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Abstract—Axiomatization and expressibility problems for Mil-

ner’s process semantics (1984) of regular expressions modulo

bisimilarity have turned out to be difficult for the full class of

expressions with deadlock 0 and empty step 1. We report on a

phenomenon that arises from the added presence of 1 when 0 is

available, and that brings a crucial reason for this difficulty into

focus. To wit, while interpretations of 1-free regular expressions

are closed under bisimulation collapse, this is not the case for

the interpretations of arbitrary regular expressions.

Process graph interpretations of 1-free regular expressions

satisfy the loop existence and elimination property LEE, which

is preserved under bisimulation collapse. These features of LEE

were applied for showing that an equational proof system for

1-free regular expressions modulo bisimilarity is complete, and

that it is decidable in polynomial time whether a process graph

is bisimilar to the interpretation of a 1-free regular expression.

While interpretations of regular expressions do not satisfy

the property LEE in general, we show that LEE can be re-

covered by refined interpretations as graphs with 1-transitions

(which are similar to silent steps for automata). This suggests

that LEE can be expedient also for the general axiomatization

and expressibility problems. But a new phenomenon emerges

that needs to be addressed: the property of a process graph ‘to

can be refined into a process graph with 1-transitions and with

LEE’ is not preserved under bisimulation collapse. We provide

a 10-vertex graph with two 1-transitions that satisfies LEE, and

in which a pair of bisimilar vertices cannot be collapsed on

to each other while preserving the refinement property. This

implies that the image of the process interpretation of regular

expressions is not closed under bisimulation collapse.

1. Introduction

Milner [1] (1984) introduced an interpretation of regular
expressions as processes: the interpretation of 0 is deadlock,
of 1 is successful termination, letters a are atomic actions,
the operators ` and ¨ stand for choice and concatenation
of processes, and (unary) Kleene star p¨q˚ represents iter-
ation with the option to terminate successfully before and
after each pass-through. On the basis of this interpretation,
Milner was interested in the process semantics that arises
by mapping a star expression to its ‘star behavior’: the

bisimilarity equivalence class (the ‘behavior’) of its process
interpretation. He used the term ‘star expressions’ for regular
expressions when they are interpreted as processes.

We will be concerned with a finer analysis of process
interpretations of star expressions (finite process graphs)
that are bisimilar, and which therefore are contained in the
same star behavior (the appertaining bisimilarity equivalence
class). Specifically, we will study whether the bisimulation
collapse of the process interpretation of a star expression can
always be construed as the process interpretation of some
(possibly different) star expression. (Note that the process
interpretation of a star expression and its bisimulation col-
lapse are bisimilar, and belong to the same star behavior.)

In the context of automata and language theory, an
interpretation that matches Milner’s process interpretation
was described by Antimirov [2] (1996) via ‘partial deriva-
tives’ of regular expressions. He used this concept to define,
for every regular expression, a non-deterministic finite-state
automaton (NFA) that is typically much smaller than the
deterministic FA (DFA) that is obtained by the standard
translation. Although Antimirov viewed automata only as
language acceptors (but not as processes), the arising NFAs
correspond directly to the process graphs that are specified
by a slight variation (see Def. 2.4) of Milner’s interpretation.

Unlike for the standard language semantics, where every
language accepted by a finite-state automaton is the inter-
pretation of some regular expression, there are finite process
graphs that are not bisimilar to the process interpretation of
any star expression. This holds for the process graphs G1

and G2 below (as shown by Bosscher [3], and Milner [1]).
But the process graph G3 is the interpretation of a star
expression (see Ex. 2.7).

G1 a

b

a2

a3

G2

a1

a3
a1

a2
a

a

a

a
a

a

a

a

a

a

G3

In pictures of process graphs we highlight, here and hence-
forth, the start vertex by a brown arrow , and a vertex v
with immediate termination by emphasizing v in brown as

including a boldface ring.
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That the image of the process semantics, even when ex-
tended modulo bisimilarity, does not cover all finite process
graphs, led Milner to the first of the following questions [1],
where the second one is concerned with algebraic properties
and axiomatizability of star expressions modulo bisimilarity:
(E) How can one characterize the process graphs that are
expressible by star expressions, that is, bisimilar to ones in
the image of the process semantics? (A) Is a natural adap-
tation of Salomaa’s complete proof system [4] for language
equivalence of regular expressions complete for bisimilarity
of the process interpretation of star expressions?

While the decision problem underlying (E) has been
shown to be solvable [5] (but only with a super-exponential
complexity bound), so far only partial solutions have been
obtained for question (A). These concern tailored restrictions
of Milner’s proof system that were shown to be complete for
the following subclasses of star expressions: (a) without 0
and 1, but with binary star iteration e1

fe2 with iteration-part
e1 and exit-part e2 instead of unary star [6], (b) with 0, and
with iterations restricted to exit-less ones p¨q˚ ¨ 0 in absence
of 1 [7] and in the presence of 1 [8], (c) without 0, and
with only restricted occurrences of 1 [9], and (d) ‘1-free’
expressions formed with 0, without 1, but again with binary
instead of unary iteration [10]. While the classes (c) and (d)
are incomparable, these results can be joined to apply to an
encompassing proper subclass of the star expressions [10].
These partial results for (A) also yield partial results con-
cerning (E): expressibility modulo bisimilarity of a finite
process graph by the process interpretation of a star expres-
sion in one of these classes is decidable in polynomial time.

The purpose of this paper. We describe a phenomenon
that can help to explain a subjective experience: that trying
to solve the problems (E) and (A) for the full class of star
expressions is much harder than in [10] for the subclass of
1-free star expressions where 0 is present, but 1 is not. It
provides evidence that minimization strategies (see below)
for solving (E) and (A) face a significant obstacle in general.
This notwithstanding we also report on the investigation by
which we made this discovery, and by the continuation of
which we expect progress towards solving the problems.

Minimization strategies. All approaches to the problems
(E) and (A) we are aware of use a minimization strategy for
expressions (most frequently), or for the associated process
graphs or specifications of these graphs (less often). For
the axiomatization problem (A), the approach on expression
level proceeds as follows. In order to prove equal, in a proof
system S, two terms e1 and e2 with bisimilar interpretations,
the strategy aims to simplify e1 and e2 as much as possible
by algebraic operations that preserve the interpretations up
to bisimilarity. Let the results be expressions f1 and f2.
Ideally, f1 and f2 coincide if simplification is optimal and
confluent, then yielding f1 “ f2 directly. Or otherwise, if the
reached expressions are simple enough, they can facilitate a
proof f1 “ f2 in S by structural induction. From this proof
a derivation of e1 “ e2 in S is obtained by justifying the
simplification steps as proofs of e1 “ f1 and e2 “ f2 in S,
and by applying the transitivity rule of equational logic.

A minimization strategy was also used in [11] for show-
ing that the decision problem underlying (E) is solvable.
Here minimization acts on ‘well-behaved’ recursive spec-
ifications that specify star expressions. Such specifications
are simplified via rewrite rules to the set of their normal
forms, which can be described formally. The rewrite rules
are, however, not confluent, and so neither is simplification.
But the problem of checking whether a finite process graph
G is expressible can be reduced to the computable prob-
lem of checking whether G is bisimilar to a well-behaved
specification from a finite set that is computable from G.

Another minimization strategy for structure-constrained
graphs that correspond to 1-free star expressions with 0 and
binary iteration was introduced in [10]. We describe it below.

Structure-constrained process graphs. Process interpreta-
tions JeKP of 1-free star expressions e possess a structural
property called ‘Loop Existence and Elimination’ (LEE), see
below. Vice versa, finite process graphs with LEE are rather
directly expressible by star expressions modulo bisimilarity.
This was observed in [10], where LEE was introduced,
based on the concept of ‘loop subgraph’.

A loop subgraph of a process graph is generated from a
set E of entry transitions from a vertex v by all paths from
v that start along a transition in E and continue until v is
reached again first, given that three properties hold for the
so-constructed subgraph: (L1) there is an infinite path from v
starting with an E-transition, (L2) every infinite path starting
from v with an E-transition returns to v eventually, and
(L3) termination is permitted only at v (but not required).
For example, neither G1 nor G2 on page 1 are loop graphs,
that is, loop subgraphs of themselves with E the set of all
transitions from the start vertex: G1 violates (L3), and G2

violates (L2), because it facilitates infinite paths that do
not return to the start vertex. Moreover, neither G1 and
G2 contain loop subgraphs. But the graph G3 has loop
subgraphs, see below.

G3 elim elim

G3
3

elim

A graph satisfies Loop Existence and Elimination (LEE) if
repeatedly picking a loop subgraph, eliminating its entry
transitions, and performing garbage collection, leads to a
graph without infinite paths. The graphs G1 and G2 do not
satisfy LEE, because neither contains a loop subgraph that
can be eliminated, yet both facilitate infinite paths. But the
graph G3 satisfies LEE. The picture below shows a run
of the loop elimination procedure for the graph G3. The
loop-entry transitions of loop subcharts that are eliminated
are marked in bold. We have neglected action labels here.
Since the graph G3

3
that is reached after three loop-subgraph

elimination steps from G3 does not have an infinite path, we
conclude that G3 satisfies LEE.
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Expressions correspond to graphs with LEE, see [10]:

(I)1 JeKP satisfies LEE, for every 1-free star expressions e.

Minimization of structure-constrained graphs. The com-
pleteness proof of a tailoring BBP (due Bergstra, Bethke,
and Ponse [12]) of Milner’s proof system for 1-free star
expressions in LEE can be based on (I)1 and the following
minimization statements:

(C) LEE is preserved under bisimulation collapse.

(IC)1 The image under J¨KP of the 1-free star expressions is
closed under bisimulation collapse. (See Prop. 2.12.)

That property (IC)1 holds, hinges on a variation of the
definition of the process semantics used in [10], see Def. 2.4.

The completeness proof for BBP proceeds, roughly, as
follows. Suppose that 1-free star expressions e1 and e2 have
bisimilar process interpretations, formally, Je1KP Ø Je2KP .
We have to obtain a derivation of e1 “ e2 in BBP. As e1
and e2 are bisimilar, they have a joint bisimulation collapse
G0, such that Je1KP Ñ G0 Ð Je2KP holds, where by Ñ
we indicate functional bisimilarity. Since Je1KP and Je2KP
satisfy LEE by (I)1, it follows by (IC)1 that there must
exist a 1-free star expression e0 such that Je0KP “ G0. By
utilizing the functional bisimulations from Je1KP and Je2KP
to G0 it is possible to construct derivations of e0 “ e1 and
e0 “ e2 in BBP. These derivations can be combined via
transitivity to a derivation of e1 “ e2 in BBP.

Generalization to the full class of star expressions? When
trying to extend the minimization-strategy approach, either
on the expression level or on the graph level, to one that
can handle the full class of star expressions, one encounters
a complicated picture of cases that have to be dealt with.
Although a subjective impression, it pointed to an increased
level of difficulty that might have a conceptual explanation.

Hopes that the minimization approach of structure-
constrained process graphs as used for 1-free star expres-
sions can be extended to the full class were raised by a two-
part result in [13] about a failure and a remedy: On the one
hand, LEE does not hold for process interpretations of star
expression in general, so the generalization (I)1 of (I)1 fails:

(I)1 JeKP does not satisfy LEE in general. (See Ex. 2.8)

But on the other hand, LEE can be recovered by defining
bisimilar variants in the form of process graphs with ‘1-tran-
sitions’ that represent empty-step processes.

Our contribution: structure-constrained minimization

encounters a limit. Sharpening the remedy in [13] for the
failure of (I)1, we restore a weakened version (RI)1 by show-
ing that the process semantics can be refined into a variant
that ensures LEE. Then we prove a crucial difference with
maximal minimization for 1-free star expressions, namely,
that the collapse and image-closedness statements (C) and
(IC)1 do not generalize in a similar way. In summary:

(RI)1 JeKP can be refined into a process graph with 1-tran-
sitions that satisfies LEE, for every star expression e.
(See Thm. 4.7. A similar result is described in [13].)

(RC) The property ‘can be refined into a process graph with
1-transitions and LEE’ is not preserved under bisimu-
lation collapse. (See counterexample in Thm. 5.7)

(IC)1 The image under J¨KP of the star expressions is not

closed under bisimulation collapse. (See Thm. 5.8.)

We witness the failure of both (RC) and (IC)1 by a concrete
counterexample that derives from a 1-chart that refines the
process interpretation of a star expression (see Ex. 5.1).

Outlook: structure-constrained collapse approximations.

We informally explain that the counterexample to (RC)
and (IC) arises from a specific case in which bisimilar
vertices in a 1-chart with LEE cannot be collapsed on to
each other while preserving LEE. We found this case in
a systematic investigation of when collapse operations are
possible LEE-preservingly. That opens up a promising new
approach for the general problems (A) and (E). It can lead to
a procedure for obtaining, for every finite process graph with
1-transitions and LEE, an approximation of its bisimulation
collapse that satisfies LEE and in which every vertex has at
most one bisimilar counterpart.

Overview. In Sect. 2 we gather basic definitions of star ex-
pressions and of their process interpretations as ‘charts’ (fi-
nite process graphs). We note that (IC)1 can be added to the
results for 1-free star expressions in [10], and that (I)1 fails
in general. As a remedy we introduce ‘1-charts’ in Sect. 3
as charts with separate 1-transitions that represent empty
step processes, and we define a 1-chart interpretation of star
expressions that refines the chart interpretation. In Sect. 4
we define ‘layered LEE-witnesses’ (LLEE-witnesses), and
show that every 1-chart interpretation of a star expression
has a LLEE-witness, yielding (RI)1.

In Sect. 5 we give a 1-chart that yields, together with
its collapses, a counterexample to (RC) and (IC). We also
explain the origin of that example. Finally in Sect. 6 we
summarize our results, and report on a promising approach
for circumventing the phenomenon that we describe here.

Please find in the appendix details of proofs that have

been omitted or are only sketched.

2. Process semantics of star expressions

Definition 2.1. Let A be a set whose members we call
actions. The set StExppAq of star expressions over actions

in A is defined by the following grammar, where a P A :

e, e1, e2 ::“ 0 | 1 | a | e1 ` e2 | e1 ¨ e2 | e
˚

We call a star expression normed (and respectively, 1-less,
and quasi-1-less) if it can be generated for nonterminal n
(resp., for nonterminal f , and for the nonterminal g) in the
more specific grammars below, where a stands for any action
in A, and e for any star expression in StExppAq:

n, n1, n2 ::“ 1 | a | n` e | e` n | n1 ¨ n2 | n
˚

f, f1, f2 ::“ 0 | a | f1 ` f2 | f1 ¨ f2 | f
˚
1 ¨ f2

g ::“ 1 | f | g ¨ f

Quasi-1-less star expressions contain at most one occurrence

of 1. By StExp(1)pAq (by StExp(q1)pAq) we denote the set of
1-less (respectively, of quasi-1-less) star expressions over A.

The (syntactic) star height |e|˚ of a star expression e P
StExppAq is the maximal nesting depth of stars in e, defined

3



inductively by: |0|˚ :“ |1|˚ :“ |a|˚ :“ 0, |e1 ` e2|˚ :“
|e1 ¨ e2|˚ :“ max t|e1|˚, |e2|˚u, and |e˚|˚ :“ 1` |e|˚.

Remark 2.2. In Def. 2.4 and Rem. 2.6 we will need normed
star expressions. 1-Less star expressions arise as translations
of 1-free star expressions from [10] with 0, without 1, but
with binary star iteration f by translating e1

fe2 as e˚
1
¨ e2.

Quasi-1-less star expressions come into play as derivatives
(see Def. 2.4) of 1-less star expressions (see Lem. 2.11).

Definition 2.3. A chart is a 5-tuple C “ xV,A, vs,Ñ, Óy that
consists of a set V of vertices, a set A of action labels, the
start vertex vs P V (hence V ‰ ∅), the labeled transition

relation Ñ Ď V ˆAˆV , and the set Ó Ď V of vertices with

immediate termination, for short, the terminating vertices.

We write s1
a
ÝÑ s2 for a transition xs1, a, s2y P Ñ, and sÓ

for a terminating state s P Ó.

Definition 2.4. The chart interpretation of a star expres-
sion e P StExppAq is the chart:

Cpeq “ xVpeq, A, e, ÑX V peq ˆAˆ V peq, Ó X V peqy,

where Vpeq consists of all star expressions that are reachable
from e via transitions of the labeled transition relation
Ñ Ď StExppAqˆAˆStExppAq that is defined, together with
the immediate-termination relation Ó Ď StExppAq, via deriv-
ability in the transition system specification (TSS) T pAq,
where a P A, e, e1, e2, ei, e

1
i, e

1 P StExppAq with i P t1, 2u:

1Ó

eiÓ

pe1 ` e2qÓ

e1Ó e2Ó

pe1 ¨ e2qÓ pe˚qÓ

a
a
ÝÑ 1

ei
a
ÝÑ e1i

e1 ` e2
a
ÝÑ e1i

e1Ó e2
a
ÝÑ e1

2

e1 ¨ e2
a
ÝÑ e12

e1
a
ÝÑ e1

1
(if e1

1
is

normed)e1 ¨ e2
a
ÝÑ e11 ¨ e2

e1
a
ÝÑ e1

1
(if e1

1
is

not normed)e1 ¨ e2
a
ÝÑ e11

e
a
ÝÑ e1

(if e1 is
normed)e˚

a
ÝÑ e1 ¨ e˚

e
a
ÝÑ e1

(if e1 is
not normed)e˚

a
ÝÑ e1

If e
a
ÝÑ e1 is derivable in T pAq, for e, e1 P StExppAq, a P A,

then we say that e1 is a derivative of e. If eÓ is derivable in
T pAq, then we say that e permits immediate termination.

Lemma 2.5. For every star expression e P StExppAq, the

chart interpretation Cpeq is a finite chart.

Remark 2.6. The TSS T pAq in Def. 2.4 refines a simpler
TSS (see [11]), which we here call T0pAq, that arises from
T pAq by dropping the last two rules (with side-condition
‘e1 not normed’), and dropping the side-condition ‘e11 not
normed’ from the rules before. Note that an expression is
normed if and only if it enables a sequence of transitions
to an expression with immediate termination. Without the
requirement of normedness in T pAq, the chart interpretation
defined for T0pAq is not closed under bisimulation collapse
for a trivial reason: from a star expression different deriva-
tives e ¨ f1 and e ¨ f2 with e not normed can arise,
whose behavior is the same (namely that of e). For example,
a ¨ 0 ` pa ¨ 0q ¨ a would have the derivatives 1 ¨ 0 and

p1 ¨ 0q ¨ a, which do not permit transitions nor immediate
termination, whereas in T pAq this expression only has 1 ¨ 0
as a derivative. For Cp q̈ as defined above via T pAq the ques-
tion of closedness of the image of Cp¨q under bisimulation
collapse is more challenging, see Prop. 2.12, and Thm. 5.8.

Example 2.7. The graph G3 on page 1 is the process inter-

pretation of: p1¨
`
pa¨a¨pa¨aq˚¨a`aq¨a¨pa¨aq˚¨a¨a

˘˚
q¨a, where

we assume associativity to the left for dropped brackets.

Example 2.8. For the star expression e “ pa˚ ¨ b˚q˚, the
chart interpretation Cpeq as obtained by the TSS T pAq is:

ppa˚ ¨ b˚q˚q
§đ

ppp1 ¨ a˚q ¨ b˚q ¨ eq
§đ pp1 ¨ b˚q ¨ eq

§đ

a ba

b

b
a

Note that all three vertices permit immediate termination.

For the chart Cpeq we find that it does not satisfy LEE.
The following run of the loop elimination procedure:

eCpeq

a b

a

b

b

a

e

a b

b

b

a

elim e C2

a b

b

a

elim

yields a chart C2 that does not contain a loop subchart any
more, but still admits infinite paths. Therefore e witnesses
(I)1 in Sect. 1, that process interpretations of regular expres-
sions do not always satisfy the structural property LEE.

Definition 2.9. Let Ci “ xVi,A, vs,i,Ñi, Óiy be charts, for
i P t1, 2u, with joint action set A. By a bisimulation between

C1 and C2 we mean a binary relation B Ď V1ˆV2 such that:

(start) xvs,1, vs,2y P B

holds, and for every xv1, v2y P B three further conditions:

(forth) @v1
1
P V1@a P A

`
v1

a
ÝÑ1 v1

1

ùñ Dv1
2
P V2

`
v2

a
ÝÑ2 v1

2
^ xv1

1
, v1

2
y P B q

˘
,

(back) @v1
2
P V2@a P A``
Dv1

1
P V1

`
v1

a
ÝÑ1 v1

1
^ xv1

1
, v1

2
y P B q

˘

ðù v2
a
ÝÑ2 v12

˘
,

(termination) v1Ó1 ðñ v2Ó2 .

For a function f : V1 Ñ V2 between V1 and V2 we
say that f defines a bisimulation between C1 and C2 if its
graph Bf :“ txv, fpvqy | v P V1u is a bisimulation between
C1 and C2. Then we call Bf a functional bisimulation. If f
is bijective, then f is an isomorphism between C1 and C2.

We say that C1 and C2 are bisimilar, and denote it by
C1 Ø C2, if there is a bisimulation between C1 and C2.
We denote by C1 Ñ C2 (and respectively by C1 » C2)
the stronger statement that there is a functional bisimulation
between C1 and C2 (an isomorphism between C1 and C2).
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Definition 2.10. Let C “ xV,A, vs,Ñ, Óy be a chart. By ØC

we denote bisimilarity on C, the largest bisimulation (which
is the union of all bisimulations) between C and C itself.
If w1 ØC w2 holds for vertices w1, w2 P V , then we say
that w1 and w2 are bisimilar in C. We call C a bisimulation

collapse if ØC “ idV holds, that is, if bisimilar vertices of C
are identical.

Lemma 2.11. The set StExp(q1)pAq of quasi-1-less star

expressions contains the set of (0, 1, or more times) iterated

derivatives of 1-less expressions from the set StExp(1)pAq.

Proposition 2.12. The image of the quasi-1-less star ex-

pressions via the chart interpretation Cp q̈ is closed under

the operation of bisimulation collapse modulo isomorphism.

Proof remark. This statement can be shown with a refine-
ment of the results and the methods for 1-free star expres-
sions (with binary star iteration) in [10], [14] here for the
corresponding quasi-1-less star expressions (with unary star
iteration). For this result the careful formulation of the TSS
in Def. 2.4 is crucial, see Rem. 2.6.

Example 2.13. The chart below is the running example
in [10]. It is a bisimulation collapse that satisfies LEE, as
witnessed by the run of the loop elimination procedure in
the middle, and the labeling that records the run on the right:

e0

a

e1

a

c

e2b b

e0

a

e1

a

c

e2b b

e0

a

e1

elim
e0

a

e1

a r1s

r1s c

e2b b

It is expressible by a star expression modulo bisimilarity [7].
Then by Prop. 2.12 it is isomorphic to the chart interpre-
tation of a quasi-1-less star expression. Indeed, it is Cpe0q
with start e0 “ pp1 ¨aq ¨fq ¨0 for f “ pc ¨a`a ¨ pb` b ¨aqq˚ ,
and vertices e1 “ p1 ¨fq ¨0, and e2 “ pp1 ¨ pb` b ¨aqq ¨fq ¨0.

As key finding in Thm. 5.8 we will show that the state-
ment of Prop. 2.12 does not extend to all star expressions.

3. Refined process semantics

With the aim of making the structural property LEE useful
for process interpretations of all star expressions (which
can be violated as we have seen in Ex. 2.8), we introduce
‘1-charts’ as charts with additional ‘1-transitions’. Based on
that concept, we then define the ‘1-chart interpretation’ that
refines the chart interpretation, and produces 1-charts that
satisfy LEE (as we will see in the next section).

Definition 3.1. A 1-chart is a 6-tuple xV,A, 1, vs,Ñ, Óy
where V is a set of vertices, A is a set of (proper)

action labels, 1 R A is the specified empty step label, vs P V
is the start vertex (hence V ‰ ∅), Ñ Ď V ˆ Aˆ V is the
labeled transition relation, where A :“ A Y t1u is the set
of action labels including 1, and Ó Ď V is a set of vertices

with immediate termination. (Note that then xV,A, vs,Ñ, Óy
is a chart). In such a 1-chart, we call a transition in
ÑXpV ˆAˆV q (labeled by a proper action in A) a proper

transition, and a transition in ÑX pV ˆ t1u ˆ V q (labeled
by the empty-step symbol 1) a 1-transition. Reserving non-
underlined action labels like a, b, . . . for proper actions, we
use underlined action label symbols like a, b, . . . for actions
labels in the set A that includes the label 1. We highlight
in red transition labels that may involve 1. We say that a
1-chart is 1-free if it does not contain 1-transitions.

Let v P V be a vertex in such a 1-chart C. We say
that v is a proper-transition target (in C) if it is the target
of a proper transition of C. We say that v is start-vertex

connected (in C) if there is path of transitions from the start
vertex vs of C to v. We call C start-vertex connected if every
of its vertices is start-vertex connected.

Definition 3.2. Let Ci “ xVi,A, 1, vs,i,Ñi, Óiy for i P t1, 2u
be 1-charts over the same set A of actions.

By a 1-bisimulation between C
1

and C
2

we mean a
binary relation B Ď V1 ˆ V2 that is a bisimulation between
the induced-transition charts pC

1
qp¨sp¨sp¨s and pC

2
qp¨sp¨sp¨s.

We say that a partial function f : V1 á V2 defines a 1-bi-
simulation between C

1
and C

2
if its graph Bf :“ txv, fpvqy |

v P V1, fpvq definedu, is a 1-bisimulation between C
1

and
C2. In this case we call Bf a functional 1-bisimulation. If
additionally f is a bijective, total function, then we say that
f is an isomorphism between C

1
and C

2
.

We write C
1
Ø C

2
, and say C

1
and C

2
are 1-bisimilar,

if there is a 1-bisimulation between C
1

and C
2
. We write

C1
Ñ C2 if there is a functional 1-bisimulation between C1

and C
2

(C
1

and C
2

are functionally 1-bisimilar). By C
1
» C

2

we denote that there is an isomorphism between C
1

and C
2
.

From every 1-chart a 1-bisimilar, start-vertex connected
1-chart can be obtained by garbage collection, that is, by
removing all vertices that are not start-vertex connected.

Convention 3.3. By a (1-)chart we will henceforth mean a
(1-)chart in which every vertex is start-vertex connected.

Definition 3.4. Let C “ xV,A, 1, vs,Ñ, Óy be a 1-chart.
By ØC we denote 1-bisimilarity on C, the largest 1-bi-

simulation between C and C itself (which is the union of
all 1-bisimulations between C and C). If w1 ØC w2 holds
for vertices w1, w2 P V , then we say that w1 and w2 are

1-bisimilar in C.
We call C a 1-bisimulation collapse if ØC “ idV

holds, that is, if 1-bisimilar vertices of C are identical. If,
additionally, C does not contain any 1-transitions, then we
permit to call C a bisimulation collapse.

Let w1, w2 P V . We say that w1 is a substate of w2, de-
noted by w1 ĎC w2, if the pair xw1, w2y forth-progresses to
1-bisimilarity on C in the sense of the following conditions:

(prog-forth) @w11 P V1@a P A
`
w1

a
ÝÑ w11

ùñ Dw1
2
P V2

`
w2

a
ÝÑ w1

2
^ w1

1
ØC w1

2
q
˘
,

(prog-termination) w1Ó ùñ w2Ó .

Definition 3.5. We say that a 1-chart C is weakly guarded

(w.g.) if C does not contain an infinite path of 1-transitions.
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Definition 3.6. The 1-chart interpretation of a star expres-
sion e P StExppAq is the 1-chart of the form:

Cpeq “ xVpeq,A, 1, e,ÑX pV peq ˆAˆ Vpeqq, Ó X V peqy,

which is based on Ñ Ď StExppAq ˆ A ˆ StExppAq, the
the labeled transition relation that is defined via derivability
in the transition system specification T pAq (where a P A,
a P A “ AY t1u, and e, e1, e2 P StExppAq):

a
a
ÝÑ 1 e1 ` e2

1
ÝÑ ei

e1
a
ÝÑ e1

1
(if e1

1
is

normed)e1 ¨ e2
a
ÝÑ e1

1
¨ e2

e1
a
ÝÑ e1

1
(if e1

1
is

not normed)e1 ¨ e2
a
ÝÑ e1

1

1 ¨ e2
1
ÝÑ e2 e˚

1
ÝÑ 1

e
1
ÝÑ˚ ¨

a
ÝÑ e1

(if e1 is
normed)e˚

a
ÝÑ e1 ¨ e˚

e
1
ÝÑ˚ ¨

a
ÝÑ e1

(if e1 is
not normed)e˚

a
ÝÑ e1

such that Vpeq is defined as the set of those star expressions
that are reachable from e via transitions of Ñ, from which
the setÑXpVpeqˆAˆVpeqq of transitions of Cpeq is defined,
and the set ÓXVpeq of terminating vertices by using Ó :“ t1u
(so here only 1 is be a terminating vertex if it is reachable).

Example 3.7. For the star expression e “ pa˚ ¨ b˚q˚, the
1-chart interpretation Cpeq as obtained by the TSS T pAq is:

1 pa˚ ¨ b˚q˚ “ e

1 ¨ e

pa˚ ¨ b˚q ¨ e b˚ ¨ e

pp1 ¨ a˚q ¨ b˚q ¨ e p1 ¨ b˚q ¨ e

1

a b

a
11

1

b

1

1

Note that 1 is the single vertex with immediate termination,
and that the 1-chart Cpeq is weakly guarded. Neglecting the
actions, the form of Cpeq corresponds to that of the graph G3

on page 1. This implies, by using an analogous run of the
loop subchart elimination procedure for Cpeq as the one we
illustrated for G3 on page 2, that also Cpeq satisfies LEE.

Lemma 3.8. Derivability of statements concerning termi-

nation, and transitions in T pAq, and in T pAq are related as

follows, for all e, e1 P StExppAq, and a P A :

$T eÓ ðñ $T e
1
ÝÑ˚

1 , (3.1)

$T e
a
ÝÑ e1 ðñ $T e

1
ÝÑ˚ ¨

a
ÝÑ e1 . (3.2)

Lemma 3.9. For every e P StExppAq, the 1-chart interpre-

tation Cpeq of e is a finite, weakly guarded 1-chart.

Definition 3.10. Let C “ xV,A, 1, vs,Ñ, Óy be a 1-chart. By
the induced chart of C, and the chart induced by C, we mean

the 1-chart C
p¨sp¨sp¨s
“ xV0,A, 1, vs,

ppp¨sss
ÝÑXpV0ˆAˆV0q, Ó

p1qXV0y

where
ppp¨sss
ÝÑ Ď V ˆAˆ V is the induced transition relation,

and Óp1q Ď V is the set of vertices with induced termination

that are defined as follows, for all v, v1 P V and a P A :

(ind-1) v
pppasss
ÝÝÑ v1 holds if v “ v0

1
ÝÑ v1

1
ÝÑ . . .

1
ÝÑ vn

a
ÝÑ v1,

for some v0, . . . , vn P V and n P N (we say there
is an induced transition between v, v1 P V w.r.t. L),

(ind-2) vÓp1q holds if v “ v0
1
ÝÑ v1

1
ÝÑ . . .

1
ÝÑ vn ^ vnÓ

p1q,
for some v0, . . . , vn P V and n P N (then we say
that v has induced termination with respect to L).

and where V0 Ď V is the set of all vertices that are reachable

from vs by induced transitions. The notation
pppasss
ÝÝÑ intends to

reflect the asymmetry that an induced a-transition consists
of an arbitrary number of leading 1-transitions that is trailed
by a single proper a-transition.

Theorem 3.11. Cpeqp¨sp¨sp¨s “ Cpeq for all e P StExppAq, that

is, the chart interpretation Cpeq of a star expression e is the

induced chart of the 1-chart interpretation Cpeq of e.

Proof. Lem. 3.8 shows, for e P StExppAq, that termination
in Cpeq coincides with induced termination in Cpeq (due to
(3.1) since Cpeq can only have 1 as terminating vertex), and
that transitions in Cpeq coincide with induced transitions in
Cpeq (by (3.2)). This entails Cpeqp¨sp¨sp¨s “ Cpeq.

Example 3.12. The picture below can explain that the chart
interpretation Cpeq of e “ pa˚ ¨ b˚q˚ in Ex. 2.7 is the
induced chart of the 1-chart interpretation Cpeq in Ex. 3.7:

u

vs

a b

1

w1

a 1

w1

1

1

w2

b

1

w2

1

Cpeq vs

a b

w1

a

b
w2

b

a

Cpeq
“ Cpeqp¨sp¨sp¨sÑ`

p1q

Note that, for instance, w1 has induced termination in Cpeq,
because there is a 1-transition path from w1 via w1, w2, w2,
and vs to the terminating vertex u, which gives rise to w1

being terminating in Cpeqp¨sp¨sp¨s. Similarly, the b-transition from
w1 to w2 in Cpeqp¨sp¨sp¨s arises from an induced b-transition in Cpeq
that consist of the 1-transition path from w1 to vs which is
then followed by the proper b-transition from vs to w2.

We have added the symbol Ñ`
p1q for a rewrite sequence

of the relation Ñp1q in anticipation of its definition below.

Definition 3.13. Let Ci “ xVi,A, 1, vs,Ñi, Óiy for i P t1, 2u
be 1-charts. We denote by C

1
Ñp1q C2

that C
2

arises from C
1

by a 1-transition elimination step according to one of two
local rules each of which removes the 1-transition xv0, 1, vy :

v0

v

w1 wn

1

a1 an

Ñp1q

v0

v

w1 wn

a1 an

a1
an

v0

v

w1 wn

1

a1 an

Ñp1q

v0

v

w1 wn

a1 an

a1
an
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and adds, for each transition xv, ai, wiy with i P t1, . . . , nu
from v, a cofinal transition xv0, ai, wiy with the same label
from v. Note that n “ 0 is possible if v has outdegree 0. Ad-
ditionally, garbage collection of v is permitted if v becomes
unreachable. That immediate termination is permitted (but
not required) in a vertex is indicated by a dashed outer ring.
While v does not permit immediate termination in the rule
on the left, immediate termination at v in the rule on the
right is transferred in the step to v0. We used dashed arrows
for the outgoing transitions from v to indicate that they can
be either proper transitions or 1-transitions.

We say that C1 (1-transition) refines C2, that C1 is a

(1-transition) refinement of C
2
, and that C

2
is or can be

(1-transition) refined by C
1
, if C

1
Ñ˚

p1q
C
2
, that is, C

2
arises

from C1 by a sequence of 1-transition elimination steps.

Remark 3.14. We will only be concerned with the elimi-
nation of 1-transitions from finite, weakly guarded 1-charts.
Therefore we could have restricted the two rules in Def. 3.13
by demanding (i) v0 ‰ v (since w.g. 1-charts do not have
1-transition self-loops), and (ii) that all outgoing transitions
from v are proper transitions (because all 1-transitions in
finite w.g. 1-charts can be eliminated in a bottomup manner).
We left out restriction (i) for simplicity, thereby accepting
that it introduces a cyclic reduction for 1-transition selfloops
for not w.g. 1-charts. But we needed to avoid restriction (ii),
because in Section 4 we will use annotated versions of these
rules for situations when it is not possible to eliminate all
1-transitions while keeping the property LEE.

Lemma 3.15. The 1-transition elimination rewrite relation

Ñp1q has the following properties, for all 1-charts C, C
1
, C

2
:

(i) If C1 is weakly guarded, and C1 Ñ
˚
p1q C2, then C2 is

finite and w.g., and |V pC1q| ´ 1 ď |V pC2q| ď |VpC1q|.
(ii) Ñp1q is terminating from every finite w.g. 1-chart.

(iii) Ñp1q normal forms are 1-free 1-chart. Ñp1q normal

forms of finite, w.g. 1-charts are finite 1-free 1-charts.

(iv) C
1
Ñ˚

p1q
C
2
ùñ pC

1
qp¨sp¨sp¨s “ pC2

qp¨sp¨sp¨s .

(v) If C is finite and weakly guarded, and C is 1-free, then:

C Ñ˚
p1q

C ðñ pCqp¨sp¨sp¨s “ C .

(vi) If C is finite, and weakly guarded, then C Ñ˚
p1q

C
p¨sp¨sp¨s

,

that is, C refines its induced chart C
p¨sp¨sp¨s

, and C
p¨sp¨sp¨s

is the

unique Ñp1q normal form of C.

Corollary 3.16. Cpeq Ñ˚
p1q Cpeqp¨sp¨sp¨s “ Cpeq for every star

expression e P StExppAq, i.e. the 1-chart interpretation Cpeq
of e refines the chart interpretation Cpeq of e.

Proof. For e P StExppAq, Cpeqp¨sp¨sp¨s “ Cpeq by Thm. 3.11, and
Cpeq is finite and weakly guarded by Lem. 3.9. Then by
Lem. 3.15, (vi), we obtain Cpeq Ñ˚

p1q Cpeqp¨sp¨sp¨s “ Cpeq.

4. LLEE-witnesses for the refined semantics

In Ex. 3.7 we noticed that the 1-chart interpretation Cpeq of
e “ pa˚ ¨ b˚q˚ permits a similar run of the loop elimination
procedure as that for G3 on page 2, and that therefore also
Cpeq satisfies LEE. This successful run of the loop elimina-
tion procedure can be recorded on Cpeq by attaching to a

transition τ of Cpeq the marking label rns for n P t1, 2, 3u if
τ is eliminated in the n-th step, thereby obtaining the labeled
version L1 below (where we neglect the action labels):

L1

r3s
r3s

r1s r2s

L2

r4s
r3s

r2s r1s

L3

r2s
r2s

r1s r1s

The labelings L2 and L3 of Cpeq record two other successful
runs of the loop elimination procedure of length 4 and 2,
respectively, where for L3 we have permitted to eliminate
two loop subcharts at different vertices together in the
first step. Such labelings of successful runs of the loop
elimination procedure we call ‘LEE-witnesses’, and indeed
‘layered LLEE-witnesses’, because in the runs recorded in
L1, L2, and L3 loop-entry transitions are never removed
from the body of a previously removed loop subcharts. This
restriction of the elimination procedure, which can be shown
to not affect the property LEE, leads to a concept that is
easier to reason about, and that still suffices for our purposes.

Following the development in [10], we define ‘layered
LEE-witnesses’ of a 1-chart C as ‘entry/body-labelings’ of C
that delimit a hierarchical structure of ‘loop 1-charts’ in C.
But we change the condition (L3) for ‘loop charts’ in [10],
which excluded terminating vertices, to permit immediate
termination at the start vertex of ‘loop 1-charts’. In dealing
with star expressions like 1 ¨ a˚ that are not 1-free, we want
to call the chart interpretation Cp1 ¨ a˚q (which consists of a
terminating start vertex with an a-self-loop) a ‘loop 1-chart’.

Definition 4.1. A 1-chart L “ xV,A, 1, vs,Ñ, Óy is called a
loop 1-chart if it satisfies the following three conditions:

(L1) There is an infinite path from the start vertex vs.

(L2) Every infinite path from vs returns to vs after a positive
number of transitions (and so visits vs infinitely often).

(L3) Immediate termination is permitted (but not required)
only at the start vertex, that is, Ó Ď tvsu.

We call the transitions from vs loop-entry transitions, and
all other transitions loop-body transitions. A loop 1-chart L
is a loop sub-1-chart of a 1-chart C if it is the sub-1-chart
of C rooted at some vertex v P V that is generated, for a
nonempty set U of transitions of C from v, by all paths that
start with a transition in U , and continue until v is reached
again (then U is the set of loop-entry transitions of L).

Definition 4.2. By an entry/body-labeling of a 1-chart C “
xV,A, 1, vs,Ñ, Óy we mean a chart Ĉ “ xV,AˆN, vs, Ñ̂, Óy
where Ñ̂ Ď V ˆpAˆNqˆV arises from Ñ by adding, for
each transition τ “ xv1, a, v2y P Ñ, to the action label a of
τ a marking label n P N, yielding pτ “ xv1, xa, ny, v2y P Ñ̂.
In an entry/body-labeling we call transitions with marking
label 0 body transitions, and transitions with marking labels
in N

` entry transitions.
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Let Ĉ be an entry/body-labeling of C, and let v and w

be vertices of C and Ĉ. We denote by v Ñbo w that there

is a body transition v
xa,0y
ÝÝÝÑ w in Ĉ for some a P A, and

by v Ñrns w, for n P N
` that there is an entry transition

v
xa,ny
ÝÝÝÑ w in Ĉ for some a P A. By EpĈq of entry transi-

tion identifiers we denote the set of pairs xv, ny P V ˆ N
`

such that an entry transition Ñrns departs from v in Ĉ. For

xv, ny P EpĈq, we define by C
Ĉ
pv, nq the subchart of C with

start vertex vs that consists of the vertices and transitions
which occur on paths in C as follows: any path that starts
with a Ñrns entry transition from v, continues with body
transitions only (thus does not cross another entry transi-
tion), and halts immediately if v is revisited. By a back-link

of Ĉ we mean a transition of Ĉ back to the start vertex v of an

induced sub-1-chart C
Ĉ
pv, nq of Ĉ, for some xv, ny P EpĈq.

Definition 4.3. Let C “ xV,A, vs, 1,Ñ, Óy be a 1-chart.
A LLEE-witness (a layered LEE-witness) of C is an entry/

body-labeling Ĉ of C with the following three properties:

(W1) Body-step termination: There is no infinite path of
Ñbo transitions in C.

(W2) Loop condition: For all xv, ny P EpĈq, the 1-chart
C
Ĉ
pv, nq is a loop 1-chart.

(W3) Layeredness: For all xv, ny P EpĈq, if an entry tran-
sition w Ñrms w1 departs from a state w ‰ v of
C
Ĉ
pv, nq, then its marking label m satisfies m ă n.

The condition (W2) justifies to call an entry transition in
a LLEE-witness a loop-entry transition. For a loop-entry
transition Ñrms with m P N`, we call m its loop level.

We call C a LLEE-1-chart if it has a LLEE-witness, and
a wg-LLEE-1-chart if, additionally, it is weakly guarded.

Proposition 4.4. Every LLEE-1-chart satisfies LEE.

Proof. Let Ĉ be a LLEE-witness of a 1-chart C. Repeatedly

pick an entry transition identifier xv, ny P EpĈq with n P N`

minimal, remove the loop sub-1-chart Cvpnq that is gener-
ated by loop-entry transitions of level n from v (it is indeed

a loop by condition (W2) on Ĉ, noting that minimality of n

and condition (W3) on Ĉ ensure the absence of departing
loop-entry transitions of lower level), and perform garbage
collection. Eventually the part of C that is reachable by body
transitions from the start vertex is obtained. This sub-1-chart
of C does not have an infinite path due to condition (W1)

on Ĉ. Therefore C satisfies LEE.

Definition 4.5. We denote by pT pAq the TSS that is a
marking labeled version T pAq in Def. 3.6 (where a P A,
a P A, e, e1, e2 P StExppAq, and l P N are arbitrary):

a
a
ÝÑbo 1 e1 ` e2

1
ÝÑbo ei

e1
a
ÝÑl e1

1
(if e1

1
is

normed)e1 ¨ e2
a
ÝÑl e1

1
¨ e2

e1
a
ÝÑl e1

1
(if e1

1
is

not normed)e1 ¨ e2
a
ÝÑbo e1

1

1 ¨ e2
1
ÝÑbo e2 e˚

1
ÝÑbo 1

e
1
ÝÑ˚

bo ¨
a
ÝÑl e1

(if e1 is
normed)e˚

a
ÝÑr|e|˚s e1 ¨ e˚

e
1
ÝÑ˚

bo ¨
a
ÝÑl e1

(if e1 is
not normed)e˚

a
ÝÑbo e1

Derivability in pT defines the marking labeled version Ñ̂ Ď
StExppAq ˆ pA ˆ Nq ˆ StExppAq of the transition relation
Ñ Ď StExppAq ˆAˆ StExppAq as defined by T pAq.

The entry/body-labeling yCpeq of the 1-chart interpreta-
tion Cpeq of a star expression e P StExppAq is defined as:

yCpeq “ xVpeq,A, e,
Ñ̂ X pV peq ˆ pAˆ Nq ˆ Vpeqq, Ó X V peqy ,

where V peq is the set of star expressions that are reachable
from e via transitions of Ñ̂ (or Ñ), from which the set
ÑXpVpeqˆAˆVpeq of transitions of Cpeq was defined, and
the set ÓXVpeq of terminating vertices of Cpeq by Ó :“ t1u.

Example 4.6. For e “ pa˚ ¨ b˚q˚ we obtain the entry/body-

labeling yCpeq as defined by the TSS pT pAq can be obtained
similarly as we obtained the 1-chart interpretation Cpeq of e
in Ex. 3.7. By dropping the action labels we obtain:

1 pa˚ ¨ b˚q˚ “ e

1 ¨ e

pa˚ ¨ b˚q ¨ e b˚ ¨ e

pp1 ¨ a˚q ¨ b˚q ¨ e p1 ¨ b˚q ¨ e

bo

r2s r2s

r1s bobo

bo

r1s

bo

bo

Here and below we draw loop-entry transitions as thicker

arrows. yCpeq obviously is an entry/body-labeling of Cpeq, and

it is also easy to verify that yCpeq is a LLEE-witness of e.

Complementing Thm. 3.11, we now formulate the result
that the 1-chart interpretation of a star expression refines the
chart interpretation in such a way that LEE is recovered.

Theorem 4.7. The entry/body-labeling yCpeq of Cpeq is a

LLEE-witness of the 1-chart interpretation Cpeq of e, for

every e P StExppAq. Therefore the 1-chart interpretation

Cpeq of a star expression e P StExppAq satisfies LEE.

Definition 4.8. Let C be a 1-chart. We say that C is 1-tran-

sition limited with respect to a LLEE-witness Ĉ of C if every

1-transition of C lifts to a back-link in Ĉ. We say that C is

1-transition limited if C is 1-transition limited with respect

to some LLEE-witness Ĉ of C.

We say that C has the property LLEE–1-lim if C is
weakly guarded, satisfies LLEE, and is 1-transition limited.

Lemma 4.9. Every finite wg-LLEE-1-chart reduces via a

sequence of Ñp1q steps to a finite 1-chart with LLEE–1-lim.

For the proof we annotate the two 1-transition elimina-
tion rules in Def. 3.13 with marking labels l, l1, . . . , ln P N
if the 1-transition from v0 to v is not a back-link (denoted
by  pv0 ü vq) as follows (we neglect the action labels):
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v0
 pv0 ü vq

v

w1 wn

l

l1 ln

Ñp1q

v0

v

w1 wn

l l

l1 ln

v0
 pv0 ü vq

v

w1 wn

bo

l1 ln

Ñp1q

v0

v

w1 wn

bo bo

l1 ln

Proof of Lem. 4.9. It suffices to show that in a LLEE-wit-

ness Ĉ of a weakly guarded 1-chart C every 1-transition that
is not a back-link can be eliminated. Applications of the two
annotated 1-transition elimination rules as above transform
LLEE-witnesses and underlying 1-charts, and their repeated
use leads to the elimination of all 1-transitions that are not
back-links.

Example 4.10. The LLEE-witness yCpeq for e “ pa˚ ¨ b˚q˚

in Ex. 4.6 is not 1-transition limited. It can be transformed
into a 1-transition limited LLEE-witness by four steps ac-
cording to the annotatedÑp1q rules in the proof of Lem. 4.9:

r2s
r2s

r1s r1s

r2s
r2s

r1s r1s

Ñ`
p1q

r2s
r2s

r1s r1s

Ñp1q

where in the first transformation above three Ñp1q steps are
performed in parallel to the 1-transitions highlighted in red.
Here and below we drop the marking labels of body tran-
sitions, but instead contrast them by emphasizing the loop-
entry transitions as thick arrows together with their levels.

Remark 4.11. Another variation C1p¨q of the chart interpre-
tation Cpeq that interprets star expressions e as 1-charts C1peq
which are 1-bisimilar to Cpeq and Cpeq is defined in [13].
That variation C1p¨q produces finite, weakly guarded LLEE-
1-charts and associated LLEE-witnesses that are 1-transi-
tion limited directly, without the need to apply Lem. 4.9
afterwards. But interpretations C1peq are only functionally
1-bisimilar to chart interpretations Cpeq, and they are not

refinements of Cpeq. Also, the definition of C1p¨q is based on
the extension of star expressions by an additional operation
‘stack product’ ˚ that keeps track of whether a derivative
has originated by steps into an iteration. That device is used
to ensure that 1-transitions are only introduced as back-links
of derivatives to iterations from which they originated.

Lemma 4.12. Let C be a finite 1-free 1-chart. If C can be

refined into a wg-LLEE-1-chart, then C can be refined into

a 1-chart with LLEE–1-lim.

Proof. Suppose that C Ñ˚
p1q

C for some wg-LLEE-1-chart C.
Then C is finite, due to Lem. 3.15, (i). Then C

p¨sp¨sp¨s
“ C by

Lem. 3.15, (ii), since C is 1-free. Now we can also apply

Lem. 4.9 to C to find a 1-chart C1 with LLEE–1-lim such
that C Ñ˚

p1q
C1. Then we get C1

p¨sp¨sp¨s
“ C

p¨sp¨sp¨s
“ C by Lem. 3.15,

(iv), and subsequently C1 Ñ˚
p1q

C by Lem. 3.15, (v). In this
way we have shown that C can be refined into the 1-chart C1

with LLEE–1-lim.

5. Counterexample

In this section we develop, in steps, the counterexample for
the statements (RC) and (IC)1 on page 3 in Sect. 1. We start
by immediately presenting the not collapsed LLEE-1-chart
on which all of our observations will be based.

Example 5.1. We consider the 1-chart C with actions in

ta, a1, a2, b, c, c1, c2, d, e, fu, and the LLEE-witness Ĉ of C

that is indicated by colored loop-entry transitions from ver-
tex v (of level 2, blue) and from vertex w1 (of level 1, green):

abc “ v

a
ac

c

b

C { Ĉ

acd “ w1

a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2
c2

pabcdq2 “ w2

“ w2

d

1

w1 “ pabcdq1

b

1

e

e

f

f

The framebox name of a vertex u symbolizes the behavior
from u in C by listing the actions of induced transitions
from u. This is meaningful because all transitions with the
same label from tb, du are cofinal, respectively, transitions
with the same label in ta1, a2, c1, c2, e, fu depart from just
a single vertex, respectively, and transitions with the same
label in ta, cu occur as pairs of co-initial transitions such
that the transitions of such a pair from a vertex u1 can be
joined in their targets by the transitions of the corresponding
pair from a vertex u2. It follows that vertices with the same
label list are 1-bisimilar. In particular, the vertex pair w1 “
pabcdq1 and w2 “ pabcdq2 (their action lists are indexed
to distinguish them) are 1-bisimilar (indicated by the line in
magenta): every induced transition from w1 can be joined by
a cofinal induced transition from w2, and vice versa. Thus
C is not a 1-bisimulation collapse.

Lemma 5.2. The 1-chart C in Ex. 5.1 is a LLEE-1-chart. Its

induced chart Cp¨sp¨sp¨s is isomorphic to the chart interpretation

of a star expression.

Proof. It is easy to check that the entry/body-labeling Ĉ

indicated in Ex. 5.1 is a LLEE-witness of C. It is also
routine to verify that Cp¨sp¨sp¨s » Cpgvq for the star expression
gv P StExppta, a1, a2, b, c, c1, c2, d, e, fuq that is defined as:

gv :“ p1 ¨ ppC ` b ¨ fq ¨ gw1
`Aq˚q ¨ 0

9



where: C :“ c ¨ pc1 ` c1 ¨ gw1
q ` c ¨ pc2 ` c2 ¨ gw1

q

gw1
:“ 1` b ¨ f

gw1
:“ p1 ¨ C˚q ¨

`
A` d ¨ e

˘

A :“ a ¨ pa1 ` a1 ¨ gw2
q ` a ¨ pa2 ` a2 ¨ gw2

q

gw2
:“ 1` d ¨ e

Hereby the meaning of a star expression gu for some vertex
u of C is to express the behavior in C from vertex u until for
the first time a vertex is reached to which u directly loops
back (which for u “ v coincides with the behavior from u
as v does not loop back). A and C express the behavior in C

starting from a vertex with the pair of a- and c-transitions,
respectively, until the vertex is reached to which both of their
targets loop back directly (w1 and v, respectively).

Example 5.3. From the 1-chart C in Ex. 5.1 the 1-chart C
1

below arises by eliminating the 1-bisimilarity redundancy
xw1, w2y through redirecting both of the incoming transi-
tions at w1 over to w2:

abc “ v

a
ac

c

b

C1 { Ĉ1 acd
a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

d

1

e

e

f

f

We kept in color only those loop-entry transitions of C

that are loop-entry transitions still in C1. The 1-chart C1

is collapsed, because no two different vertices of C
1

are
1-bisimilar. But C

1
is not a 1-transition free collapse of C.

The induced chart C10 :“ pC
1
qp¨sp¨sp¨s of C

1
looks as follows:

abc “ v

a
a

c
c

b

C10

acd
a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

d

a
a

b

c c

e

e

f

f

C10 is the 1-transition free bisimulation collapse of C.

Lemma 5.4. Neither of the 1-charts C
1

and C
10

in Ex. 5.3

is a LLEE-1-chart. But both of these 1-charts are collapsed.

Proof. We have already noticed in Ex. 5.3 that C
1

and C
10

are collapsed. We need to show that neither of them is a
LLEE-1-chart.

The 1-chart C
1

only contains two transitions that induce
loop subcharts: those that are marked in blue. For every
other transition τ “ xu1, a, u2y of C1 that is not contained
in one of these induced loop subcharts it is easy to check
that τ does not induce a loop subchart, because there is
an infinite path from u1 starting along τ that avoids the
two blue marked loop-entry transitions, and does not return
to the path’s source vertex u1. It follows that C

1
does not

satisfy LEE, the loop existence and elimination condition:
after eliminating the two blue marked loop-entry transitions,
no other loop-entry transitions exist, yet infinite paths are
still possible. Since LLEE implies LEE by Prop. 4.4, it
follows that C

1
cannot be a LLEE-1-chart.

The chart C10 does not contain a loop-entry transition,
which can be checked separately for each transition. Since
it expresses infinite behavior, but does not satisfy LEE, C10
is not a LLEE-1-chart.

To show that neither C
1

nor C
10

above can be refined
into a LLEE-1-chart, we will use the lemma below.

Lemma 5.5. For every finite 1-chart D with LLEE–1-lim
there is a finite 1-chart D1 with the same induced chart, and

with a 1-transition limited LLEE-witness D̂1 such that:

(ptt) If for a loop-entry identifier xv, ny P EpĈ1q the loop

sub-1-chart CxD1pv, nq of D1 both of the following two

conditions hold:

(a) consists of a single scc (strongly connected com-

ponent),

(b) contains no other loop vertex than v (that is,

CxD1pv, nq is an innermost loop sub-1-chart),

then it contains only proper-transition targets in D1.

Proof idea. Suppose that C pDpv, nq is an innermost loop sub-
1-chart of a 1-chart D with 1-transition limited LLEE-wit-

ness D̂ such that C pDpv, nq consists of a single scc, and v is
not a proper-transition target. Then C pDpv, nq can be shown
to contain a vertex w that is a proper-transition target, has
a 1-transition back-link to v as its only outgoing transition,
and therefore is 1-bisimilar to v. See the following example:

C pDpv, 1qv

r1s
a

r1s
b

v1
c

c

1

v2
c

1

w

1

CxD1pw, 1q

v1
c

c

1

v2

c 1

w

r1s a r1sb

Dp¨sp¨sp¨s “ D1
p¨sp¨sp¨s

Here we indicate 1-bisimilarity of v and w as magenta link.
Then by removing v, and letting w take over the role of v as
innermost loop vertex, D can be transformed, preserving in-
duced transitions, into a 1-chart D1 with 1-transition limited

LLEE-witness D̂1, in which the innermost loop sub-1-chart
CxD1pv, nq now only consists of proper-transition targets.
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In general, the start vertex v of C pDpv, nq may have, in D,
other departing transitions, and incoming 1-transitions from
other loop sub-1-charts that are generated at v. In the trans-
formation, all these other outgoing and incoming transitions
at v are transferred over to w as well.

Lem. 5.5 does not hold without the restrictions (a), (b)
in (ptt). The 1-charts D

1
and D

2
below with 1-transition

limited LLEE-witnesses D̂
1

and D̂
2

show that for (a) and (b).

r1s
a

r1s
a

b c

D̂
1
, D

1

u1

b

a

a
c

a

a

pD
1
qp¨sp¨sp¨s

r2s
a

r2s
a

r1s

b

r1s

c

D̂
2
, D

2

u2

a

b

a

a

c

a

pD
2
qp¨sp¨sp¨s

While the loop sub-1-chart at u1 in D̂
1

is not an scc, the loop

sub-1-chart at u2 in D̂
2

is not innermost. The induced charts
of D1 and D2 do not satisfy LEE, and cannot be refined into
LLEE-1-charts that only contain proper-transition targets.

Lemma 5.6. Neither of the 1-charts C
1

and C
10

in Ex. 5.1

can be refined into a wg-LLEE-1-chart.

Proof. We show the statement of the lemma for C10 by an
argument that will demonstrate it also for C

1
.

We argue indirectly, towards a contradiction. Suppose
that C10 can be refined into a wg-LLEE-1-chart. Then C10
can also be refined, due to Lem. 4.12, into a 1-chart with
LLEE–1-lim. Furthermore by Lem. 5.5 it follows, in view
of Lem. 3.15, (iv) and (v), that C10 can even be refined into
a 1-chart with LLEE–1-lim and (ptt).

Therefore there is a 1-chart D with 1-transition limited

LLEE-witness D̂ and (ptt) such that D Ñ˚
p1q

C10. Since C10
is not a LLEE-1-chart by Lem. 5.4, it follows that D ‰ C10,
and therefore also that D Ñ`

p1q C10.

We now let D
1

be the 1-chart that results from D by
eliminating, viaÑp1q steps, all 1-transition back-links in loop

sub-1-charts as delimited by D̂ that are not innermost. Then
D Ñ˚

p1q D
1
Ñ`

p1q C10 follows by Lem. 3.15, (vi), yielding

D
1
Ñ˚

p1q
C10, and where D

1
Ñ`

p1q
C10 holds, because the

innermost loop sub-1-charts in D must still be present in
D

1
, but C10 does not contain any loop sub-1-charts. We will

show, for a 1-chart C
2

that will be illustrated below and is
similar to C1, the following contradictory statements:

(S1) D Ñ`
p1q

D
1
Ñp1q C10 for D

1
P tC

1
, C

2
u, with D ‰ D

1
.

(S2) Neither C
1

nor C
2

can be refined into a 1-chart with
LLEE–1-lim.

The contradiction arises between (S2) and the part of (S1)
that states that either C

1
or C

2
can be refined into D which

we assumed is a 1-chart with LLEE–1-lim. Therefore it
remains to define C

2
and to prove (S1) and (S2).

Turning to defining C
2

and showing (S1), we use that D

and D̂ satisfy (ptt). Therefore all innermost loop sub-1-charts

of D delimited by D̂ consist only of proper-transition targets
in D. Since back-links in these innermost loop sub-1-charts

of D are only removed in the steps D
1
Ñ`

p1q C10, it follows
that D

1
has the same vertices as C10. Conversely, these in-

nermost loop sub-1-charts of D can be made visible starting
from C10 by adding 1-transition back-links between existing
vertices of C10, and by removing transitions that become
superfluous in the sense that they correspond to newly
formed induced transitions. However, to obtain a 1-bisimilar
refinement any such 1-transition back-link xu, 1, u1y can
only be added to C10 if u1 is a substate of u already in
C10, and that is, if u1 has part of the behavior of u. There
are only two possibilities for such an added back-link: one
from w2 to v (due to v ĎC10

w2), and another one from
w2 to w1 (due to w1 ĎC10

w2). It is not possible to add
them both as 1-transitions, because as such they correspond

to back-links in the 1-transition limited LLEE-witness D̂,
and no vertex can loop back directly to two different loop

vertices in a LLEE-witness. It follows that D̂ can contain
only one innermost loop vertex, namely either v or w1.

Therefore in order to make visible, starting from C10,

the innermost loop subchart of D defined by D̂, we either
obtain the 1-chart C

1
in Ex. 5.3, if v is a loop vertex and

xw2, 1, vy is a back-link of D̂, or the 1-chart C
2

below:

abc “ v

a
a

c
c

b

C2 { Ĉ2

w1 “ acd
a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

b

1

e

e

f

f

if w1 is a loop vertex, and xw2, 1, w1y is a back-link of D̂.
It is straightforward to check that only the two transitions
marked in green induce loop sub-1-charts of C

2
, and that

after eliminating those, no further loop-entry transitions
arise, but infinite paths remain. Therefore C

2
cannot be a

LLEE-chart. It follows that D must be a further refinement
either of C

1
or of C

2
. In this way we have established (S1).

For (S2) we focus on C
2
, because the argument for C

1
is

closely analogous. We assume that a LLEE-1-chart D with

1-transition limited LLEE-witness D̂ is a refinement of C
2
.

Then D Ñ`
p1q

C
2

follows, because C
2

is not a LLEE-1-chart.
Now we note that C

2
cannot be refined in the direction of

the 1-transition limited LLEE-witness D̂ by adding 1-transi-
tion back-links to vertices that are already present in C

2
. This

is because, to satisfy the layeredness condition (W3) for the

LLEE-witness D̂, any such back-link needed to start from
w1, or from a vertex outside of C pDpw1, 1q (the sub-1-chart

of C
2

delimited by D̂ and by its entry/body-labeling Ĉ
2
), and
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target a different of these vertices that furthermore needs to
be a substate. But there is not such a vertex in C

2
: neither

w1 nor one of v, a1 , a2 , e outside of C pDpw1, 1q has a
substate among the other 4 of these vertices.

Consequently, the only option to refine Ĉ
2

towards the

1-transition limited LLEE-witness D̂ is to add a vertex u
that is not a proper-transition target, with 1-transition back-
links directed to it from one of the five vertices w1, v, a1 ,
a2 , or e such that proper transitions in C2 arise as induced
transitions via u. The only option to simplify the structure is
to share, via the new vertex u proper transitions from two of
these five vertices. Such a non-trivial sharing of transitions is
possible only between w1 and v, because none of other pairs
of vertices have an action label of an outgoing transition
in common. The maximal option is to share, via the new
vertex u, all outgoing a- and c-transitions from w1 and v.
This leads to the 1-chart C1

2
:

5
C1
2

{ Ĉ1
2 abc “ v

b

1
u “ ac

a
a

c

cw “ acd

1

c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

b

1

e

e

f

f

But we note now that no loop-entry transition is created
at u in C1

2
, and so the added 1-transitions are not back-

links. So this refinement step is not one in the direction of

the (assumed) 1-transition limited LLEE-witness D̂. While
it would be possible to share only a non-empty subset of
the four transitions from u, that would not give rise to a
loop-entry transition at u, either. Hence we must recognize
that it is not possible to refine C

2
into the LLEE-1-chart D

as assumed. Thus we have shown the part of (S2) for C
2
.

Analogously it can be argued that neither can C
1

be
refined into a LLEE-1-chart, thereby obtaining (S2).

Having obtained a contradiction, we conclude that nei-
ther C10 nor C

1
can be refined into a wg-LLEE-1-chart.

On the basis of these preparations we can now formu-
late and prove our two main results concerning the non-
preservation of two properties under bisimulation collapse.

Theorem 5.7. The property of a 1-chart D that it can be

refined by a wg-LLEE-1-chart is not preserved in general

under the step from D to its bisimulation collapse.

Proof. The LLEE-1-chart D :“ C in Ex. 5.1 together with
its (1-transition free) bisimulation collapse C10 in Ex. 5.3
provides a counterexample, because C10 cannot be refined
into a wg-LLEE-1-chart due to Lem. 5.6.

Theorem 5.8. The image of the chart interpretation Cp q̈ is

not closed, up to isomorphism, under bisimulation collapse.

Proof. A counterexample consists of the induced chart C
p¨sp¨sp¨s

of C in Ex. 5.1, and its bisimulation collapse C10 in Ex. 5.3.
The induced chart C

p¨sp¨sp¨s
of C is, up to isomorphism, in the

image of Cp¨q due to Lem. 5.2.
But its collapse C10 of C

p¨sp¨sp¨s
is not isomorphic to the

chart interpretation of any star expression. In order to show
this, we assume that C10 » Cpe10q for some star expres-
sion e10 P StExppAq, and will derive a contradiction. By
Cor. 3.16 we find that Cpe10q can be refined into the weakly
guarded 1-chart interpretation Cpe10q of e10, where Cpe10q
is a LLEE-1-chart by Thm. 4.7. Therefore Cpe10q can be
refined into a wg-LLEE-1-chart. Now the property of a
1-chart to be refinable by 1-transitions into a wg-LLEE-
1-chart is invariant under isomorphism. Therefore the as-
sumption C10 » Cpe10q implies that C10 can be refined into
a wg-LLEE-1-chart. But this is a contradiction with the
statement of Lem. 5.6.

The origin of the counterexample. A procedure for con-
structing the bisimulation collapse of a finite LLEE-chart
by LLEE-preserving steps that collapse pairs of bisimilar
vertices was described in [10]. This procedure repeatedly
removes, from a given LLEE-chart, one vertex w1 from a
pair xw1, w2y of distinct, bisimilar vertices, after redirecting
all incoming transitions at w1 over to w2, thereby obtaining
a bisimilar chart. Although only vertices from ‘reduced’
pairs in specified positions can be eliminated LLEE-pre-
servingly, the bisimulation collapse is reached, because ev-
ery LLEE-chart that is not collapsed contains a reduced pair.

Pursuing the aim of generalizing that stepwise collapse
procedure to LLEE-1-charts, we have explored how position
conditions for ‘reduced’ pairs of 1-bisimilar vertices can be
defined for 1-charts with LLEE–1-lim. This led us to posi-
tion conditions where among four that generalize condition
(C3) in [10] for reduced pairs xw1, w2y, where w1 and w2

with 1-bisimilar and in the same scc, are the following two:

(C3.2)

v

w1

w1

w2

{{{

{{{

w2

(C3.4)

v

{{{

{{{

w1

w1

w2

w2

In both of these cases the 1-bisimilar vertices w1 and w2

are in nested loop sub-1-charts below different vertices w1

and w2, respectively, where w1 and w2 are in the body
of a sub-1-chart of a loop vertex v, and w1 and w2 are
linked by 1-transition back-links to w1 and w2, respectively.
Moreover, w2 is not linked to w1 via body transitions only.
However, w1 can be reached from w2 via v and a loop-
entry transition from v. In (C3.2) a 1-transition back-link is
excluded from w2 to v, and in (C3.4) from w1 to v.

While we succeeded in finding LLEE-preserving trans-
formations that eliminate w1 in case (C3.2) (see Ex. 6.1)
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and in 4 other cases, we did not find such a transformation
for case (C3.4). That failure led us, after narrowing down
the hard problem, to the construction of the counterexample
LLEE-1-chart C in Ex. 5.1, which is indeed of form (C3.4).

6. Conclusion, and outlook

In order to approach the axiomatization and expressibility
problems for Milner’s process semantics of regular expres-
sions we undertook two preparatory steps: a conceptual
one, and one that highlights a crucial difficulty. First, we
showed that process interpretations of regular expression
can be refined by 1-transitions (Cor. 3.16) into graphs that
satisfy LEE (Thm. 4.7). This clears the way for generalizing
the methods used for results about 1-free regular expres-
sions in [10]. But second, we discovered that the refinement
property is not preserved for process interpretations under
bisimulation collapse (Thm. 5.7). This phenomenon sets the
problems (E) and (A) for the full class of regular expressions
apart from their specialization to subclasses with restricted
uses of 0 and/or 1, such as the 1-free expressions in [10].

In order to make this observation, we found it crucial
(i) to view process interpretations of regular expressions as
graphs (possibly with 1-transitions) that are constrained by
the loop existence and elimination property LEE (from [10]),
and (ii) to work with layered LEE-witnesses that represent
process interpretations of regular expressions (at least) up
to bisimilarity (a correspondence established in [10]).

As a consequence of the counterexample there cannot be
a LLEE-preserving procedure for producing the bisimulation
collapse of LLEE-1-charts. But we found the following pos-
itive sign: stepwise elimination of a vertex from a reduced
pair of 1-bisimilar vertices is almost always possible, with
the exception of pairs of the form (C3.4) above.

Example 6.1. In the LLEE-1-chart D below we assume all
actions are the same, and indicate a LLEE-witness by green
loop-entry transitions of level 1, and blue ones of level 2. D
contains the pair xw1, w2y of 1-bisimilar vertices that is of
‘reduced’ form (C3.2). Here w1 can be eliminated by three
steps two of which redirect transitions to 1-bisimilar targets:

D v

w1

w1

w2

w2

v

w1

w1

w2

w2

v

w1

w1

w2

w2

D
3

v

w1

w2

w2

The first step removes the loop at w1, the second restores
LLEE–1-lim, and in the third w1 is eliminated. The result
is the 1-chart D3 with LLEE–1-lim that is 1-bisimilar to D.

A procedure that eliminates all reduced 1-bisimilarity
redundancies except those of form (C3.4) is able to ap-
proximate the bisimulation collapse of LLEE-1-charts while
preserving LLEE. Additional simplifications suggest that
the number of distinct, 1-bisimilar vertices in a minimized
LLEE-1-chart can be reduced to two, like in C in Ex. 5.1.

We believe that such an approximation procedure can be a
crucial step in tackling the general problems (E) and (A).

Relation to subsequent work that was published earlier.

This article was written as a preparation for developing a
solution of Milner’s axiomatization problem (A). We did
so by explaining why the proof-strategy that Fokkink and I
had employed in [10] for solving the special case of problem
(A) for 1-free star expressions in [10] does not generalize,
at least not directly, to a successful proof strategy for the
problem (A) itself. Indeed, the proof-strategy in [10] was
based on the property (C) (preservation of LEE under bisim-
ulation collapse for charts). But we demonstrated here that
(C) does not generalize to 1-charts, not even in its refinement
form (RC) (preservation under bisimulation collapse of the
refinability of a 1-chart into a LLEE-1-chart). While this
failure (RC) of generalizing (C) to LLEE-1-charts only
makes it impossible to use (RC) for solving problem (A),
we expected that this fact forms a conceptual complication
and significant stumbling block for any completeness proof
of Milner’s proof system. At the same time we already had
in mind a possible solution to navigate this difficulty: the use
of LLEE-1-chart approximations of bisimulation collapses.

Indeed, we eventually described such a solution for (A)

later in the summary [15] for LICS 2022 of a completeness
proof of Milner’s system. There, we based the development
on the counterexample for LLEE-preserving bisimulation
collapse that we described here in Section 5. Importantly, we
abstracted its main constitutive features in order to define
the concept of ‘twin-crystal’, for which the 1-chart C in
Ex. 5.1 is a prime example. Then we crucially defined a
‘crystallization’ technique for the minimization of LLEE-
1-charts under bisimilarity with as results LLEE-1-charts
that tightly approximate bisimulations collapses. We show
that every weakly guarded LLEE-1-chart can be minimized
under bisimilarity to a ‘crystallized’ LLEE-1-chart that is
collapsed with the possible exception of some strongly
connected components that are of twin-crystal form.

Before we wrote down the solution of (A) using the crys-
tallization technique (in autumn 2021), we set out (in spring
2021) to find some concrete evidence for our expectation as
expressed above: that any completeness proof of Milner’s
proof system Mil has to navigate, in some way or the
other, the difficulty that is presented by the failure (RC) of
LLEE-preserving bisimulation collapse of LLEE-1-charts.
We sought to obtain such evidence by investigating, and
trying to characterize, the derivational power of the single-

equation fixed-point rule RSP˚ in Milner’s system.1 Indeed
it is the a priori limited derivational power of that rule that
presents the main difficulty for a completeness proof of Mil.
This is because the system that arises from Mil by adopting a
fixed-point rule USP for guarded systems of equations (here
USP stands short for ‘unique solvability principle’) can be
shown to be complete in a rather straightforward way.

1. RSP˚ means ‘recursive specification principle’ for single-fixed point
equations by using iteration. From the fixed-point equation e “ f ¨ e` g it
permits to infer the specification e “ f˚

¨ g of e, provided that f Ú holds.
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In the article [16] for CALCO 2021 with report [17] we
showed that the derivational power of the single-equation
fixed-point rule RSP˚ in Mil corresponds to the derivational
power of a coinductive rule. That rule permits cyclic deriva-
tions of the form of guarded LLEE-1-charts in order to infer
that two Mil-provable solutions (which occur in the deriva-
tions) of the used LLEE-1-chart are equal (at the start vertex
of the LLEE-1-chart). By adding this coinductive rule to Mil

and deleting the single-equation fixed-point rule RSP˚, we
defined a coinductive version cMil of Milner’s system Mil.
Then we showed by proof-theoretical interpretations in both
directions that cMil and Mil are theorem-equivalent.

In [18] we extended the exhibition of this result in sev-
eral ways. We also argued there that, since the coinductive
version cMil of Mil can be viewed as being situated roughly
half-way in between Mil and bisimulations between chart
interpretations of star expressions, this new system cMil may
become a natural beachhead for a completeness proof of Mil.

While we did not directly use the coinductive system
cMil as a beachhead for the completeness proof later in [15],
the characterization of derivability in Mil by derivability in
cMil in [16] convinced us of the expediency of the under-
lying concepts. In particular, this result had tied derivability
in Mil closely to the concept of guarded LLEE-1-charts
for expressing process interpretations of regular expressions.
Use of this concept, together with the fact that LLEE-
1-charts are uniquely solvable modulo provability in Mil (as
shown in [16], [17], [18]) were crucial stepping stones for
the completeness proof of Mil that we summarize in [15].
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Appendix A.

Supplements, more proof details, and omitted proofs

A.1. Supplements for Section 2: Process semantics of star expressions

Lemma (= Lem. 2.5). For every star expression e P StExppAq, the chart interpretation Cpeq is a finite chart.

Proof (method). Derivatives of a star expressions with respect to the simpler TSS T0pAq in Rem. 2.6 coincide with
Antimirov’s partial derivatives. Then finiteness of chart interpretations defined according to T0pAq follows from Antimirov’s
result [2] that every regular expression only has finitely many iterated derivatives. In order to prove finiteness of chart
interpretations as defined via T pAq in Def. 3.6, a correspondence with a variation of partial derivatives can be defined, and
for that a finiteness results can be shown analogously.

Lemma (= Lem. 2.11). The set StExp(q1)pAq of quasi-1-less star expressions over A contains the set of (0, 1, or more

times) iterated derivatives of 1-less expressions from the set StExp(1)pAq of 1-less star expressions over A.

Proof. Derivatives according to the TSS T pAq of 1-less star expressions are quasi-1-less star expressions. (Note that, for
example, letters a P A, which are 1-less, have 1 as derivative, which is quasi-1-less). Furthermore, derivatives of quasi-
1-less star expressions are quasi-1-less. Both statements can be verified by straightforward proofs that proceed by structural
induction on the grammar of 1-less, and of quasi-1-less star expressions, respectively.

Proposition (= Prop. 2.12). The image of the quasi-1-less star expressions via the chart interpretation Cp q̈ is closed under

the operation of bisimulation collapse modulo isomorphism.

This statement can be shown (see on page 17 below) with a refinement of the results and the methods for 1-free star
expressions in StExpf1 pAq (with binary star iteration f) in [10], [14] here for the corresponding quasi-1-less star expressions
(with unary star iteration). For this result the careful formulation of the TSS in Def. 2.4 is crucial, see Rem. 2.6. that uses
normedness case distinctions in the rules for product and star.

In [10] the first of the following two statements have been shown, and the third is a property of the extraction procedures
for provable solutions defined there:

(I)f1 The chart interpretation Cpeq of a 1-free star expression e P StExpf1 pAq is a LLEE-chart. (See Proposition 3.7 in [10]).

(C) The bisimulation collapse of a LLEE-chart is again a LLEE-chart. (See Theorem 6.9 in [10]).

(E)f1 From every LLEE-chart C “ xV,A, vs,Ñ, Óy with LLEE-witness Ĉ a function s
Ĉ
: V Ñ StExpf1 pAq that produces

1-free star expressions can be extracted such that C Ø Cps
Ĉ
pvsqq holds, that is, such that C is bisimilar to the chart

interpretation Cps
Ĉ
pvsqq of s

Ĉ
pvsq. (This can be shown for the extraction function defined in Definition 5.3 in [10]

where s
Ĉ

is shown to be a solution of C that is provable in the proof system BBP, see Proposition 5.5 in [10].)

Statement (E)f1 can be established by showing that the relation graphps
Ĉ
q¨
`
ØLpStExppAqq X

`
VpCps

Ĉ
pvsqqq ˆ V pCps

Ĉ
pvsqqqq

˘˘
,

the composition of the graph of s
Ĉ

with bisimilarity ØLpStExppAqq on the LTS defined by the process (chart) interpretation
of all star expressions but restricted to Cps

Ĉ
pvsqq, is a bisimulation between C and Cps

Ĉ
pvsqq.

Now (I)f1 can be transferred in a straightforward manner to apply to quasi-1-less star expressions. Furthermore, by

refining the extraction procedure, and thus by slightly redefining solutions extracted from LLEE-charts, statement (E)f1 can
be strengthened to stating that there is actually a functional bisimulation from a LLEE-chart C to the chart interpretation

Cps
Ĉ
pvsqq of the solution extracted from Ĉ. We gather these two statements:

(I)1 The chart interpretation Cpeq of a quasi-1-less star expression e P StExp(q1)pAq is a LLEE-chart.

(E)
(ref)
1 From every LLEE-chart C “ xV,A, vs,Ñ, Óy with LLEE-witness Ĉ a function s

Ĉ
: V Ñ StExp(q1)pAq can be

extracted such that C Ñs
Ĉ
Cps

Ĉ
pvsqq holds, that is, s

Ĉ
pvsq defines, as its graph, a bisimulation from C to the chart

interpretation Cps
Ĉ
pvsqq of s

Ĉ
pvsq. (See Prop. A.8 below.)

Now we describe the adaptation of the extraction procedure that is necessary to prove (E)
(ref)
1 . In order to bring solutions

extracted from LLEE-witnesses into close correspondence with derivatives as defined by the TSS T , the redefinition of
extracted solutions needs to refine the definition of extracted solutions in Definition 5.3 in [10] in the following two respects:

(a) The relative extraction function t
Ĉ
pw, vq is defined first only in the two cases w dü v, that w directly loops back to v,

and w ­ü, that w does not loop back to another vertex, and is then extended by an inductive clause for the remaining
case w dü w ‰ v, that w loops back to another vertex, but does not directly loop back to v.

(b) In order to take into account that derivatives of 1-less star expressions always create an occurrence of 1 at the left of
the leftmost product occurrence in the expression, a version T

Ĉ
pe, w, vq of the relativized extraction function has to

be defined that drops a star expression e immediately left of the leftmost product position of the (as in (a)) adapted
relativized extraction function t

Ĉ
.
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Notation A.1. For a LLEE-witness Ĉ “ xV,A, vs, Ñ̂, Óy of a chart C “ xV,A, vs,Ñ, Óy we introduce the following notation
for the set of transitions that depart from a given vertex w P V :

tw Ñ̂u :“ Ñ̂ X
`
twu ˆ pAˆ Nq ˆ V

˘

“
 
xw, xa, ly, w1y | xw, xa, ly, w1y P Ñ̂

(
.

Definition A.2. Let C “ xV,A, vs,Ñ, Óy be a LLEE-chart with LLEE-witness Ĉ “ xV,A, vs, Ñ̂, Óy. The relative initializing

extraction function T
Ĉ
p¨, ¨, ¨q of Ĉ is the following function that produces star expressions:

T
Ĉ
p¨, ¨, ¨q : StExppAq ˆ ppV ˆ V q Xð

`q ÝÑ StExppAq

xe, w, vy ÞÝÑ T
Ĉ
pe, w, vq ,

and that is defined, for all initializing star expressions e P StExppAq, and for all w, v P V with v ñ` w as follows:

T
Ĉ
pe, w, vq :“

$
’’&
’’%

`
e ¨

`řn1

i“1
ai `

řn2

i“1
T
Ĉ
pbi, wi, wq

˘˚˘
¨
`řn4

i“1
T
Ĉ
pdi, ui, vq

˘
if w ­ü and (A.1) ,

`
e ¨

`řn1

i“1
ai `

řn2

i“1
T
Ĉ
pbi, wi, wq

˘˚˘
¨
`řn3

i“1
ci `

řn4

i“1
T
Ĉ
pdi, ui, vq

˘
if w dü v and (A.2) ,

T
Ĉ
pT

Ĉ
pe, w, wq, w, vq if w dü w ‰ v ,

where we assume that the set of transitions from w in Ĉ have the representations:

tw Ñ̂u “
 
w

a1ÝÑrl1s w, . . . , w
an1ÝÝÑrln1

s w
(
Y
 
w

b1ÝÑrl1s w1, . . . , w
bn2ÝÝÑrln2

s wn2

(

Y
 
w

d1ÝÑbo u1, . . . , w
dn4ÝÝÑbo un4

(

with w1, . . . , wn2
‰ w,

,
//.
//-

(A.1)

tw Ñ̂u “
 
w

a1ÝÑrl1s w, . . . , w
an1ÝÝÑrln1

s w
(
Y
 
w

b1ÝÑrl1s w1, . . . , w
bn2ÝÝÑrln2

s wn2

(

Y
 
w

c1ÝÑbo v, . . . , w
cn3ÝÝÑbo v

(
Y
 
w

d1ÝÑbo u1, . . . , w
dn4ÝÝÑbo un4

(
,

with w1, . . . , wn2
‰ w, and u1, . . . , un4

‰ v,

,
//.
//-

(A.2)

for n1, n2, n3, n4 P N, a1, . . . , an1
, b1, . . . , bn2

, c1, . . . , cn3
, d1, . . . , dn4

P A, and l1, . . . , ln1
, l1

1
, . . . , l1n2

P Nz t0u, and where

the definition proceeds by induction on the lexicographic ordering ălex of the well-founded relations Ð`
bo and ð` on pairs

xw, vy of vertices with precedence given to the second component such that ălex is defined, for all w1, w2, v1, v2 P V , by:

xw1, v1y ălex xw2, v2y :ðñ v1 ð
` v2 _

`
v1 “ v2 ^ w1 Ð

`
bo w2

˘
. (A.3)

Definition A.3. Let C “ xV,A, vs,Ñ, Óy be a LLEE-chart with LLEE-witness Ĉ “ xV,A, vs, Ñ̂, Óy. The extraction function

s
Ĉ

of Ĉ is defined by using the initialized extraction function S
Ĉ
p¨, ¨q of Ĉ, where these functions have the types:

s
Ĉ
: V ÝÑ StExppAq

w ÞÝÑ s
Ĉ
pwq ,

S
Ĉ
p¨, ¨q : StExppAq ˆ V ÝÑ StExppAq

xe, wy ÞÝÑ S
Ĉ
pe, wq ,

and are defined, for all initializing star expressions e P StExppAq, and for all w P V , as follows:

s
Ĉ
pwq :“ S

Ĉ
p1, wq ,

S
Ĉ
pe, wq :“

#`
e ¨

`řn1

i“1
ai `

řn2

i“1
T
Ĉ
pbi, wi, wq

˘˚˘
¨
`řn4

i“1
S
Ĉ
pdi, uiq

˘
if w ­ü and (A.1),

S
Ĉ
pT

Ĉ
pe, w, wq, wq if w dü w ,

where the definition of S
Ĉ
p¨, ¨q makes use of the relativized initializing extraction function T

Ĉ
p¨, ¨, ¨q, and induction on the

well-founded relation Ð`
bo, noting that the first case in the definition of S

Ĉ
p¨, ¨q assumes, like in Def. A.2, that the set of

transitions of Ĉ from w is of the form (A.1) for some for n1, n2, n4 P N, a1, . . . , an1
, b1, . . . , bn2

, d1, . . . , dn4
P A, and

l1, . . . , ln1
, l1

1
, . . . , l1n2

P N.

Lemma A.4. Values of the extraction function s
Ĉ

for the LLEE-witness Ĉ of a chart C “ xV,A, vs,Ñ, Óy are quasi-1-less

star expressions. Thus the extraction function of Ĉ has type s
Ĉ
: V Ñ StExp(q1)pAq.
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Lemma A.5. Let C “ xV,A, vs,Ñ, Óy be a chart with LLEE-witness Ĉ. Then the initializing extraction function S
Ĉ

of Ĉ

has the following properties, for all e P StExppAq, and w, v P V :

v ñ
` w ü

˚ v ùñ T
Ĉ
pe, w, vq is normed , (A.4)

v ñ
` w ­ü˚ v ùñ T

Ĉ
pe, w, vq is not normed , (A.5)

w3 ñ
` w2 ñ

` w1 ü
˚ w2 ùñ T

Ĉ
pe, w1, w3q “ T

Ĉ
pT

Ĉ
pe, w1, w2q, w2, w3q , (A.6)

w3 ñ
` w2 ñ

` w1 ­ü
˚ w2 ùñ T

Ĉ
pe, w1, w3q “ T

Ĉ
pe, w1, w2q . (A.7)

Lemma A.6. Let C “ xV,A, vs,Ñ, Óy be a chart with LLEE-witness Ĉ. Then the relativized initializing extraction function

T
Ĉ

of Ĉ has the following properties, for all e P StExppAq, and w, v P V :

w2 ñ
` w1 ü

˚ w2 ùñ S
Ĉ
pe, w1q “ S

Ĉ
pT

Ĉ
pe, w1, w2q, w2q , where T

Ĉ
pe, w1, w2q is normed . (A.8)

w3 ñ
` w2 ñ

` w1 ­ü
˚ w2 ùñ S

Ĉ
pe, w1q “ T

Ĉ
pe, w1, w2q , which is not normed . (A.9)

Lemma A.7. Let C “ xV,A, vs,Ñ, Óy be a chart with LLEE-witness Ĉ. Then the solution s
Ĉ
: V Ñ StExp(q1)pAq of C that

is extracted from Ĉ defines a bisimulation from C to the chart interpretation Cps
Ĉ
pvsqq of s

Ĉ
pvsq, and hence CÑs

Ĉ
Cps

Ĉ
pvsqq.

Proof (hint). The statement of the lemma can be shown by arguing, for all w P V , along the case distinction in the definition
of s

Ĉ
pwq “ S

Ĉ
p1, wq to show that, for each a P A, the a-derivatives of s

Ĉ
pwq coincide with the values of s

Ĉ
that are reached

via, in the definition of s
Ĉ

corresponding, a-transitions from w. In the argument, Lem. A.6 and Lem. A.5 are used.

Proposition A.8 (corresponds to statement (E)
(ref)
1 ). Let C “ xV,A, vs,Ñ, Óy be a chart with LLEE-witness Ĉ such that C

is a bisimulation collapse. Then the solution s
Ĉ
: V Ñ StExp(q1)pAq of C that is extracted from Ĉ defines an isomorphism

from C to the chart interpretation Cps
Ĉ
pvsqq of s

Ĉ
pvsq, and hence C » Cps

Ĉ
pvsqq.

Proof. By Lemma A.7, s
Ĉ

defines a functional bisimulation from C to Cps
Ĉ
pvsqq. If C is collapsed, it follows that also

Cps
Ĉ
pvsqq must be collapsed, and that s

Ĉ
defines an isomorphism between C and Cps

Ĉ
pvsqq.

Proof of Prop. 2.12. Suppose that a chart C is in the image of the chart interpretation of the set of quasi-1-less star
expressions over A. That means, C “ Cpeq for a quasi-1-less star expression e P StExp(q1)pAq. We pick e accordingly. We
have to show that also the bisimulation collapse C0 “ xV0,A, vs,0,Ñ, Óy of C is in the image of the chart interpretation of
the set of quasi-1-less star expressions.

From C “ Cpeq it follows by (I)1 that C is a LLEE-chart. As a consequence of (C) we get that the bisimulation collapse

C0 of C is a LLEE-chart as well. Therefore we can pick a LLEE-witness Ĉ0 of C0. Then due to (E)
(ref)
1 , as also stated by

Prop. A.8 it follows that C0 “ Cps
Ĉ0
pvs,0qq, and s

Ĉ0
pvs,0q is a quasi-1-less star expression. Therefore also the bisimulation

collapse C0 of C is in the image of the chart interpretation of quasi-1-less star expressions.

A.2. Supplements for Section 3: Refined process semantics

Lemma A.9 (= Lem. 3.8). Derivability of statements concerning termination, and transitions in T pAq, and in T pAq are

related as follows, for all e, e1 P StExppAq, and a P A :

$T pAq eÓ ðñ $T pAq e
1
ÝÑ˚

1 , (A.10)

$T pAq e
a
ÝÑ e1 ðñ $T pAq e

1
ÝÑ˚ ¨

a
ÝÑ e1 . (A.11)

For the proof of this lemma we use an extension of the TSS T pAq by rules that permit to describe induced transitions,
and induced termination with respect to T pAq.

Definition A.10. We denote by T
p¨sp¨sp¨s
pAq the TSS for induced termination, and for induced transitions with respect to T pAq

that results by adding, to the axioms and rules of T pAq, the following four rules:

1Óp1q
e

1
ÝÑ ẽ ẽÓp1q

eÓp1q
e

a
ÝÑ e1

e
pppasss
ÝÝÑ e1

e
1
ÝÑ ẽ ẽ

pppasss
ÝÝÑ e1

e
pppasss
ÝÝÑ e1

With respect to this extension of T pAq we can reformulate, and prove more easily, the statement of Lem. 3.8 as follows.

Lemma A.11. Derivability of statements concerning termination, and transitions in T pAq, and in T
p¨sp¨sp¨s
pAq are related as

follows, for all e, e1 P StExppAq, and a P A :

$T pAq eÓ ðñ $T p¨sp¨sp¨s
eÓp1q , (A.12)

$T pAq e
a
ÝÑ e1 ðñ $T p¨sp¨sp¨spAq

e
pppasss
ÝÝÑ e1 . (A.13)
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Proof (method). The directions “ñ” in (A.12) and in (A.13) can be established with easy proofs by induction on the depth

of derivations with conclusion eÓ and with conclusion e
a
ÝÑ e1 in T pAq, thereby transforming these derivations step by step

into derivations with conclusion eÓp1q and with conclusion e
pppasss
ÝÝÑ e1 in T

p¨sp¨sp¨s
pAq, respectively.

Vice versa, the directions “ð” in (A.12) and in (A.13) can be established with proofs by induction on the depth of

derivations with conclusion eÓp1q and with conclusion e
pppasss
ÝÝÑ e1 in T p¨sp¨sp¨spAq, thereby transforming these derivations step by

step into derivations with conclusion eÓ and with conclusion e
a
ÝÑ e1 in T pAq, respectively.

On the basis of this additional lemma, Lem. A.9 can be established easily indeed.

Proof (of Lem. A.9). Derivability of eÓp1q in T
p¨sp¨sp¨s
pAq is equivalent to derivability of e

1
ÝÑ˚

1 in T pAq, for all e P StExppAq.

Also, derivability of e
pppasss
ÝÝÑ e1 in T

p¨sp¨sp¨s
pAq is equivalent to derivability of e

1
ÝÑ˚ ¨

a
ÝÑ e1 in T pAq. These two statements can be

proved by straightforward proofs by induction on the depth of derivations.
By applying these two statements that link derivability in T

p¨sp¨sp¨s
pAq with derivability in T pAq, the statements (A.10) and

(A.11) of Lem. A.9 follow from the statements (A.12) and (A.13) of Lem. A.11, respectively.

Lemma (= Lem. 3.9). For every e P StExppAq, the 1-chart interpretation Cpeq of e is a finite, weakly guarded 1-chart.

Proof. The size szpeq of a star expression e (that is, the number of its symbols) decreases strictly along 1-transitions,

that is, if e1
1
ÝÑ e2 is a 1-transition that is specified by the TSS T pAq, then szpe1q ą szpe2q holds. This can be verified

by a straightforward induction on derivations in T pAq with 1-transitions in their conclusions. Consequently, the 1-chart
interpretation Cpeq of a star expression e cannot contain an infinite path of 1-transitions. Therefore Cpeq is weakly guarded,
for every star expression e.

Cpeq is also finitely branching, by a similar argument. The actions that occur in derivatives of a star expression e1 are

among those that occur in e1. Since the size of an expression decreases properly in every 1-transition e1
1
ÝÑ e2, it follows

that targets e2 of such 1-transitions are among the finitely many star expressions of size smaller than szpe1q in which only
actions occur that also occur in e1. Therefore there can be only finitely many 1-transitions from a star expression e1 P T pAq.

Finiteness of the 1-chart interpretation Cpeq follows from weak guardedness, for all e P StExppAq, due to the following
two facts: first, Cpeq 1-transition refines the chart interpretation Cpeq of e, because induced transitions with respect to T pAq
refine transitions with respect to T pAq due to (A.11); and second, the chart interpretation Cpeq of a star expression e is finite
due to Lem. 2.5. It follows that the vertex set of Cpeq consists of the vertices of Cpeq plus all vertices that are reachable from
these vertices by 1-transitions. Since due to weak guardedness there can be no infinite 1-transition paths, and the 1-transition
relation is finitely branching, it follows by König’s Lemma that for every vertex v of Cpeq there can be only finitely many
more vertices that are added in Cpeq by 1-transitions to additional vertices that are not proper-transition targets. (Note that
proper-transition targets of Cpeq are also vertices of Cpeq due to the refinement property (A.11).)

Lemma (= Lem. 3.15). The 1-transition elimination rewrite relation Ñp1q has the following properties, for all

1-charts C, C
1
, C

2
:

(i) If C
1

is weakly guarded, and C
1
Ñ˚

p1q
C
2
, then C2 is finite and w.g., and |VpC1q| ´ 1 ď |V pC2q| ď |V pC1q|.

(ii) Ñp1q is terminating from every finite w.g. 1-chart.

(iii) Ñp1q normal forms are 1-free 1-chart. Ñp1q normal forms of finite, w.g. 1-charts are finite 1-free 1-charts.

(iv) C
1
Ñ˚

p1q
C
2
ùñ pC

1
qp¨sp¨sp¨s “ pC2

qp¨sp¨sp¨s .

(v) If C is finite and weakly guarded, and C is 1-free, then:

C Ñ˚
p1q C ðñ pCqp¨sp¨sp¨s “ C .

(vi) If C is finite, and weakly guarded, then C Ñ˚
p1q

C
p¨sp¨sp¨s

, that is, C refines its induced chart C
p¨sp¨sp¨s

, and C
p¨sp¨sp¨s

is the unique Ñp1q

normal form of C.

Proof. For (i) it suffices to note: every Ñp1q step can only shorten 1-transition paths, but it cannot introduce a 1-transition
cycle; in every Ñp1q step at most one vertex, the target v of the 1-transition that is removed, can become unreachable.

For (ii) it suffices to obtain a measure mpCq on finite w.g. 1-charts C that decreases properly in every Ñp1q step from C.
We can use mpCq :“

ř
vPVpCq sCpvq where sCpvq denotes the sum of the lengths of all maximal 1-transition paths from v.

Note that, for both rules in Def. 3.13, the length of every maximal 1-transition path from v0 decreases by 1, whereas
maximal 1-transition paths from other vertices are either preserved, or are also shortened by 1 if they pass through v0.

For (iii) we note that every 1-transition gives rise to a Ñp1q step, so normal forms do not contain 1-transitions, and that
by (i), (ii) every finite w.g. 1-chart rewrites via finitely many Ñp1q steps to a normal form that is finite and w.g..

Statement (iv) can be shown by induction on the length of Ñp1q paths by using that every Ñp1q step preserves induced
transitions and induced termination. The direction “ñ” in (v) follows from (iv) and that Cp¨sp¨sp¨s “ C for 1-free 1-charts C.
For showing the direction “ð” in (v), suppose that pCqp¨sp¨sp¨s “ C for finite w.g. 1-charts C, C where C is 1-free. We have to
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show C1p¨sp¨sp¨s “ C. Then C Ñ˚
p1q C1 for an Ñp1q normal form C1 by (ii), which is finite, w.g., and 1-free by (iii). Then we get

C1p¨sp¨sp¨s “ Cp¨sp¨sp¨s “ C by using (iv), and thus obtain C1p¨sp¨sp¨s “ C.
Last, (vi) follows from “ð” in (v), letting C :“ C

p¨sp¨sp¨s
, and by recalling (iii).

A.3. Supplements for Section 4: LLEE-witnesses for 1-charts

Theorem (= Thm. 4.7). The entry/body-labeling yCpeq of Cpeq is a LLEE-witness of the 1-chart interpretation Cpeq of e, for

every e P StExppAq. Therefore the 1-chart interpretation Cpeq of a star expression e P StExppAq satisfies LEE.

The proof of this theorem can be given as an adaptation of the proof of a similar statement that is proved in [13], [19].
There, a different version of the 1-chart interpretation of star expressions is defined together with an entry/body-labeling (see
Rem. 4.11) that is proved to be a LLEE-witness. We only sketch the most important steps and lemmas of the adaptation.

Thm. 4.7 states that the entry/body-labeling yCpeq from Def. 4.5 is a LLEE-witness for the 1-chart interpretation Cpeq
of e. The proof of the theorem can be assembled from three auxiliary statements, Lemma A.12, Lemma A.13, and
Lemma A.14 below. For the formulation of these lemmas, we introduce the set AppCxtpAq of applicative contexts of

stacked star expressions over A by which we mean the set of contexts that are defined by the grammar:

Cr¨s ::“ l | Cr¨s ¨ e (where e P StExppAq) .

The first lemma states that transitions with normed targets of entry/body-labelings defined by the TSS pT pAq in Def. 4.5
are preserved under the operation of filling star expressions into applicative contexts. Lem. A.13 describes body transition
paths from product expressions filled in applicative contexts, and Lem. A.14 gathers important properties of paths and steps
of transitions.

Lemma A.12. If e1 is normed, and e Ñl e1 is derivable in pT pAq, then so is Cres Ñl Cre1s, for every l P tbou Y
trns | n P N`u.

Proof. By induction on the structure of applicative contexts, using the rules for ¨ in pT pAq.
Lemma A.13. Every maximal Ñbo path according to pT pAq, for e, f P StExppAq, is of either of the following three forms:

(i) Cre ¨ f s “ Cre0 ¨ f s Ñbo Cre1 ¨ f s Ñbo . . .Ñbo Cren ¨ f s Ñbo . . . is finite or infinite2 with normed star expressions

e0, e1, . . . , en, . . . P StExppAq such that e0 Ñbo e1 Ñbo . . .Ñbo en Ñbo . . . ,

(ii) Cre ¨ f s “ Cre0 ¨ f s Ñbo Cre1 ¨ f s Ñbo . . . Ñbo Cren ¨ fs “ Cr1 ¨ f s Ñbo Crf s Ñbo . . . with n P N, and normed

star expressions e0, e1, . . . , en P StExppAq such that e0 Ñbo e1 Ñbo . . .Ñbo en “ 1,

(iii) Cre ¨ f s “ Cre0 ¨ fs Ñbo Cre1 ¨ fs Ñbo . . . Ñbo Cren ¨ fs Ñbo en`1 Ñbo . . . with n P N, and normed star

expressions e0, e1, . . . , en P StExppAq and not normed en`1 such that e0 Ñbo e1 Ñbo . . .Ñbo en Ñbo en`1 Ñbo . . ..

Lemma A.14. The following statements hold for paths of transitions that are induced by the TSS pT pAq:
(i) There are no infinite Ñbo paths.

(ii) If e P StExppAq is normed, then eÑ˚
bo 1.

(iii) If eÑrns e
1 with n ą 0 and e, e1 P StExppAq, then e “ Crf˚s, f Ñl f

1
0
, e1 “ Crf 1

0
¨ f˚s, and n “ |f |˚` 1, for some

f P StExppAq, Cr¨s P AppCxtpAq, and normed f 10 P StExppAq.

(iv) Neither Ñbo and Ñrns steps, where n ě 1, increase the (syntactic) star height of expressions.

Proof of Thm. 4.7 (outline). The goal is to show that the entry/body-labeling yCpgq defined by the TSS pT pAq in Def. 4.5 is
a LLEE-witness of the 1-chart interpretation Cpgq, for every star expression g P StExppAq.

Instead of verifying the LLEE-witness conditions (W1), (W2), (W3) for all yCpgq where g P StExppAq is arbitrary, the
following four general statements can be shown, from which the proof goal follows (see below). The conditions below are
understood to be universally quantified over all e, e1, f, f1 P StExppAq, and n,m P N with n,m ą 0:

(LLEE-1) eÑrns e1 ùñ e1 Ñ
˚
bo e,

(LLEE-2) Ñbo is terminating from e,

(LLEE-3) e ÝÝÑ
t peq

rns ¨ ÝÝÑ
t peq

˚
bo f ùñ f ‰ 1 (the premise means that f is in CzCpgqpe, nq such that f ‰ e),

(LLEE-4) e ÝÝÑ
t peq

rns ¨ ÝÝÑ
t peq

˚
bo f Ñrms f1 ùñ n ą m,

Hereby ÝÝÑ
t peq

rns and ÝÝÑ
t peq

bo means Ñrns and Ñbo steps, respectively, that avoid e as their targets.

2. But note that Lem. A.14, (i), below then excludes infinite Ñbo paths.
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These four conditions imply that yCpgq is a LLEE-witness, for all g P StExppAq. Let g P StExppAq be arbitrary. Then

(LLEE-2) obviously implies (W1) for yCpgq. For each entry identifier xe, ny P EpyCpgqq it is straightforward to check that
the statements (LLEE-1), (LLEE-2), and (LLEE-3) imply that CzCpgqpe, nq satisfies the loop properties (L1), (L2), and (L3),

respectively, to obtain (W2) for yCpgq Finally, (LLEE-4) clearly implies the condition (W3) for yCpgq.
Then it is not difficult to verify the conditions (LLEE-1)–(LLEE-4) above. The arguments follow closely the proof of

Lemma 5.13 in [13], [19], using the slightly different versions of the last two lemmas above, Lem. A.13 and Lem. A.14.

A.4. Supplements for Section 5: Counterexample

Lemma (= Lem. 5.5). For every finite 1-chart D with LLEE–1-lim there is a finite 1-chart D1 with the same induced chart,

that is, D1
p¨sp¨sp¨s
“ D

p¨sp¨sp¨s
, and with a 1-transition limited LLEE-witness D̂1 such that it holds:

(ptt) If for a loop-entry identifier xv, ny P EpD̂1q the loop sub-1-chart CxD1pv, nq of D1 (a) consists of a single scc, (b) contains

no other loop vertex than v (v is innermost), then it contains only proper-transition targets in D1.

Proof of Lem. 5.5. It suffices to show that in a finite 1-chart D1 with LLEE–1-lim, and with a 1-transition limited LLEE-wit-

ness D̂1 every violation of (ptt) for a loop-entry identifier xv, ny P EpD̂1q can be removed with as result a finite 1-chart D1

with a 1-transition limited LLEE-witness D̂1 that has one violation of (ptt) less than D and D̂, and that has the same induced
chart as D, that is, D1

p¨sp¨sp¨s
“ D

p¨sp¨sp¨s
. This is because repeated application of this transformation statement to a 1-chart with

LLEE–1-lim D then yields a LLEE-1-chart D1 and a LLEE-witness D̂1 with (ptt) and with the same induced chart, as stated
by the lemma.

Suppose that D is a 1-chart with 1-transition limited LLEE-witness D̂ such that there is a violation of (ptt) in the form

of a loop-entry identifier xv, ny P EpD̂1q such that C pDpv, nq (a) consists of a single scc, (b) is innermost, but (c) it contains
vertices that are not proper-transition targets in D.

We first show that v is the single vertex of C pDpv, nq that is not a proper-transition target in D. For this, let u be a
vertex of C pDpv, nq that is not a proper-transition target. Then u must be the target of a 1-transition. But as 1-transitions are

back-links in D̂ since D̂ is 1-transition limited, it follows that u must be a loop vertex of D̂. However, as v is an innermost

loop vertex of D̂ by assumption (b), we conclude that u “ v. Since C pDpv, nq contains vertices that are not proper-transition
targets by assumption (c), it follows that v must be such a vertex. Consequently it is the single vertex in C pDpv, nq that is
not a proper-transition target.

Next we note that C pDpv, nq cannot contain a 1-transition self-loop at v, because D is weakly guarded as a 1-chart
with LLEE–1-lim. Therefore all transitions from v in C pDpv, nq are proper transitions. We choose a maximal path π of
proper transitions from v in C pDpv, nq. This path π departs from v in the first step, and does not return to v, because
otherwise v would be a proper-transition target. The path π must be finite, due to loop 1-chart condition (L2) on the loop
sub-1-chart C pDpv, nq of D. Therefore π stops at a vertex w from which no further proper transition departs. However,
since C pDpv, nq is an scc by assumption (a), there must be an outgoing 1-transition from w. As D is 1-transition limited,

this 1-transition must be a back-link to v. In the example below left, for 1-chart D “ D1 with LLEE-witness D̂1, this
vertex w is unique, but there are three possible paths from v to w. In the example below right, for 1-chart D “ D

2
with

LLEE-witness D̂
2
, there are two possible choices for w (of which only one is drawn).

C pD1
pv, 1q v

r1s
a

r1s
b

v1
c

c

1

v2
c

1

w

1

C pD1
1

pw, 1q

v1
c

c

1

v2

c 1

w

r1s a r1sb

pD1qp¨sp¨sp¨s “ pD11qp¨sp¨sp¨s

C pD2
pv, 1q

v

r1s
a

r1s
b

w

1

u

1

pD2qp¨sp¨sp¨s “ pD1
2
qp¨sp¨sp¨s

C pD1
2

pw, 1q

w r1s

br1s a

u

1

Since the only outgoing transition from w in D is a 1-transition to v (by construction of w), the vertices w and v are
1-bisimilar in D (as indicated by the magenta links in the pictures).

We can now transform D and D̂ by removing v, and by letting the loop sub-1-chart start at w instead, transferring the

loop-entry transitions in D̂ from v to w, directing 1-transition back-links in D̂ to v now over to w, and moving possible
termination at v over to w (see the second example above), as well as also changing the source of transitions that depart

from v to w. In this way we obtain from D and D̂ a 1-chart D1 with a 1-transition limited LLEE-witness D̂1 such that:

Ź induced transitions in D are preserved as induced transitions of D̂,
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Ź therefore D1p¨sp¨sp¨s “ D
p¨sp¨sp¨s

follows,
Ź now CxD1pv, nq consists only of proper-transition targets,

Ź other innermost loop sub-1-charts of D with respect to D̂ are not changed.

In this way we have shown the proof obligation for the lemma.

Lemma (= Lem. 5.6). Neither of the 1-charts C
1

and C
10

in Ex. 5.1 can be refined into a wg-LLEE-1-chart.

Part of the proof of Lem. 5.6 for C1 that is analogous to the argument for C2 in the submission. In the proof of Lem. 5.6
we had to show, for the 1-charts C

1
in Ex. 5.3, and C

2
defined in the proof, in particular:

(S2) Neither C
1

nor C
2

can be refined into a 1-chart with LLEE–1-lim.

We argued that for C
2
, and stated that the argument is analogous for C

1
. Here we demonstrate that that is indeed the case.

We now assume that a 1-chart D with 1-transition limited LLEE-witness D̂ is a 1-transition refinement of C
1
. Then

D Ñ`
p1q C1 follows, because C1 is not a LLEE-1-chart (see Lem. 5.4) contrary to D.

Now we note that C
1

cannot be refined in the direction of the 1-transition limited LLEE-witness D̂ by adding 1-transition
back-links to vertices that are already present in C

1
. This is because, in order to satisfy the layeredness condition (W3) for

the LLEE-witness D̂, any such back-link needed to start from v, or from a vertex outside of C pDpv, 1q (the sub-1-chart of

C
1

delimited by D̂ and by its entry/body-labeling Ĉ
1
), and target a different of these vertices that furthermore needs to be

a substate. But there is no such a vertex in C2: neither v nor one of w1, c1 , c2 , f outside of C pDpv, 1q is a substate of
either of these five vertices in C

1
.

Consequently, the only option to refine Ĉ
1

towards the 1-transition limited LLEE-witness D̂ is to add a vertex u that
is not a proper-transition target, with 1-transition back-links directed to it from one of the five vertices v, w1, c1 , c2 , or

f , and such that proper transitions in C
1

arise as induced transitions via u. The only option to simplify the structure is to
share, via the new vertex u proper transitions from two of these five vertices. Such a non-trivial sharing of transitions is
possible only between w1 and v, because none of other pairs of vertices have an action label of an outgoing transition in
common. The maximal option is to share, via the new vertex u, all a- and c-transitions that depart from v and from w1.
This leads to the 1-chart C11 on the left below:

C1
1

{ Ĉ1
1 abc “ v

a

a

b

1

u “ ac

a a

c cw1 “ acd

1

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

d

1

e

e

f

f

abc “ v

a
ac

c

b

C1 { Ĉ1

w1 “ acd
a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

d

1

e

e

f

f

Ñ`
p1q

But we note now that no loop-entry transition is created at u in C11, and so the added 1-transitions are not back-links.

Therefore this refinement step is not one into the direction of the (assumed) 1-transition limited LLEE-witness D̂.
It would be possible, however, to share only a non-empty subset of the four transitions at u. For instance, when sharing

only the c-transitions, the 1-chart C11 below on the left is obtained:

21



C
2
1

{ Ĉ2
1 abc “ v

a

a

b

1

u “ c

c cw1 “ acd

a

a

1

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

d

1

e

e

f

f

abc “ v

a
ac

c

b

C1 { Ĉ1

w1 “ acd
a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

d

1

e

e

f

f

Ñ`
p1q

But also now there is not a loop-entry transition arising at u, either.
It is clear from these two examples that also for all non-empty subsets of a- and c-transitions from v and w1 the operation

of sharing them via the new vertex u does not lead to a loop-entry transition at u: maximal paths from u must, in order
to be able to return to u, reach w1 or v first; but there they can always avoid taking one of the 1-transitions back to u.
Therefore none of these options can lead to a 1-transition refinement in which the introduced 1-transitions are back-links,

as they would have to be in order to be part of the 1-transition limited LLEE-witness D̂ of the 1-chart D that we assumed
refines C1.

At this point we must recognize that it is not possible to add such a 1-transition in order to refine C
1

further towards
the LLEE-1-chart D with LLEE–1-lim, as assumed. Our assumption that this is possible cannot be upheld.

Thus we have shown the part of (S2) now also for C1.

Example (Combining the refinements of C10 into C
1

and into C
2

does not yield a loop sub-1-chart, let alone a LLEE-1-chart).
In the proof of Lem. 5.6 we dismissed the option of a refinement that combines those refinement steps that lead from C10
in Ex. 5.3 to the 1-charts C

1
in Ex. 5.3 and to C

2
in the proof of that lemma. But it can be instructive to see concretely

why we could do that, and reassuring to recognize that, apart from not leading to a 1-chart with LLEE–1-lim, there is not
even a single loop sub-1-chart created.

By adding to C10 the 1-transition in C
1

as well as the 1-transition in C
2
, and by removing the transitions that have been

eliminated from C10 to C
1

and from C10 to C
2

(the a- and c-transitions from w2 in both of these steps, the b-transition from
w2 in the first step, and the d-transition from w2 in the second step) we obtain the 1-chart C

1{2 of the form below left:

abc “ v

a
ac

c

b

C1{2

acd
a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

abcd2 “ w2

1

1

e

e

f

f

abc “ v

a
a

c
c

b

C10

acd
a

a
c c

d

a1 a1

a1
a2

a2

a2

c1

c1

c1

c2

c2

c2

pabcdq2 “ w2

d

a
a

b

c c

e

e

f

f

Ñ`
p1q

The 1-chart C
1{2 is obviously a refinement of C10, which arises by from C

1{2 by two Ñp1q steps. Furthermore, every vertex
of C

1{2 is a proper-transition target.
But C

1{2 is not a 1-chart with LLEE–1-lim, because (as stated in the proof of Lem. 5.6): if there were a 1-transition
limited LLEE-witness of C

1{2, then the vertex w2 would have back-links to two different loop vertices, which is not possible
in a LLEE-witness. For this reason C

1{2 cannot be refined into a 1-chart with LLEE–1-lim, either.
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What is more, C
1{2 is not a LLEE-1-chart at all, because (in view of Prop. 4.4) it does not satisfy LEE. To verify this,

we check that none of the transitions of C
1{2 is a loop-entry transition. Indeed, for every transition τ “ xu, a, u1y in C

1{2

there is an infinite path from u1 that does not visit the source u of τ . Hence no transition induces a loop subchart. Therefore
C
1{2 does not possess loop subcharts. But as C

1{2 exhibits infinite behavior, it follows that C
1{2 does not satisfy LEE.

Therefore via the combination of refinements from C10 to C
1

and to C
2

not only no progress has been made towards a
refinement of C10 with LLEE–1-lim, but also no progress towards a refinement of C10 into a LLEE-1-chart.
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