

pB4q p𝑥 ` 𝑦q ¨ 𝑧 “ 𝑥 ¨ 𝑧 ` 𝑦 ¨ 𝑧

pB5q p𝑥 ¨ 𝑦q ¨ 𝑧 “ 𝑥 ¨ p𝑦 ¨ 𝑧q

pB6q 𝑥 ` 0 “ 𝑥

pB7q 0 ¨ 𝑥 “ 0
pBKS1q 𝑥 ¨ p𝑥f𝑦q ` 𝑦 “ 𝑥f𝑦

pBKS2q p𝑥f𝑦q ¨ 𝑧 “ 𝑥fp𝑦 ¨ 𝑧q

pRSPfq
𝑥 “ p𝑦 ¨ 𝑥q ` 𝑧

𝑥 “ 𝑦f𝑧

By 𝑒1 “BBP 𝑒2 we denote that 𝑒1 “ 𝑒2 is derivable in BBP.

BBP is a finite ‘implicational’ proof system [28], because
unlike in Salomaa’s and Milner’s systems for regular ex-
pressions with 1 the fixed-point rule does not require any
side-condition to ensure ‘guardedness’.

Definition 2.8. For a chart C “ x𝑉 ,
‘

, 𝑣s,A,𝑇 y, a provable
solution of C is a function 𝑠 : 𝑉 z t

‘

u Ñ StExppAq such that:

𝑠p𝑣q “BBP

´

𝑚
ÿ

𝑖“1
𝑎𝑖

¯

`

´

𝑛
ÿ

𝑗“1
𝑏 𝑗 ¨ 𝑠p𝑤 𝑗 q

¯

(for all 𝑣 P 𝑉 zt
‘

u)

holds, given that the union of
␣

𝑣
𝑎𝑖
ÝÑ

‘

ˇ

ˇ 𝑖 “ 1, . . . ,𝑚
(

and
␣

𝑣
𝑏 𝑗
ÝÑ 𝑤 𝑗

ˇ

ˇ 𝑗 “ 1, . . . , 𝑛, 𝑤 𝑗 ‰
‘

(

is the set of transitions
from 𝑣 in C. We call 𝑠p𝑣sq the principal value of 𝑠 .

Proposition 2.9 (uses BBP-axioms (B1)–(B7), (BKS1)). For
every 𝑒 P StExppAq, the identity function id𝑉p𝑒q : 𝑉p𝑒q Ñ 𝑉p𝑒q

Ď StExppAq, 𝑒 1 ÞÑ 𝑒 1, is a provable solution of the chart inter-
pretation Cp𝑒q of 𝑒 .
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Proof (Idea). Each 𝑒 in StExppAq is the BBP-provable sum of
expressions 𝑎 and 𝑎 ¨ 𝑒 1 over all 𝑎 P A for 𝑎-derivatives
‘

and 𝑒 1, respectively, of 𝑒 . This ‘fundamental theorem1 of
a differential calculus for star expressions’ implies, quite
directly, that id𝑉p𝑒q is a provable solution of Cp𝑒q. □

3 Layered loop existence and elimination
As preparation for the definition of the central concept of
‘LLEE-witness’, we start with an informal explanation of the
structural chart property ‘LEE’. It is a necessary condition for
a chart to be the chart interpretation of a star expression. LEE
is defined by a dynamic elimination procedure that analyses
the structure of the graph by peeling off ‘loop subcharts’.
Such subcharts capture, within the chart interpretation of a
star expression 𝑒 , the behaviour of the iteration of 𝑓1 within
innermost subterms 𝑓1f𝑓2 in 𝑒 . (A weaker form of ‘loop’ by
Milner [21], which describes the behavior of general iteration
subterms, is not sufficient for our aims.)

Definition 3.1. A chart L “ x𝑉 ,
‘

, 𝑣s,𝑇 y is a loop chart if:
(L1) There is an infinite path from the start vertex 𝑣s.
(L2) Every infinite path from 𝑣s returns to 𝑣s after a positive

number of transitions (and so visits 𝑣s infinitely often).
(L3) 𝑉 does not contain the vertex

‘

.
In such a loop chart we call the transitions from 𝑣s loop-entry
transitions, and all other transitions loop-body transitions.

Let C be a chart. A loop chart L is called a loop subchart of
C if L is the x𝑣, 𝑈 y-generated subchart of C for some vertex
𝑣 of C, and a set𝑈 of transitions of C that depart from 𝑣 (so
the transitions in𝑈 are the loop-entry transitions of L).

Note that the two charts in Ex. 2.5 are not loop charts:
the left one violates (L2), and the right one violates (L3).
Moreover, none of these charts contains a loop subchart.
While the chart Cp𝑒0q in Ex. 2.6 is not a loop chart either, as
it violates (L2), we will see that it has loop subcharts.
Let L be a loop subchart of a chart C. Then the result

of eliminating L from C arises by removing all loop-entry
transitions of L from C, and then removing all vertices and
transitions that get unreachable. We say that a chart C has
the loop existence and elimination property (LEE) if the pro-
cess, started on C, of repeated eliminations of loop subcharts
results in a chart that does not have an infinite path.

For the charts in Ex. 2.5 the procedure stops immediately,
as they do not contain loop subcharts. Since both of them
have infinite paths, it follows that they do not satisfy LEE.
We consider three runs of the elimination procedure for

the chart Cp𝑒0q in Ex. 2.6. The loop-entry transitions of loop

1Rutten [23] used this name for an analogous result on infinite streams. The
first author [12], and Kozen and Silva [19, 27] used it for the provable syn-
thesis of regular expressions from their Brzozowski derivatives. The result
here can be viewed as stating the provable synthesis of regular expressions
from their partial derivatives (due to Antimirov [2]).

subcharts that are removed in each step are marked in bold.
Each run witnesses that Cp𝑒0q satisfies LEE.

𝑣0

𝑎

𝑣1

𝑎

𝑐

𝑣2𝑏 𝑏

𝑣0
𝑎

𝑣1

𝑐

elim
𝑣0
𝑎

𝑣1

elim
𝑣0

𝑎

𝑣1

𝑎

𝑐

𝑣2𝑏 𝑏

elim

𝑣0

𝑎

𝑣1

𝑎

𝑐

𝑣2𝑏 𝑏

𝑣0

𝑎

𝑣1

𝑎

𝑣2𝑏 𝑏

elim
𝑣0

𝑎

𝑣1

𝑎

𝑣2 𝑏

elim
𝑣0

𝑎

𝑣1

𝑎

𝑣2

elim

Note that loop elimination does not yield a unique result.2
Runs can be recorded by attaching, in the original chart, to
transitions that get removed in the elimination procedure as
marking label the sequence number of the appertaining elim-
ination step. For the three runs of loop elimination above we
get the following marking labeled versions of C, respectively:

𝑣0

𝑎

𝑣1

𝑎

r1s
𝑐

𝑣2

r2s

𝑏

r3s

𝑏

𝑣0

𝑎

𝑣1

𝑎r1s

r2s
𝑐

𝑣2𝑏 𝑏

𝑣0

𝑎

𝑣1

𝑎 r1s

r1s 𝑐

𝑣2𝑏 𝑏

Since all three runs were successful (as they yield charts
without infinite paths), these recordings (marking-labeled
charts) can be viewed as ‘LEE-witnesses’. We nowwill define
a concept of a ‘layered LEE-witness’ (LLEE-witness), i.e., a
LEE-witness with the added constraint that in the formulated
run of the loop elimination procedure it never happens that
a loop-entry transition is removed from within the body of
a previously removed loop subchart. This refined concept
has simpler properties, and it will fit our purpose.

Before introducing ‘LLEE-witnesses’, we first define chart
labelings that mark transitions in a chart as ‘(loop-)entry’
and as ‘(loop-)body’ transitions, but without safeguarding
that these markings refer to actual loops.

Definition 3.2. Let C “ x𝑉 , 𝑣s,
‘

,A,𝑇 y be a chart. An en-
try/body-labeling Ĉ “ x𝑉 , 𝑣s,

‘

,AˆN, p𝑇 y of C is a chart that
arises from C by adding, for each transition 𝜏 “ x𝑣1, 𝑎, 𝑣2y P
2Confluence, and unique normalization, can be shown if a pruning operation
is added that permits to drop transitions to deadlocking vertices.
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𝑇 , to the action label 𝑎 of 𝜏 a marking label 𝛼 P N, yielding
p𝜏 “ x𝑣1, x𝑎, 𝛼y, 𝑣2y P p𝑇 . In such an entry/body-labeling we
call transitions with marking label 0 body transitions, and
transitions with marking labels in N` entry transitions.
Let Ĉ be an entry/body-labeling of C, and let 𝑣 and 𝑤

be vertices of C and Ĉ. We denote by 𝑣 Ñbo 𝑤 that there
is a body transition 𝑣

x𝑎,0y
ÝÝÝÑ 𝑤 in Ĉ for some 𝑎 P A, and

by 𝑣 Ñr𝛼s 𝑤 , for 𝛼 P N` that there is an entry transi-

tion 𝑣
x𝑎,𝛼y
ÝÝÝÑ 𝑤 in Ĉ for some 𝑎 P A. We will use 𝛼, 𝛽,𝛾, . . .

for marking labels in N` of entry transitions. By the set
𝐸pĈq of entry transition identifiers we denote the set of pairs
x𝑣, 𝛼y P 𝑉 ˆ N` such that an entry transitionÑr𝛼s departs
from 𝑣 in Ĉ. For x𝑣, 𝛼y P 𝐸pĈq, we define by CĈp𝑣, 𝛼q the
subchart of C with start vertex 𝑣s that consists of the vertices
and transitions which occur on paths in C as follows: they
start with aÑr𝛼s entry transition from 𝑣 , continue with body
transitions only, and halt immediately if 𝑣 is revisited.

Definition 3.3. A LLEE-witness Ĉ of a chart C is an entry/
body-labeling of C that satisfies the following properties:
(W1) There is no infinite path ofÑbo transitions from 𝑣s.
(W2) For all x𝑣, 𝛼y P 𝐸pĈq, (a) CĈp𝑣, 𝛼q is a loop chart, and

(b) (layeredness) from no vertex𝑤 ‰ 𝑣 of CĈp𝑣, 𝛼q there
departs in Ĉ an entry transitionÑr𝛽s with 𝛽 ě 𝛼 .

The stipulation in (W2)(a) justifies to call entry transitions
in a LLEE-witness a loop-entry transition. For a loop-entry
transitionÑr𝛽s with 𝛽 P N`, we call 𝛽 its loop level.

A chart is a LLEE-chart if it has a LLEE-witness.

Example 3.4. The three labelings of the chart Cp𝑒0q in
Ex. 2.6 that arose as recordings of runs of the loop elimi-
nation procedure can be viewed as entry/body-labelings of
that chart. There, and below, we dropped the body labels of
transitions, and instead only indicated the entry labels in
boldface together with their levels. By checking conditions
(W1) and (W2),(a)-(b), it is easy to verify that these entry/
body-labelings are LLEE-witnesses. In fact it is not difficult
to establish that every LLEE-witness of Cp𝑒0q in Ex. 2.6 is
of either of the following two forms, with marking labels
𝛼, 𝛽,𝛾, 𝛿, 𝜖 P N`:

𝑣0

𝑎

𝑣1

𝑎 r𝛽s

r𝛼s 𝑐

𝑣2𝑏 𝑏

𝑣0

𝑎

𝑣1

𝑎

r𝛾s 𝑐

𝑣2

r𝛿s

𝑏

r𝜖s

𝑏
(with 𝛾 ă 𝛿, 𝜖)

We now argue that LLEE-witnesses guarantee the prop-
erty LEE. Let Ĉ be a LLEE-witness of a chart C. Repeatedly
pick an entry transition identifier x𝑣, 𝛼y with 𝛼 P N` mini-
mal, remove the loop subchart that is generated by loop-entry
transitions of level 𝛼 from 𝑣 (it is indeed a loop by (W2)(a),

and minimality of 𝛼 and (W2)(b) ensure the absence of de-
parting loop-entry transitions of lower level), and perform
garbage collection. Eventually the part of C that is reach-
able by body transitions from the start vertex is obtained.
This subchart does not have an infinite path due to (W1).
Therefore C indeed satisfies LEE, as witnessed by Ĉ.

The property LEE and the concept of LLEE-witness are
closely linked with the process semantics of star expressions.
In fact, we now define a labeling of the TSS in Def. 2.4 that
permits to define, for every star expression 𝑒 , an entry/body-
labeling of the chart interpretation Cp𝑒q of 𝑒 , which can then
be recognized as a LLEE-witness of Cp𝑒q.
We refine the TSS rules in Def. 2.4 as follows: A body

label is added to transitions that cannot return to the star
expression in their left-hand side. The rule for transitions
into the iteration part 𝑒1 of an iteration 𝑒1f𝑒2 is split into the
cases where 𝑒1 is normed or not. Only in the normed case
can 𝑒1

f𝑒2 return to itself, and then a loop-entry transition
with the star height |𝑒1|f of 𝑒1 plus 1 as its level is created.

Definition 3.5. For every 𝑒 P StExppAq, we define the en-
try/body-labeling yCp𝑒q of the chart interpretation Cp𝑒q of 𝑒
in analogy with Cp𝑒q by using the following transition rules
that refine the rules in Def. 2.4 by adding marking labels:

𝑎
𝑎
ÝÑbo

‘

𝑒𝑖
𝑎
ÝÑ𝑙 𝜉

𝑖 P t1, 2u
𝑒1 ` 𝑒2

𝑎
ÝÑbo 𝜉

𝑒1
𝑎
ÝÑ𝑙 𝑒 1

1

𝑒1 ¨ 𝑒2
𝑎
ÝÑ𝑙 𝑒 1

1 ¨ 𝑒2

𝑒1
𝑎
ÝÑbo

‘

𝑒1 ¨ 𝑒2
𝑎
ÝÑbo 𝑒2

𝑒1
𝑎
ÝÑ𝑙 𝑒 1

1 if 𝑒1 is normed
𝑒1

f𝑒2
𝑎
ÝÑr|𝑒1|f`1s 𝑒 1

1 ¨ p𝑒1
f𝑒2q

𝑒1
𝑎
ÝÑ𝑙 𝑒 1

1 if 𝑒1 is not normed
𝑒1

f𝑒2
𝑎
ÝÑbo 𝑒 1

1 ¨ p𝑒1
f𝑒2q

𝑒1
𝑎
ÝÑbo

‘

𝑒1
f𝑒2

𝑎
ÝÑr|𝑒1|f`1s 𝑒1

f𝑒2

𝑒2
𝑎
ÝÑ𝑙 𝜉

𝑒1
f𝑒2

𝑎
ÝÑbo 𝜉

for 𝑙 P tbou Y tr𝛼s | 𝛼 P N`u, where we employed notation
defined in Def. 2.4 for writing marking labels as subscripts.

Example 3.6. In Fig. 1 we depict the entry/body-labelings,
as defined in Def. 3.2, for star expressions 𝑒1, 𝑒0, and 𝑒2 in
Ex. 2.6. It is easy to verify that these labelings are LLEE-wit-
nesses of the charts Cp𝑒0q, Cp𝑒1q, and Cp𝑒2q in Ex. 2.6, resp..

Proposition 3.7. For every 𝑒 P StExppAq, the entry/body-la-
beling yCp𝑒q of Cp𝑒q is a LLEE-witness of Cp𝑒q.
For a binary relation 𝑅, let 𝑅` and 𝑅˚ be its transitive

and transitive-reflexive closures. 𝑢Ñ𝑙 𝑣 denotes that there
is a transition 𝑢

𝑎
ÝÑ𝑙 𝑣 for an 𝑎 P 𝐴, and in proofs (but

not pictures) 𝑢Ñ 𝑣 denotes that 𝑢Ñ𝑙 𝑣 for some label 𝑙 . By
𝑢 ÝÝÝÑ

t p𝑤q
𝑙 𝑣 we denote that 𝑢 Ñ𝑙 𝑣 and 𝑣 ‰ 𝑤 (this transition
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r2s𝑎

r1s𝑎

𝑐

𝑏

𝑏

𝑎

zCp𝑒1q

𝑎

r1s𝑎

r1s 𝑐

𝑏 𝑏

zCp𝑒0q

𝑎

r3s𝑎r3s
𝑐

𝑎

r2s𝑏

𝑏

𝑎

r1s
𝑐

𝑎

𝑎

zCp𝑒2q

Figure 1. LLEE-witness entry/body-labelings as defined by
Def. 3.5 for the chart interpretations of 𝑒0, 𝑒1, and 𝑒2 in Ex. 2.6.

avoids target𝑤 ). Likewise, 𝑢 ÝÝÝÑ
t p𝑤q

𝑣 denotes that 𝑢 ÝÝÝÑ
t p𝑤q

𝑙 𝑣

for some label 𝑙 . By sccp𝑢q we denote the strongly connected
component (scc) to which 𝑢 belongs.

Definition 3.8. Let Ĉ be a LLEE-witness of chart C. If there
is a path 𝑣 ÝÝÑ

t p𝑣q
r𝛼s ¨ ÝÝÑ

t p𝑣q

˚
bo 𝑤 , then we write 𝑣 𝛼ñ 𝑤 . (Note

that 𝑣 𝛼ñ 𝑤 holds if and only if𝑤 is a vertex‰ 𝑣 of the loop
chart CĈp𝑣, 𝛼q that is generated by theÑr𝛼s entry transitions
at 𝑣 in C.) We write 𝑣 ñ 𝑤 and say that 𝑣 descends in a loop
to 𝑤 if 𝑣 𝛼ñ 𝑤 for some 𝛼 P N`.
We write 𝑤 ü 𝑣 (or 𝑣 ý 𝑤 ), and say that 𝑤 loops back

to 𝑣 , if 𝑣 ñ 𝑤 Ñ`

bo 𝑣 . The loops-back-to relation ü totally
orders its successors (see Lem. 3.9, (vi)). Therefore we define
the ‘direct successor relation’ dü of ü as follows: We write
𝑤 dü 𝑣 (or 𝑣 dý 𝑤 ), and say that𝑤 directly loops back to 𝑣 ,
if𝑤 ü 𝑣 and for all 𝑢 with𝑤 ü 𝑢 either 𝑢 “ 𝑣 or 𝑣 ü 𝑢.

Lemma 3.9. The relationsÑbo, ñ, ü, dü as defined by a
LLEE-witness Ĉ on a chart C satisfy the following properties:

(i) There are no infiniteÑbo paths (so noÑbo cycles).
(ii) If sccp𝑢q “ sccp𝑣q, then 𝑢 ñ˚ 𝑣 implies 𝑣 ü˚ 𝑢.
(iii) If 𝑣 ñ 𝑤 and ␣p𝑤 üq, then𝑤 is not normed.
(iv) sccp𝑢q “ sccp𝑣q if and only if 𝑢 ü˚ 𝑤 and 𝑣 ü˚ 𝑤 for

some vertex𝑤 .
(v) ü˚ is a partial order with the least-upper-bound prop-

erty: if a nonempty set of vertices has an upper bound
with respect to ü˚, then it has a least upper bound.

(vi) ü is a total order on ü-successor vertices: if 𝑤 ü 𝑣1
and𝑤 ü 𝑣2, then 𝑣1 ü 𝑣2 or 𝑣1 “ 𝑣2 or 𝑣2 ü 𝑣1.

(vii) If 𝑣1 dü 𝑢 and 𝑣2 dü 𝑢 for distinct 𝑣1, 𝑣2, then there is
no vertex𝑤 such that both𝑤 ü˚ 𝑣1 and𝑤 ü˚ 𝑣2.

4 The completeness proof, anticipated
After having introduced LLEE-charts as our crucial auxiliary
concept, we now sketch the completeness proof. In doing
so we need to anticipate four results that will be developed

in the next two sections: (C) The bisimulation collapse of a
LLEE-chart is again a LLEE-chart. (E) From every LLEE-chart
a provable solution can be extracted. (S) All provable solu-
tions of LLEE-charts are provably equal. (P) All provable
solutions can be pulled back from the target to the source
chart of a functional bisimulation.

Then completeness of BBP can be argued as follows. Sup-
pose that we are given two star expressions 𝑒1 and 𝑒2 with
bisimilar chart interpretations Cp𝑒1q and Cp𝑒2q. First we find
by Prop. 3.7 that Cp𝑒1q and Cp𝑒2q are LLEE-charts. Then we
obtain by Prop. 2.9 that 𝑒1 and 𝑒2 are principal values of prov-
able solutions of Cp𝑒1q and Cp𝑒2q, respectively. These charts
have the same bisimulation collapse C. By (C, Thm. 6.9), C is
again a LLEE-chart. Use (E, Prop. 5.5) to build a provable so-
lution 𝑠 of C; let its principal value be 𝑒 . Apply (P, Prop. 5.1)
to transfer 𝑠 backwards over the functional bisimulations
to obtain provable solutions 𝑠1 and 𝑠2 of Cp𝑒1q and Cp𝑒2q, re-
spectively. By construction, 𝑠1 and 𝑠2 have the same principal
value 𝑒 as 𝑠 . Finally, by using (S, Prop. 5.8), 𝑒1 and 𝑒2 are both
provably equal to 𝑒 . Hence, 𝑒1 “BBP 𝑒 “BBP 𝑒2.

In his completeness proof for regular expressions in formal
language theory, Salomaa [24] argued ‘upwards’ from two
equivalent regular expressions to a larger regular expression
that can be homomorphically collapsed onto both of them.
In contrast, our proof approach forces us ‘downwards’ to the
bisimulation collapse, because in the opposite direction the
property of being a LLEE-chart may be lost.

Example 4.1. The picture below highlights why we can-
not adopt Salomaa’s proof strategy of linking two language-
equivalent regular expressions via the product of the DFAs
they represent. The bisimilar LLEE-charts C1 and C2 are in-
terpretations of p𝑎 ¨ p𝑎 ` 𝑏q ` 𝑏qf0 and p𝑏 ¨ p𝑎 ` 𝑏q ` 𝑎qf0,
respectively (the indicated labelings Ĉ1 and Ĉ2 are LLEE-wit-
nesses). But their product C12 is a not a LLEE-chart; it is of
the form of one the not expressible charts from Ex. 2.5 (but
has different transition labels). Yet their common bisimula-
tion collapse C0, the chart interpretation of p𝑎 ` 𝑏qf0, is a
LLEE-chart with LLEE-witness Ĉ0.

r1s
𝑎

r1s
𝑏

r1s
𝑎 𝑏

𝑣1

𝑣2

𝑎

𝑏

C1, Ĉ1

C0, Ĉ0

r1s
𝑏

𝑤1

r1s
𝑎

𝑤2

𝑏

𝑎

C2, Ĉ2

x𝑣1, 𝑤1y

𝑎 𝑏

x𝑣2, 𝑤1y
𝑏

𝑎

x𝑣1, 𝑤2y

𝑎 𝑏

C12

ÑÑ

Ñ Ñ

In view of C1 Ð C12Ñ C2 this also shows that LLEE-charts
are not closed under converse functional bisimilarityÐ.
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5 Extraction of star expressions from, and
transferral between, LLEE-charts

In this section we develop the results (E), (S), and (P) as
mentioned in Sect. 4. We start with the statement (P).

Proposition 5.1 (requires BBP-axioms (B1), (B2), (B3)). Let
𝜙 : 𝑉1 Ñ 𝑉2 be a functional bisimulation between charts C1
and C2. If 𝑠2 : 𝑉2z t

‘

u Ñ StExppAq is a provable solution of
C2, then 𝑠2 ˝𝜙 : 𝑉1z t

‘

u Ñ StExppAq is a provable solution of
C1 with the same principal value as 𝑠2.

Proof (Idea). The bisimulation clauses make it possible to
demonstrate the condition for 𝑠2 ˝𝜙 to be a provable solution
of C1 at𝑤 by using the condition for the provable solution 𝑠2
of C2 at 𝜙p𝑤q, together with the axioms pB1q, pB2q, pB3q. □

We now turn to proving results (E) and (S) from Sect. 4.
We show that from every chart C with LLEE-witness Ĉ

a provable solution 𝑠 Ĉ of C can be extracted. Intuitively,
the extraction process follows a specifically chosen run of
the loop-elimination procedure on C that is guided by the
LLEE-witness Ĉ. For the run we demand that loop subcharts
that are generated by the loop-entry transitions from the
same vertex 𝑣 are removed in a row. For this, we can pick
vertices 𝑣 in the remaining LLEE-witness with entry step
level |𝑣 |en (see below) minimal. Now extraction synthesizes
a star expression 𝑒1 whose behavior captures the behaviour
that is accessible via loop-entry transitions from 𝑣 in the
eliminated loop subcharts at 𝑣 , and in previously eliminated
inner loop subcharts. Together with a (later synthesized)
expression 𝑒2 that represents the behaviour that is accessible
via body transitions from 𝑣 , the expression 𝑒1 is part of an
iteration expression 𝑒1f𝑒2 that forms the solution value at 𝑣 ,
which represents the behaviour that is accessible from 𝑣 .

This idea motivates an inside-out extraction process that
works with partial solutions, and eventually builds up a prov-
able solution of C. In particular, we inductively define ‘rela-
tive extracted solutions’ 𝑡 Ĉp𝑤, 𝑣q for vertices 𝑣 and𝑤 where
𝑤 is in a loop subchart CĈp𝑣, 𝛼q at 𝑣 , for some 𝛼 P N`, that is,
𝑣 𝛼ñ 𝑤 . Hereby 𝑡 Ĉp𝑤, 𝑣q captures the part of the behavior
in C from𝑤 until 𝑣 is reached. Then we define the from Ĉ
‘extracted solution’ 𝑠 Ĉp𝑣q at 𝑣 by using the relative solutions
𝑡 Ĉp𝑤 𝑗 , 𝑣q for all targets 𝑤 𝑗 of loop-entry transitions from
𝑣 to define the iteration part 𝑒1 of the extracted solution
𝑠 Ĉp𝑣q “ 𝑒1

f𝑒2 at 𝑣 . We start with a preparation.
Let Ĉ be a LLEE-witness, and let 𝑣 be a vertex of Ĉ. By the

entry step level |𝑣 |en of 𝑣 we mean the maximum loop level
of a loop-entry transition in Ĉ that departs from 𝑣 , or 0 if no
loop-entry transition departs from 𝑣 . By the body step norm
∥𝑣 ∥bo of 𝑣 we mean the maximal length of a body transition
path in C from 𝑣 (well-defined by Lem. 3.9, (i)).

Lemma 5.2. For all vertices 𝑣,𝑤 in a chart C with LLEE-wit-
ness Ĉ it holds (for the concepts as defined with respect to Ĉ):

(i) 𝑣 Ñbo 𝑤 ñ ∥𝑣 ∥bo ą ∥𝑤 ∥bo,

(ii) 𝑣 ñ 𝑤 ñ |𝑣 |en ą |𝑤 |en.

Definition 5.3. Let Ĉ be a LLEE-witness of a chart C. Then
the relative extraction function of Ĉ is defined inductively as:

𝑡 Ĉ : tx𝑤, 𝑣y | 𝑣,𝑤 P 𝑉 z t
‘

u , 𝑣 ñ 𝑤u Ñ StExppAq ,

𝑡 Ĉp𝑤, 𝑣q :“
´´´

𝑚
ÿ

𝑖“1
𝑎𝑖

¯

`

´

𝑛
ÿ

𝑗“1
𝑏𝑖 ¨ 𝑡 Ĉp𝑤 𝑗 , 𝑤q

¯¯f

´´

𝑝
ÿ

𝑖“1
𝑐𝑖

¯

`

´

𝑞
ÿ

𝑗“1
𝑑 𝑗 ¨ 𝑡 Ĉp𝑢 𝑗 , 𝑣q

¯¯¯

,

provided that 𝑤 has loop-entry transitions t𝑤 𝑎𝑖
ÝÑr𝛼𝑖 s 𝑤 |

𝑖 “ 1, . . . ,𝑚u Y t𝑤
𝑏 𝑗
ÝÑr𝛽 𝑗 s 𝑤 𝑗 | 𝑗 “ 1, . . . , 𝑛 ^𝑤 𝑗 ‰ 𝑤u and

body transitions t𝑤 𝑐𝑖
ÝÑbo 𝑣 | 𝑖 “ 1, . . . , 𝑝u Y t𝑤

𝑑 𝑗
ÝÑbo 𝑢 𝑗 |

𝑗 “ 1, . . . , 𝑞 ^ 𝑢 𝑗 ‰ 𝑣u. Hereby the induction proceeds on
x|𝑣 |en , ∥𝑤 ∥boy with the lexicographic order ălex on Nˆ N:
For 𝑡 Ĉp𝑤 𝑗 , 𝑤q we have x|𝑤 |en , ∥𝑤 𝑗 ∥boy ălex x|𝑣 |en , ∥𝑤 ∥boy
due to |𝑤 𝑗 |en ă |𝑣 |en, which follows from 𝑣 ñ 𝑤 by Lem. 5.2,
(ii). For 𝑡 Ĉp𝑢 𝑗 , 𝑣q we have x|𝑣 |en , ∥𝑢 𝑗 ∥boy ălex x|𝑣 |en , ∥𝑤 ∥boy
due to ∥𝑢 𝑗 ∥bo ă ∥𝑤 ∥bo, which follows from 𝑤 Ñbo 𝑢 𝑗 by
Lem 5.2, (i).

The extraction function of Ĉ is defined by:
𝑠 Ĉ : 𝑉 z t

‘

u Ñ StExppAq ,

𝑠 Ĉp𝑤q :“
´´´

𝑚
ÿ

𝑖“1
𝑎𝑖

¯

`

´

𝑛
ÿ

𝑗“1
𝑏 𝑗 ¨ 𝑡 Ĉp𝑤 𝑗 , 𝑤q

¯¯f

´´

𝑝
ÿ

𝑖“1
𝑐𝑖

¯

`

´

𝑞
ÿ

𝑗“1
𝑑 𝑗 ¨ 𝑠 Ĉp𝑢 𝑗q

¯¯¯

,

with induction on ∥𝑤 ∥bo, provided that 𝑤 has loop-entry
transitions t𝑤 𝑎𝑖

ÝÑr𝛼𝑖 s 𝑤 | 𝑖 “ 1, . . . ,𝑚u Y t𝑤
𝑏 𝑗
ÝÑr𝛽 𝑗 s 𝑤 𝑗 |

𝑗 “ 1, . . . , 𝑛 ^𝑤 𝑗 ‰ 𝑤u and body transitions t𝑤 𝑐𝑖
ÝÑbo

‘

|

𝑖 “ 1, . . . , 𝑝u Y t𝑤
𝑑 𝑗
ÝÑbo 𝑢 𝑗 | 𝑗 “ 1, . . . , 𝑞 ^ 𝑢 𝑗 ‰

‘

u. For
𝑠 Ĉp𝑢 𝑗q the induction hypothesis holds due to

𝑢 𝑗


bo ă ∥𝑤 ∥bo,

which follows from𝑤 Ñbo 𝑢 𝑗 by Lem. 5.2, (i).

Lemma 5.4 (uses the BBP-axioms (B1)–(B6), (BKS2), but not
the rule RSPf ). In a chart C with LLEE-witness Ĉ, if 𝑣 ñ 𝑤 ,
then 𝑠 Ĉp𝑤q “BBP 𝑡 Ĉp𝑤, 𝑣q ¨ 𝑠 Ĉp𝑣q .

Proposition 5.5 (uses the BBP-axioms (B1)–(B6), (BKS1),
(BKS2), but not the rule RSPf ). For every LLEE-witness Ĉ of
a chart C, the extraction function 𝑠 Ĉ is a provable solution of C.

The proof of Lem. 5.4 proceeds by induction on ∥𝑤 ∥bo; no
induction is needed for the proof of Prop. 5.5 (see in [14]).

Example 5.6. Left in Fig. 2 we illustrate the extraction of a
provable solution for the LLEE-witness Ĉ “ zCp𝑒0q in Ex. 3.6
of the chart C “ Cp𝑒0q in Ex. 2.6. In order to obtain the
principal value 𝑠 Ĉp𝑣0q of the extracted solution 𝑠 Ĉ , its defini-
tion is expanded. It recurs on 𝑠 Ĉp𝑣1q, and then on 𝑡 Ĉp𝑣0, 𝑣1q
and 𝑡 Ĉp𝑣2, 𝑣1q. After computing those star expressions by us-
ing the definition of 𝑡 Ĉ , the principal value can be obtained
by substitution. The star expressions 𝑠 Ĉp𝑣1q and 𝑠 Ĉp𝑣2q are
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𝑠 Ĉp𝑣0q :“ 0fp𝑎 ¨ 𝑠 Ĉp𝑣1qq

“BBP 𝑎 ¨ 𝑠 Ĉp𝑣1q

“BBP 𝑎 ¨ p𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qqf0

𝑠 Ĉp𝑣1q :“ p𝑐 ¨ 𝑡 Ĉp𝑣0, 𝑣1q ` 𝑎 ¨ 𝑡 Ĉp𝑣2, 𝑣1qq
f0

“BBP p𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qqf0

𝑡 Ĉp𝑣0, 𝑣1q :“ 0f𝑎

“BBP 𝑎

𝑡 Ĉp𝑣2, 𝑣1q :“ 0fp𝑏 ` 𝑏 ¨ 𝑡 Ĉp𝑣0, 𝑣1qq

“BBP 𝑏 ` 𝑏 ¨ 𝑎

𝑠 Ĉp𝑣2q :“ 0fp𝑏 ¨ 𝑠 Ĉp𝑣1q ` 𝑏 ¨ 𝑠 Ĉp𝑣0qq

“BBP 𝑏 ¨ 𝑠 Ĉp𝑣1q ` 𝑏 ¨ p𝑎 ¨ 𝑠 Ĉp𝑣1qq

“BBP p𝑏 ` 𝑏 ¨ 𝑎q ¨ 𝑠 Ĉp𝑣1q

“BBP p𝑏 ` 𝑏 ¨ 𝑎q ¨ pp𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qqf0q

𝑣0

𝑎

𝑣1

r1s𝑎

r1s
𝑐

𝑣2𝑏 𝑏

C, Ĉ

𝑠p𝑣0q “
(sol)
BBP 𝑎 ¨ 𝑠p𝑣1q ((sol) means

use of ‘is provable solution’)

𝑠p𝑣1q “
(sol)
BBP 𝑐 ¨ 𝑠p𝑣0q ` 𝑎 ¨ 𝑠p𝑣2q

“
(sol)
BBP 𝑐 ¨ p𝑎 ¨ 𝑠p𝑣1qq ` 𝑎 ¨ p𝑏 ¨ 𝑠p𝑣1q ` 𝑏 ¨ 𝑠p𝑣0qq

“
(sol)
BBP 𝑐 ¨ p𝑎 ¨ 𝑠p𝑣1qq ` 𝑎 ¨ p𝑏 ¨ 𝑠p𝑣1q ` 𝑏 ¨ p𝑎 ¨ 𝑠p𝑣1qqq

“BBP p𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qq ¨ 𝑠p𝑣1q ` 0
ó applying RSPf

𝑠p𝑣1q “BBP p𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qqf0
“BBP 𝑠 Ĉp𝑣1q (see in the derivation on the left)
ó

𝑠p𝑣0q “
(sol)
BBP 𝑎 ¨ 𝑠p𝑣1q “BBP 𝑎 ¨ 𝑠 Ĉp𝑣1q “

(sol)
BBP 𝑠 Ĉp𝑣0q

ó

𝑠p𝑣2q “
(sol)
BBP 𝑏 ¨ 𝑠p𝑣1q ` 𝑏 ¨ 𝑠p𝑣0q

“BBP 𝑏 ¨ 𝑠 Ĉp𝑣1q ` 𝑏 ¨ 𝑠 Ĉp𝑣0q “
(sol)
BBP 𝑠 Ĉp𝑣2q

Figure 2. Left: the process of extracting the provable solution 𝑠 Ĉ of a chart C from an LLEE-witness Ĉ of C as in the middle.
Right: steps for showing that an arbitrary provable solution 𝑠 of C is BBP-provably equal to the extracted solution 𝑠 Ĉ .

obtained similarly. For readability we have simplified the
arising terms on the way by using the equality 0f𝑥 “BBP 𝑥

(which follows by pB1q, pB6q, pB7q, and (BKS1)).

Lemma 5.7 (uses the BBP-axioms (B1)–(B6), and the rule
RSPf ). If 𝑣 ñ 𝑤 , then 𝑠p𝑤q “BBP 𝑡 Ĉp𝑤, 𝑣q ¨ 𝑠p𝑣q for every
provable solution 𝑠 of a chart C with LLEE-witness Ĉ.

Proposition 5.8 (uses the BBP-axioms (B1)–(B6), and the
rule RSPf ). Let 𝑠1 and 𝑠2 be provable solutions of a LLEE-chart.
Then 𝑠1p𝑤q “BBP 𝑠2p𝑤q for all vertices𝑤 ‰

‘

.

For the proof of this proposition, see Fig. 3. The proof
of Lem. 5.7 (see in [14]) proceeds by the same induction
measure as we used for the relative extraction function.

Example 5.9. In the right half of Fig. 2 we prove that an
arbitrary provable solution 𝑠 of LLEE-chart C “ Cp𝑒0q in
Ex. 2.6 with LLEE-witness Ĉ “ zCp𝑒0q in Ex. 3.6 is provably
equal to the extracted solution 𝑠 Ĉ of C. Crucially, the defining
conditions for 𝑠 as a provable solution of C are expanded
along the loop at 𝑣1. The loop behavior obtained is the same
as that which is used in the definition of 𝑠 Ĉp𝑣1q. By applying
the fixed-point rule RSPf we can then deduce BBP-provable
equality of 𝑠p𝑣1q and 𝑠 Ĉp𝑣1q. By using the solution conditions
for 𝑠 again, provable equality is then transferred to 𝑣0 and 𝑣1.

6 Preservation of LLEE under collapse
In this section we establish the remaining result (C) from
Sect. 4 that is crucial for the completeness proof: that the
bisimulation collapse of a LLEE-chart is again a LLEE-chart.
This result is achieved by a step-wise construction of a

bisimulation collapse. Pairs of bisimilar vertices𝑤1 and𝑤2
are collapsed one at a time, whereby the incoming transitions

of 𝑤1 are redirected to 𝑤2. The crux is to take care, and to
prove, that the resulting chart has again a LLEE-witness.
Definition 6.1. Let C be a chart, with vertices𝑤1 and𝑤2.

The connect-𝑤1-through-to-𝑤2 chart Cp𝑤1q
𝑤2 of C is obtained

by redirecting all incoming transitions at𝑤1 over to𝑤2, and,
if𝑤1 is the start vertex of C, making𝑤2 the new start vertex;
in this way𝑤1 gets unreachable, and it is removed with other
unreachable vertices to obtain a start-vertex connected chart.

Let Ĉ be an entry/body-labeling of C. Then we define the
entry/body-labeling Ĉp𝑤1q

𝑤2 of Cp𝑤1q
𝑤2 as follows: every transi-

tion in Cp𝑤1q
𝑤2 that was already a transition 𝜏 in C inherits its

marking label from 𝜏 in Ĉ; and every transition in Cp𝑤1q
𝑤2 that

arises as the redirection 𝜏𝑤2 to𝑤2 of a transition 𝜏 to𝑤1 in
C such that 𝜏𝑤2 does not coincide with a transition already
in C inherits its marking label from 𝜏 in Ĉ. This definition
of Ĉp𝑤1q

𝑤2 prevents the formation of two transitions with the
same source, action label, and target, but with different mark-
ing labels, which is not permitted for entry/body-labelings.
The choice to define Ĉp𝑤1q

𝑤2 by giving precedence to marking
labels of already existing transitions in Ĉ over the mark-
ing labels of redirections of transitions will be expedient in
showing LLEE-witness preservation under transformations.
Lemma 6.2. If𝑤1 Ø 𝑤2 in C, then Cp𝑤1q

𝑤2
Ø C.

While the connect-through operation of bisimilar vertices
in a chart thus results in a bisimilar chart, its application to
a LLEE-witness (an entry/body-labeling) does not need to
yield a LLEE-witness again: the property LEE may be lost.

Example 6.3. Consider the LLEE-witness Ĉ in the middle
below. The unspecified action labels are assumed to facili-
tate that𝑤1 and𝑤2 are bisimilar. Hence also p𝑤1 and p𝑤2 are
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Proof (of Prop. 5.8). Let Ĉ be a LLEE-witness of a chart C. Let 𝑠 be a provable solution of C. We have to show that 𝑠p𝑤q “BBP

𝑠 Ĉp𝑤q for all𝑤 ‰
‘

. For this, let𝑤 ‰
‘

. The derivation below is based on the set representation of transitions from𝑤 in Ĉ as
formulated in the definition of 𝑠 Ĉp𝑤q. The first derivation step uses that 𝑠 is a provable solution of C and axioms pB1q, pB2q,
and pB3q, the second step uses Lem. 5.7 in view of𝑤 ñ 𝑤 𝑗 for 𝑗 “ 1, . . . , 𝑛, and the third step uses axioms pB4q, (B5), and pB6q.

𝑠p𝑤q “BBP

´´

𝑚
ÿ

𝑖“1
𝑎𝑖 ¨ 𝑠p𝑤q

¯

`

´

𝑛
ÿ

𝑗“1
𝑏 𝑗 ¨ 𝑠p𝑤 𝑗q

¯¯

`

´´

𝑝
ÿ

𝑖“1
𝑐𝑖

¯

`

´

𝑞
ÿ

𝑗“1
𝑑 𝑗 ¨ 𝑠p𝑢 𝑗q

¯¯

“BBP

´´

𝑚
ÿ

𝑖“1
𝑎𝑖 ¨ 𝑠p𝑤q

¯

`

´

𝑛
ÿ

𝑗“1
𝑏 𝑗 ¨

`

𝑡 Ĉp𝑤 𝑗 , 𝑤q ¨ 𝑠p𝑤q
˘

¯¯

`

´´

𝑝
ÿ

𝑖“1
𝑐𝑖

¯

`

´

𝑞
ÿ

𝑗“1
𝑑 𝑗 ¨ 𝑠p𝑢 𝑗q

¯¯

“BBP

´´

𝑚
ÿ

𝑖“1
𝑎𝑖

¯

`

´

𝑛
ÿ

𝑗“1

`

𝑏 𝑗 ¨ 𝑡 Ĉp𝑤 𝑗 , 𝑤q
˘

¯¯

¨ 𝑠p𝑤q `

´´

𝑝
ÿ

𝑖“1
𝑐𝑖

¯

`

´

𝑞
ÿ

𝑗“1
𝑑 𝑗 ¨ 𝑠p𝑢 𝑗q

¯¯

In view of this derived provable equality for 𝑠p𝑤q, we can now apply the rule RSPf in order to obtain:

𝑠p𝑤q “BBP

´´

𝑚
ÿ

𝑖“1
𝑎𝑖

¯

`

´

𝑛
ÿ

𝑗“1
𝑏 𝑗 ¨ 𝑡 Ĉp𝑤 𝑗 , 𝑤q

¯¯f´´
𝑝
ÿ

𝑖“1
𝑐𝑖

¯

`

´

𝑞
ÿ

𝑗“1
𝑑 𝑗 ¨ 𝑠 Ĉp𝑢 𝑗q

¯¯

” 𝑠 Ĉp𝑤q

In this last step we have used the definition of 𝑠 Ĉp𝑤q. □

Figure 3. Proof of Prop. 5.8.

bisimilar. Bisimilarity is indicated by the broken lines. The
connect-𝑤1-through-to-𝑤2 chart on the left is not a LLEE-
chart, because it does not satisfy LEE: after the loop subchart
induced by the downwards transition from p𝑤2 is eliminated,
and garbage collection is done, the remaining chart with-
out the dotted transitions still has an infinite path; yet it
does not contain another loop subchart, because each infi-
nite path can reach

‘

without returning to its source. An
example of this is the red path from p𝑤1 via𝑤2 and p𝑤2 to

‘

.
In Ĉ, the bisimilar pair𝑤1,𝑤2 progresses to the bisimilar pair
p𝑤1, p𝑤2. The connect-p𝑤1-through-to-p𝑤2 chart on the right is
a LLEE-chart, as witnessed by the entry/body-labeling Ĉp p𝑤1q

p𝑤2
.

Cp𝑤1q
𝑤2

p𝑤1 p𝑤2

‘

𝑤2

Ĉ

‘

r2s

p𝑤1

𝑤1

r1s

p𝑤2

𝑤2

‘

Ĉp p𝑤1q

p𝑤2

r1s

p𝑤2

𝑤2

Cp𝑤1q
𝑤2 ÐSS C pIqp p𝑤1q

p𝑤2

This illustrates that bisimilar pairs of vertices must be se-
lected carefully, to safeguard that the connect-through con-
struction preserves LLEE. The proposition below expresses
that a pair of distinct bisimilar vertices can always be se-
lected in one of three mutually exclusive categories. Later,

three LLEE-preserving transformations I, II, and III will be
defined for each of these categories.

Proposition 6.4. If a LLEE-chart C is not a bisimulation
collapse, then it contains a pair of bisimilar vertices 𝑤1,𝑤2
that satisfy, for a LLEE-witness of C, one of the conditions:
(C1) ␣p𝑤2 Ñ

˚ 𝑤1q ^ pñ 𝑤1 ñ 𝑤2 is not normed q,
(C2) 𝑤2 ü` 𝑤1,
(C3) D𝑣 P 𝑉

`

𝑤1 dü 𝑣 ^ 𝑤2 ü` 𝑣
˘

^ ␣p𝑤2 Ñ
˚
bo 𝑤1q.

Condition (C1) requires that 𝑤1 and 𝑤2 are in different
scc’s, as there is no path from𝑤2 to𝑤1. The additional pro-
viso in (C1) constrains the pair in such a way that if both
are normed, then𝑤1 must be outside of all loops (otherwise
the connect-𝑤1-through-to-𝑤2 operation does not preserve
LLEE-charts, see Ex. 6.3); its asymmetric formulation helps
to avoid the assumption of bisimilarity in Prop. 6.8 below.
The two other conditions concern the situation that𝑤1 and
𝑤2 are in the same scc. While in (C2) 𝑤1 and𝑤2 are compa-
rable (but different) by the loops-back-to relation ü˚, they
are incomparable in (C3). In the situation that 𝑤1,𝑤2 loop
back to the same vertex 𝑣 , but 𝑤1 directly loops back to 𝑣 ,
(C3) also demands that no body step path exists from𝑤2 to
𝑤1 (otherwise the connect-𝑤1-through-to-𝑤2 construction
does not preserve LLEE-charts, see an example in [14]).
In the proof of Prop. 6.4 we progress, from a given pair

of distinct bisimilar vertices, repeatedly via transitions, at
one side picking loop-back transitions, over pairs of distinct
bisimilar vertices, until one of the conditions (C1) , (C2) ,
(C3) is met. We will use a subset of the body transitions in a
LLEE-witness. By a loop-back transition, written as 𝑢 Ñlb 𝑣 ,
we mean a transition 𝑢 Ñbo 𝑣 that stays within an scc, that
is, sccp𝑢q “ sccp𝑣q. The loops-back-to norm ∥𝑢∥min

lb of 𝑢 is the
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maximal length of aÑlb path from 𝑢 (which is well-defined
by Lem. 3.9, (i) and chart finiteness). Note that ∥𝑢∥min

lb “ 0 if
and only if 𝑢 does not loop back (denoted by ␣p𝑢 üq).

Proof of Prop. 6.4. We pick distinct bisimilar vertices 𝑢1, 𝑢2.
First we consider the case sccp𝑢1q ‰ sccp𝑢2q. Without loss
of generality, suppose ␣p𝑢2 Ñ˚ 𝑢1q. We progress to a pair
of vertices where (C1) holds, using induction on ∥𝑢1∥min

lb .
In the base case, ∥𝑢1∥min

lb “ 0, it suffices to show that it is
not possible that both ñ𝑢1 holds and 𝑢2 is normed, because
then we can define 𝑤1 “ 𝑢1 and 𝑤2 “ 𝑢2, and are done.
Therefore suppose, toward a contradiction, that ñ𝑢1 holds
and𝑢2 is normed. Then𝑢1 is normed, too, since𝑢1 and𝑢2 are
bisimilar. Also ␣p𝑢1 üq follows from ∥𝑢1∥min

lb “ 0, which
says that there are no loops-back-to steps from 𝑢1. So we
get that ñ𝑢1, ␣p𝑢1 üq, and 𝑢1 is normed. This contradicts
Lemma 3.9, (iii). In the induction step, ∥𝑢1∥min

lb ą 0 implies
𝑢1 Ñlb 𝑢

1
1 and

𝑢1
1
min
lb ă ∥𝑢1∥min

lb for some𝑢1
1. Since𝑢1 Ø 𝑢2,

we have 𝑢2 Ñ 𝑢1
2 and 𝑢

1
1 Ø 𝑢1

2 for some 𝑢1
2. Since 𝑢1 Ñlb 𝑢

1
1,

by definition, 𝑢1 and 𝑢1
1 are in the same scc. Hence 𝑢1

1 Ñ
˚ 𝑢1.

This implies ␣p𝑢1
2 Ñ

˚ 𝑢1
1q, for else 𝑢2 Ñ 𝑢1

2 Ñ
˚ 𝑢1

1 Ñ
˚ 𝑢1,

which contradicts the assumption␣p𝑢2 Ñ˚ 𝑢1q. Since 𝑢1
1 Ø

𝑢1
2 and ␣p𝑢

1
2 Ñ

˚ 𝑢1
1q and

𝑢1
1
min
lb ă ∥𝑢1∥min

lb , by induction
there exists a bisimilar pair𝑤1,𝑤2 for which (C1) holds.

Now let sccp𝑢1q “ sccp𝑢2q. Then by Lem. 3.9, (iv), 𝑢1 ü˚ 𝑣

and 𝑢2 ü˚ 𝑣 for some 𝑣 . By Lem. 3.9, (v) we pick 𝑣 as the
least upper bound of𝑢1, 𝑢2 with regard to ü˚. If𝑢1 “ 𝑣 , then
𝑢2 ü` 𝑢1, so (C2) holds for𝑤1 “ 𝑢1 and𝑤2 “ 𝑢2. If 𝑢2 “ 𝑣 ,
then likewise (C2) holds for𝑤1 “ 𝑢2 and𝑤2 “ 𝑢1. Now let
𝑢1, 𝑢2 ‰ 𝑣 . Since 𝑣 is the least upper bound, 𝑢1 ü˚ 𝑣1 dü

𝑣 dý 𝑣2 ý˚ 𝑢2 for distinct 𝑣1, 𝑣2 P 𝑉 . There cannot be a cycle
of body transitions, so ␣p𝑣2 Ñ˚

bo 𝑣1q or ␣p𝑣1 Ñ˚
bo 𝑣2q. By

symmetry it suffices to consider␣p𝑣2 Ñ˚
bo 𝑣1q. Summarizing,

𝑢1 ü˚ 𝑣1 dü 𝑣 dý 𝑣2 ý˚ 𝑢2 and ␣p𝑣2 Ñ˚
bo 𝑣1q. For this situ-

ation we use induction on ∥𝑢1∥min
lb . If 𝑢1 “ 𝑣1, then 𝑢1 dü 𝑣 ;

taking 𝑤1 “ 𝑢1 and 𝑤2 “ 𝑢2, (C3) holds. So we can as-
sume 𝑢1 ü` 𝑣1 dü 𝑣 . Pick a transition 𝑢1 Ñlb 𝑢1

1 with𝑢1
1
min
lb ă ∥𝑢1∥min

lb ; by definition, sccp𝑢1
1q “ sccp𝑢1q. Since

𝑢1 Ø 𝑢2, there is a transition𝑢2 Ñ 𝑢1
2 with𝑢

1
1 Ø 𝑢1

2 for some
𝑢1
2. If sccp𝑢

1
1q ‰ sccp𝑢1

2q, then as before we can find bisimilar
𝑤1,𝑤2 for which (C1) holds. Now let sccp𝑢1

1q “ sccp𝑢1
2q, so

𝑢1, 𝑢2, 𝑢
1
1, 𝑢

1
2 are in the same scc. Since𝑢1 ü` 𝑣1 and𝑢1 Ñ 𝑢1

1,
either 𝑢1

1 “ 𝑣1 or 𝑣1 ñ` 𝑢1
1. Moreover, sccp𝑢1

1q “ sccp𝑢1q “
sccp𝑣1q, so by Lem. 3.9, (ii), 𝑢1

1 ü˚ 𝑣1. Since 𝑢2 ü˚ 𝑣2, we
can distinguish two cases (for illustrations for each of the
subcases, see the version [14] with appendix).
Case 1:𝑢2 ü` 𝑣2. Since𝑢2 Ñ 𝑢1

2, either𝑢
1
2 “ 𝑣2 or 𝑣2 ñ` 𝑢1

2.
Moreover, sccp𝑢1

2q “ sccp𝑢2q “ sccp𝑣2q, so by Lem. 3.9, (ii),
𝑢1
2 ü˚ 𝑣2. Hence, 𝑢1

1 ü˚ 𝑣1 dü 𝑣 dý 𝑣2 ý˚ 𝑢1
2 ^

␣p𝑣2 Ñ
˚
bo 𝑣1q, and

𝑢1
1
min
lb ă ∥𝑢1∥min

lb . We apply the
induction hypothesis to obtain a bisimilar pair𝑤1,𝑤2
for which (C1) , (C2) , or (C3) holds. See above for an

illustration of both of the cases in which 𝑢2 Ñ 𝑢1
2 is a

loop-entry transition, or a body transition.
𝑣

𝑣1 𝑣2{
bo

𝑢1

𝑢1
1

lb
𝑢2

𝑢1
2

𝑢1
2

r𝛼s bo

use ind. hyp.

use ind. hyp.

Case 2: 𝑢2 “ 𝑣2. We distinguish two cases.
Case 2.1: 𝑢2 Ñr𝛼s 𝑢1

2. Then either 𝑢1
2 “ 𝑢2 or 𝑢2 ñ`

𝑢1
2. Moreover, sccp𝑢1

2q “ sccp𝑢2q, so by Lem. 3.9, (ii),
𝑢1
2 ü˚ 𝑢2, and hence 𝑢1

2 ü˚ 𝑣2. Thus we have ob-
tained 𝑢1

1 ü˚ 𝑣1 dü 𝑣 dý 𝑣2 ý˚ 𝑢1
2 ^ ␣p𝑣2 Ñ

˚
bo 𝑣1q.

Due to
𝑢1

1
min
lb ă ∥𝑢1∥min

lb , we can apply the induction
hypothesis again.

Case 2.2: 𝑢2 Ñbo 𝑢1
2. Then ␣p𝑣2 Ñ

˚
bo 𝑣1q together with

𝑣2 “ 𝑢2 Ñbo 𝑢1
2 and 𝑢1

1 Ñ
˚
bo 𝑣1 (because 𝑢1

1 ü˚ 𝑣1)
imply 𝑢1

1 ‰ 𝑢1
2. We distinguish two cases.

Case 2.2.1: 𝑢1
2 “ 𝑣 . Then𝑢1

1 ü˚ 𝑣1 dü 𝑣 “ 𝑢1
2, i.e.,𝑢

1
1 ü` 𝑢1

2,
so we are done, because (C2) holds for 𝑤1 “ 𝑢1

2 and
𝑤2 “ 𝑢1

1.
Case 2.2.2: 𝑢1

2 ‰ 𝑣 . By Lem. 3.9, (ii), 𝑢1
2 ü` 𝑣 . Hence, 𝑢1

2 ü˚

𝑣 1
2 dü 𝑣 for some 𝑣 1

2. Since 𝑣2 “ 𝑢2 Ñbo 𝑢1
2 ü˚ 𝑣 1

2
and ␣p𝑣2 Ñ˚

bo 𝑣1q, it follows that ␣p𝑣 1
2 Ñ

˚
bo 𝑣1q. So

𝑢1
1 ü˚ 𝑣1 dü 𝑣 dý 𝑣 1

2 ý˚ 𝑢1
2 ^ ␣p𝑣2 Ñ

˚
bo 𝑣

1
1q. Due

to
𝑢1

1
min
lb ă ∥𝑢1∥min

lb , we can apply the induction hy-
pothesis again.

This exhaustive case analysis concludes the proof. □

Now we define, for LLEE-witnesses Ĉ of a LLEE-chart C,
and for bisimilar vertices 𝑤1,𝑤2 in C, in each of the three
cases (C1) , (C2) , or (C3) of Prop. 6.4 a transformation of Ĉ
into an entry/body-labeling of the connect-𝑤1-through-to-
𝑤2 chart Cp𝑤1q

𝑤2 that can be shown to be a LLEE-witness again.
We number the transformations for (C1) , (C2) , and (C3)
as I, II, and III, respectively. Each transformation makes use
of the connect-through construction for entry/body-labelings
as defined in Def. 6.1. Additionally, in each transformation
an adaptation of labels of transitions is performed, to avoid
violations of LLEE-witness properties. In transformations
I and III the adaptation is performed before connecting𝑤1
through to𝑤2, and is needed to guarantee that layeredness
is preserved; in transformation II it is performed right after
eliminating𝑤1, and avoids the creation of body step cycles.
The level adaptations for the three transformations are:
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Figure 4. Three connect-through-steps according to the transformations I, II, and III from the LLEE-witness on the left, and a
final isomorphic deformation, leading to the LLEE-witness on the right. For clarity, we neglected action labels in the middle.

LI Let𝑚 “ maxt 𝛽 : there is a path𝑤2Ñ
˚ ¨ Ñr𝛽s in Ĉ u.

In loop-entry transitions 𝑢 Ñr𝛼s 𝑣 for which there is a
path 𝑣 Ñ˚ 𝑤1 in C, replace 𝛼 by an 𝛼 1 with 𝛼 1 “ 𝛼`𝑚.
This increases the labels of loop-entry transitions that
descend to𝑤1 in Ĉ to a higher level than the loop labels
reachable from𝑤2.

LII Since𝑤2 ü` 𝑤1, there exists a p𝑤2 with𝑤2 ü˚
p𝑤2 dü

𝑤1. Let 𝛾 be the maximum loop level among the loop-
entries at𝑤1 in Ĉ. (Note that since𝑤2 ü` 𝑤1, there is
at least one such transition.) Turn the body transitions
from p𝑤2 into loop-entry transitions with loop label 𝛾 .

LIII Let 𝛾 be a loop label of maximum level among the loop-
entry transitions at 𝑣 in Ĉ. (Note that since 𝑤1 ü 𝑣 ,
there is at least one such transition.) Turn the loop
labels of the loop-entry transitions from 𝑣 into 𝛾 .

Each of these transformations ends with a clean-up step: if
the loop-entry transitions from a vertex with the same loop
label no longer induce an infinite path (due to the removal
of𝑤1), then they are changed into body transitions.

Example 6.5. The LLEE-witness on the left in Fig. 4 is re-
duced in three transformation steps to a LLEE-witness of
the chart Cp𝑒0q in Ex. 2.6. Broken lines are between bisimilar
vertices. In step one, a transformation I, the start state 𝑣0 is
connected through to the bisimilar vertex 𝑣2

0 , whereby 𝑣2
0

becomes the start vertex; note that there is no path from 𝑣2
0

to 𝑣0, and no vertex descends into a loop to 𝑣0. In step two, a
transformation II, 𝑣1 is connected through to the bisimilar
vertex 𝑣 1

1; note that 𝑣
1
1 ü` 𝑣1. In step three, a transformation

III, the start vertex 𝑣2
0 is connected through to the bisimilar

vertex 𝑣3
0 , whereby 𝑣3

0 becomes the start vertex; note that
𝑣2
0 dü 𝑣2 and 𝑣3

0 ü` 𝑣2 and there is no body step path from
𝑣3
0 to 𝑣2

0 . By the loop level adaptation LIII, all loop entries
from 𝑣2 get level 3. The final step is an isomorphic deforma-
tion. Only the left and right charts depict actions.

The following examples provide more illustrations of the
transformations II and III. Similarly as Ex. 6.3 does so for
transformation I and (C1), they also show that the conditions
(C2) and (C3) mark rather sharp borders between whether,
on a given LLEE-witness, a connect-through operation is
possible while preserving LLEE, or not.

Example 6.6. For the LLEE-witness Ĉ below in the middle,
the chart Cp𝑤2q

𝑤1 on the left has no LLEE-witness. It does not
satisfy LEE: it has no loop subchart, since from each of its
three vertices an infinite path starts that does not return to
this vertex; from p𝑤2 this path, drawn in red, cycles between𝑢
and𝑤1. Transformation II applied to the pair𝑤1,𝑤2 (instead
of 𝑤2,𝑤1) in Ĉ yields the entry/body-labeling Ĉp𝑤1q

𝑤2 where
p𝑤2Ñbo𝑤2 is turned into p𝑤2Ñr2s𝑤2. As the pair𝑤1,𝑤2 sat-
isfies (C2) , the proof of Prop. 6.8 ensures that this labeling,
drawn on the right, is a LLEE-witness.

Cp𝑤2q
𝑤1 ÐSS C pIIqp𝑤1q

𝑤2

𝑤1

p𝑤2

𝑢

Cp𝑤2q
𝑤1

𝑤1

r2s

r2s
p𝑤2

r1s

𝑢

𝑤2

Ĉ

p𝑤2

r1s

r2s𝑢

𝑤2

Ĉp𝑤1q
𝑤2

Example 6.7. In the LLEE-witness Ĉ below in the middle,
𝑤1,𝑤2 ü` 𝑣 and there is no body step path from𝑤2 to𝑤1,
but (C3) does not hold for the pair𝑤1,𝑤2 due to␣p𝑤1 dü 𝑣q.
The chart Cp𝑤1q

𝑤2 on the left has no LLEE-witness. It does not
satisfy LEE: the downwards loop-entry transition from p𝑤2
can be eliminated, and then two more arising loop-entry
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transitions from 𝑣 ; the remaining chart of solid arrows has
no further loop subchart, because from each of its vertices
an infinite path starts that does not return to this vertex.
In Ĉ, loop-entry transitions from 𝑣 have the same loop

label, so the preprocessing step of transformation III is void.
The bisimilar pair 𝑤1,𝑤2 progresses to the bisimilar pair
p𝑤1, p𝑤2 in Ĉ, for which (C3) holds because p𝑤1 dü 𝑣 ý p𝑤2
and ␣pp𝑤2Ñ

˚
bo p𝑤1q. Transformation III applied to this pair

yields the labeling Ĉp p𝑤1q

p𝑤2
on the right. In the proof of Prop. 6.8

it is argued that this is guaranteed to be a LLEE-witness. The
remaining two bisimilar pairs can be eliminated by one or
by two further applications of transformation III.

𝑣

Cp𝑤2q
𝑤1

p𝑤1 p𝑤2

𝑤2

𝑣

Ĉ

p𝑤1

r2s

r2s

r2s

r2s
r1s

𝑤1

p𝑤2

r1s

𝑤2

𝑣

Ĉp p𝑤2q

p𝑤1

r2s

r2s
r2s

𝑤1

p𝑤2

r1s

𝑤2

Cp𝑤1q
𝑤2 ÐSS C pIIIqp p𝑤1q

p𝑤2

Proposition 6.8. Let C be a LLEE-chart. If a pair x𝑤1, 𝑤2y of
vertices satisfies (C1), (C2), or (C3) with respect to a LLEE-wit-
ness of C, then Cp𝑤1q

𝑤2 is a LLEE-chart.

Proof. Let Ĉ be a LLEE-witness. For vertices𝑤1,𝑤2 such that
(C1) , (C2) , or (C3) holds, transformation I, II, or III, respec-
tively, produces an entry/body-labeling Ĉp𝑤1q

𝑤2 . We prove for
transformation I that this is a LLEE-witness, and refer to the
report version [14] with regard to transformations II, and III.

We first argue it suffices to show that each of the transfor-
mations produces, before the final clean-up step, a labeling
that satisfies the LLEE-witness conditions, except possible vi-
olations of loop property (L1) in (W2)(a). Such violations can
be removed from a loop-labeling while preserving the other
LLEE-witness conditions. To show this, suppose (L1) is vio-
lated in some CĈp𝑢, 𝛼q. Then 𝑢Ñr𝛼s but ␣p𝑢 Ñr𝛼s ¨ Ñ

˚
bo 𝑢q.

Let Ĉ1 be the result of removing this violation by chang-
ing the 𝛼-loop-entry transitions from 𝑢 into body transi-
tions. No new violation of (L1) is introduced in Ĉ1. (W1) and
(W2)(a), (L2), are preserved in Ĉ1 because an introduced in-
finite body step path in Ĉ1 would be a body step cycle that
stems from a path 𝑢 Ñr𝛼s 𝑢1 Ñ˚

bo 𝑢 in Ĉ. (W2)(b) might
only be violated by a path 𝑤 ÝÝÝÑ

t p𝑤q
r𝛽s ¨ ÝÝÝÑ

t p𝑤q

˚
bo 𝑢 ÝÝÝÝÑt p𝑤,𝑢q

bo

𝑢1 ÝÝÝÝÑ
t p𝑤,𝑢q

˚
bo ¨ Ñr𝛾s with 𝛽 ď 𝛾 in Ĉ1 where 𝑢 Ñbo 𝑢

1 stems

from𝑢 Ñr𝛼s 𝑢
1 in Ĉ; then 𝛽 ą 𝛼 ą 𝛾 by layeredness of Ĉ; so

(W2)(b) is preserved. Analogously we find that also (W2)(a),
(L3) is preserved, because

‘

is never in CĈp𝑢, 𝛼q.

To show the correctness of transformation I, consider ver-
tices𝑤1 and𝑤2 with (C1) . We show that the result Ĉp𝑤1q

𝑤2 of
transformation I before the clean-up step satisfies the LLEE-
witness properties, except for possible violations of (L1).

To verify (W1) and part (L2) of (W2)(a), it suffices to show
that Ĉp𝑤1q

𝑤2 does not contain body step cycles. The original
loop-labeling Ĉ is a LLEE-witness, so it does not contain
body step cycles. Since the level adaptation step does not
turn loop-entry steps into body steps, body step cycles could
only arise in the step connecting𝑤1 through to𝑤2. Suppose
such a body step cycle arises. Then there must be a transition
𝑢 Ñbo 𝑤1 in Ĉ (which is redirected to 𝑤2 in Ĉp𝑤1q

𝑤2 ) and a
path𝑤2 Ñ

˚
bo 𝑢 in Ĉ. But then𝑤2 Ñ

˚
bo 𝑢 Ñbo 𝑤1 in C, which

contradicts (C1) that there is no path from𝑤2 to𝑤1. Hence
(W1) and part (L2) of (W2)(a) hold for Ĉp𝑤1q

𝑤2 .
Now we verify part (L3) of (W2)(a) in Ĉp𝑤1q

𝑤2 . Consider a
path 𝑢ÝÝÑ

t p𝑢q
r𝛼s ¨ ÝÝÑ

t p𝑢q

˚
bo 𝑤1 in Ĉ. Then 𝑢 ‰ 𝑤1, and 𝑢 ñ 𝑤1.

It suffices to show that then ␣p𝑤2 Ñ
`
‘

q in C. But this is
guaranteed, because otherwise𝑤2 were normed, and due to
𝑢 ñ 𝑤1 we would have a contradiction with condition (C1) .

Finally we show that (W2)(b) is preserved in Ĉp𝑤1q
𝑤2 by

both the level adaptation and the connect-through step. First,
since in the level adaptation step all adapted loop labels
are increased with the same value𝑚, a violation of (W2)(b)
would arise by a path𝑢 Ñr𝛼s ¨ Ñ

˚
bo ¨ Ñr𝛽s 𝑣 in Ĉ where loop

label 𝛽 is increased while 𝛼 is not. But such a path cannot
exist. Since 𝛽 is increased, there is a path 𝑣 Ñ˚ 𝑤1 in C.
But then there is a path 𝑢 Ñr𝛼s ¨ Ñ

` 𝑣 Ñ˚ 𝑤1 in Ĉ, which
implies that also 𝛼 is increased in the level adaptation step.
Second, a violation of (W2)(b) in the connect-through step
would arise from paths𝑢 Ñr𝛼s ¨ Ñ

˚
bo 𝑤1 and𝑤2Ñ

˚
bo¨Ñr𝛽s in

Ĉ1 with𝛼 ď 𝛽 . However, in view of the path𝑢 Ñr𝛼s ¨ Ñ
˚ 𝑤1,

the loop label 𝛼 was increased with𝑚 in the level adaptation
step . On the other hand, in view of (C1) that there is no path
from𝑤2 to𝑤1 in C,𝑤1 is unreachable at the end of the path
𝑤2Ñ

˚ ¨ Ñr𝛽s. Hence this loop label 𝛽 was not increased in
the level adaptation step. So it is guaranteed that for such a
pair of paths in Ĉp𝑤1q

𝑤2 always 𝛼 ą 𝛽 .
We conclude that the result of transformation I is again a

LLEE-witness. □

Theorem 6.9. The bisimulation collapse of a LLEE-chart is
again a LLEE-chart.

Proof. Given a LLEE-chart C, repeat the following step: based
on a LLEE-witness pick, by Prop. 6.4, bisimilar vertices 𝑤1
and𝑤2 with (C1), (C2) , or (C3), and then connect𝑤1 through
to 𝑤2, obtaining by Prop. 6.8 a LLEE-chart bisimilar to C,
due to Lem. 6.2. Hence the bisimulation collapse of C, which
is reached eventually, is a LLEE-chart. □

Corollary 6.10. If a chart is expressible by a star expression
modulo bisimilarity, then its collapse is a LLEE-chart.
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The converse statement holds as well. But this corollary
does not hold for star expressions with 1 and unary star. For
example, with respect to the TSS for the process interpreta-
tion of star expressions from this class, see e.g. [3], the expres-
sion 𝑒1 :“ ppp1 ¨ 𝑎˚q ¨ p𝑏 ¨ 𝑐˚qq ¨ 𝑒 with 𝑒 :“ p𝑎˚ ¨ p𝑏 ¨ 𝑐˚qq˚

has the following interpretation, where 𝑒2 :“ p1 ¨ 𝑐˚q ¨ 𝑒 :

𝑒1𝑎

𝑏

𝑒2 𝑏

𝑐

𝑎

This is a chart in the extended sense in which immediate ter-
mination is permitted at arbitrary vertices. It is a bisimulation
collapse that does not satisfy LEE, taking into account that,
in the definition of ‘loop’ for charts in the extended sense,
(L3) needs to be changed to exclude immediate termination
for vertices in a loop chart other than the start vertex. Note
that in the chart above, after elimination of the cycling tran-
sitions at 𝑒1 and at 𝑒2, which define loop subcharts, a chart
without loop subcharts but with still an infinite behavior is
obtained. Therefore this chart does not satisfy LEE.
An idea to overcome this problem is to interpret star ex-

pressions with 1 as ‘1-charts’, that is, as charts with special
1-transitions. Such 1-transitions are analogous to 𝜖-transi-
tions for finite-state automata. But they have a different in-
terpretation in the context of the process semantics, namely
as explicit empty steps. For this purpose, significantly more
formal machinery has to be developed (see also [31]). The
main challenge for adapting our proof to the setting of star
expressions with 1 consists in refining the stepwise collapse
procedure in such a way that it can cope with complications
that arise in the presence of 1-transitions.

7 The completeness result, and conclusion
That bisimulation collapse preserves LLEE was the last build-
ing block in the proof of the desired completeness result.

Theorem 7.1. The proof system BBP is complete with respect
to the bisimulation semantics of star expressions, that is, with
respect to bisimilarity of charts that interpret star expressions
without 1 and with binary Kleene star f.

Proof. The proof steps were already explained in Sect. 4. □

Example 7.2. The bisimilar LLEE-charts C1 and C2 in Ex. 4.1
have p𝑎 ¨ p𝑎 ` 𝑏q ` 𝑏qf0 and p𝑏 ¨ p𝑎 ` 𝑏q ` 𝑎qf0 as their
principal solutions. Their bisimulation collapse C0 has prin-
cipal solution p𝑎 ` 𝑏qf0. Then p𝑎 ¨ p𝑎 ` 𝑏q ` 𝑏qf0 “BBP
p𝑎 ` 𝑏qf0 “BBP p𝑏 ¨ p𝑎 ` 𝑏q ` 𝑎qf0 by Prop. 5.1, Prop. 5.8.

Example 7.3. Revisiting the star expressions 𝑒1, 𝑒2 in Ex. 2.6
with bisimilar chart interpretations Cp𝑒1q and Cp𝑒2q, we can
apply our proof in order to show that 𝑒1 “BBP 𝑒2. Cp𝑒1q and
Cp𝑒2q have provable solutions with principal values 𝑒1 and 𝑒2
by Prop. 2.9. As Cp𝑒1q and Cp𝑒2q are LLEE-charts by Prop. 3.7

with LLEE-witnesses zCp𝑒1q and zCp𝑒2q, their bisimulation col-
lapse C is a LLEE-chart by Thm. 6.9. We take here the more
familiar Ĉ, but could also take the one obtained in Fig. 4.
We saw in Fig. 2 that Ĉ has a provable solution with princi-
pal value 𝑠 Ĉp𝑣0q “ 𝑎 ¨ pp𝑐 ¨ 𝑎 ` 𝑎 ¨ p𝑏 ` 𝑏 ¨ 𝑎qqf0q. Then by
Prop. 5.1 and Prop. 5.8 it follows that 𝑒1 “BBP 𝑠 Ĉp𝑣0q “BBP 𝑒2.

r2s𝑎

r1s𝑎

𝑐

𝑏

𝑏

𝑎

Cp𝑒1q, zCp𝑒1q

𝑎

r1s𝑎

r1s
𝑐

𝑏 𝑏

C, Ĉ
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𝑏

𝑎
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𝑐

𝑎
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Cp𝑒2q, zCp𝑒2q

We have shown that Milner’s axiomatization, tailored to
star expressions without 1 and with f, is complete in bisimu-
lation semantics. At the core of our proof is the graph struc-
ture property LLEE, which characterizes the process graphs
that can be expressed by star expressions without 1 and
with f as charts whose bisimulation collapse is a LLEE-chart.

Completeness of BBP covers completeness of the theory
BPA𝜔

0 `RSP
𝜔 of perpetual loop iteration p¨q𝜔 [10] in the sense

that the latter result can be shown by our means, or by a
faithful interpretation 𝑒𝜔 ÞÑ 𝑒f0 of BPA𝜔

0 `RSP
𝜔 in BBP.

Completeness of BBP can be extended, also by means of
a faithful interpretation, to cover star expressions with 0,
1, and ˚, but with a syntactic restriction on terms directly
under a ˚: that they can be rewritten to star expressions with
only ’harmless’ occurrences of 1. This is analogous to the
situation that the completeness result from [9, 11] for star
expressions without 0 and 1, and with f was extended in
[7] to a setting with 1 (but not 0) and ˚, where a generalized
version of the non-empty-word property is disallowed for
terms directly under a ˚. With the interpretation approach,
also the result in [7] can be obtained from the one in [9, 11].

The main future goal is to solve Milner’s problem entirely
by extending our result to the full class of star expressions.
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