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Abstract. Milner defined an operational semantics for regular expressions as finite-state
processes. In order to axiomatize bisimilarity of regular expressions under this process
semantics, he adapted Salomaa’s complete proof system for equality of regular expressions
under the language semantics. Apart from most equational axioms, Milner’s system Mil
inherits from Salomaa’s system a non-algebraic rule for solving fixed-point equations.
Recognizing distinctive properties of the process semantics that render Salomaa’s proof
strategy inapplicable, Milner posed completeness of the system Mil as an open question.

As a proof-theoretic approach to this problem we characterize the derivational power that
the fixed-point rule adds to the purely equational part Mil´́́ of Mil. We do so by means of a
coinductive rule that permits cyclic derivations that consist of a finite process graph (maybe
with empty steps) that satisfies the layered loop existence and elimination property LLEE,
and two of its Mil´́́-provable solutions. By adding this rule instead of the fixed-point rule
in Mil, we define the coinductive reformulation cMil as an extension of Mil´́́ . For showing
that cMil and Mil are theorem equivalent we develop effective proof transformations from
Mil to cMil, and vice versa. Since it is located half-way in between bisimulations and proofs
in Milner’s system Mil, cMil may become a beachhead for a completeness proof of Mil.

This article extends our contribution to the CALCO 2021 proceedings. Here we refine
the proof transformations by framing them as eliminations of derivable and admissible rules,
and we link coinductive proofs to a coalgebraic formulation of solutions of process graphs.

1. Introduction

Milner introduced in [Mil84] a process semantics J¨KP for regular expressions e as finite-state
process graphs JeKP . Informally the process interpretation is defined as follows, for regular
expressions built from the constants 0 and 1 by using the regular operators `, ¨, and p¨q˚:

‚ 0 stands for deadlock, 1 for successful termination, letters a for atomic actions,

‚ the operators ` and ¨ are interpreted as choice and concatenation of processes, respectively,

‚ (unary) Kleene star p¨q˚ denotes iteration with the option to terminate successfully before
each execution of the iteration body (then even infinitely many iterations are possible).

Key words and phrases: regular expressions, process theory, bisimilarity, coinduction, interpretational
proof theory, proof transformations, derivable and admissible inference rules.

˚ This is a special-journal version of the paper “A Coinductive Version of Milner’s Proof System for Regular
Expressions Modulo Bisimilarity” [Gra21b] presented at CALCO 2021.
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Milner called regular expressions ‘star expressions’ when they are interpreted as processes.
He formulated this semantics after developing a complete equational proof system for equality
of ‘a class of regular behaviors’. By that he understood the bisimilarity equivalence classes of
finite-state processes that are represented by µ-terms. Then he defined the process semantics
by interpreting regular expressions as µ-term representations of finite-state processes. In
doing so, he defined ‘star behaviors’, the bisimilarity equivalence classes of the interpretations
of star expressions as a subclass of ‘regular behaviors’. As an afterthought to the complete
proof system for regular behaviors, he was interested in an axiomatization of equality of
‘star behavior’ directly on star expressions (instead of on µ-term representations). For this
purpose he appropriately adapted Salomaa’s complete proof system [Sal66] for language
equivalence on regular expressions to a system Mil that is sound for equality of denoted
star behaviors. But Milner noticed that completeness of Mil cannot be shown in analogy
to Salomaa’s completeness proof. He formulated completeness of Mil as an open problem,
because he realized a significant difficulty due to a peculiarity by which the process semantics
contrasts starkly with the language semantics of regular expressions.

The process semantics of regular expressions is incomplete in the following sense. While
for every finite-state automaton M there is a regular expression e whose language interpreta-
tion JeKL coincides with the language accepted by M (formally LpMq “ JeKL), it is not the
case that every finite-state process is the process interpretation of some star expression, not
even modulo bisimilarity. Giving a counterexample that demonstrates this, Milner proved in
[Mil84] that the process graph G1 below with linear recursive equational specification SpG1q

does not define a star behavior, and hence is not bisimilar to the process interpretation of a
star expression. He conjectured that the same is true for the process graph G2 below with
specification SpG2q. That was confirmed later by Bosscher [Bos97].
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X3 “ a1 ¨X1 ` a2 ¨X2

(Here and later we highlight the start vertex of a process graph by a brown arrow , and
emphasize a vertex v with immediate termination in brown as including a boldface ring.)
It follows that the systems of SpG1q and SpG2q of guarded equations with star expressions
cannot be solved by star expressions modulo bisimilarity. Due to soundness of Mil, also the
specifications SpG1q and SpG2q are unsolvable by star expressions when equality is interpreted
as provability in Mil. However, if all actions in the process graphs G1 and G2 are replaced
by a single action a, obtaining graphs Gpaq

1 and Gpaq

2 , then the arising specifications SpGpaq

1 q

and SpGpaq

2 q are solvable, modulo bisimilarity, and also with respect to provability in Mil.
Indeed it is easy to verify that solutions are obtained by letting X1 :“ X2 :“ X3 :“ a˚ ¨ 0 in
SpGpaq

1 q, and by letting Y1 :“ Y2 :“ a˚ in SpGpaq

2 q.
The extraction procedure of solutions of specifications in Salomaa’s proof completeness

is able to solve every linear system of recursion equations, independently of the actions
occurring. It follows that an analogous procedure is not possible for solving systems of
linear recursion equations in the process semantics. The extraction procedure for linear
specifications with respect to the language semantics is possible because both laws for
distributing ¨ over ` are available, and indeed are part of Salomaa’s proof system. But Mil
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Figure 1: A LLEE-witnessed coinductive proof of pa ` bq˚ ¨ 0 “ pa ¨ pa ` bq ` bq˚ ¨ 0 with
underlying 1-chart G and LLEE-witness Ĝ (with colored, indexed loop-entry
transitions). The proof uses the abbreviations g :“ a ` b and h :“ a ¨ pa ` bq ` b .

does not contain the left-distributivity law x ¨ py`zq “ x ¨y`x ¨z, because it famously is not
sound under bisimilarity. In the presence of only right-distributivity px ` yq ¨ z “ x ¨ z ` y ¨ z
in Mil the extraction procedure from Salomaa’s proof does not work, because failure of
left-distributivity oftentimes prevents expressions to be rewritten in such a way that the
fixed-point rule RSP˚ in Mil can be applied successfully. But if RSP˚ is replaced in Mil by a
general unique-solvability rule scheme for guarded systems of equations (see Definition 2.11),
then a complete system arises (noted in [Gra06]). Therefore completeness of Mil hinges on
whether the fixed-point rule RSP˚ enables to prove equal any two star-expression solutions of
a given guarded system of equations, on the basis of the purely equational part Mil´́́ of Mil.

As a stepping stone for tackling this difficult question, we characterize the derivational
power that the fixed-point rule RSP˚ adds to the subsystem Mil´́́ of Mil. We do so by means
of ‘coinductive proofs’ whose shapes have the ‘loop existence and elimination property’ LEE
from [GF20a]. This property stems from the interpretation of (1-free) star expressions,
which is defined by induction on syntax trees, creating a hierarchy of ‘loop subgraphs’.
Crucially for our purpose, linear guarded systems of equations that correspond to finite
process graphs with LEE are uniquely solvable modulo provability in Mil´́́. The reason is
that process graphs with LEE, which need not be in the image of the process semantics, are
amenable to applying right-distributivity and the rule RSP˚ for an extraction procedure
like in Salomaa’s proof (see Section 6). These process graphs can be expressed modulo
bisimilarity by some star expression, which can be used to show that any two solutions
modulo Mil´́́ of a specification of LEE-shape are Mil-provably equal. This is a crucial step
in the completeness proof by Fokkink and myself in [GF20a] for the tailored restriction BBP
of Milner’s system Mil to ‘1-free’ star expressions.

Thus motivated, we define a ‘LLEE-witnessed coinductive proof’ as a process graph G
with ‘layered’ LEE (LLEE) whose vertices are labeled by equations between star expressions.
The left- and the right-hand sides of the equations in the vertices of G have to form a solution
vector of a specification corresponding to the process graph G. That specification, however,
needs to be satisfied only up to provability in Mil´́́ from sound assumptions. Such coinductive
derivations are typically circular, like the one depicted in Figure 1 of the semantically valid
equation pa` bq˚ ¨0 “ pa ¨ pa` bq ` bq˚ ¨0 . That example is intended to give a first impression
of the concepts involved, despite of the fact that some details can only be appreciated later,
when this example will be revisited in Example 5.3. We describe these concepts below.

The process graph G in Figure 1, which is given together with a labeling Ĝ that is a
‘LLEE-witness’ of G. The colored transitions with marking labels rns, for n P N`, indicate
the LLEE-structure of G, see Section 4. The graph G underlies the coinductive proof on
the left (see Example 5.3 for a justification). G is a ‘1-chart’ that is, a process graph with



17:4 C. Grabmayer Vol. 19:2

e˚
0

hkkkikkkj

pa ` bq˚ ¨ 0 “

f
hkkkkkkkkikkkkkkkkj

pa ¨ pa ` bq ` bq ¨p

e˚
0

hkkkikkkj

pa ` bq˚ ¨ 0q ` 0
ι, RSP˚

pa ` bq˚ ¨ 0 “ pa ¨ pa ` bq ` bq˚ ¨ 0

e˚0 ¨ 0 “ f ¨ pe˚0 ¨ 0q ` 0
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Figure 2: Mimicking an instance ι of the fixed-point rule RSP˚ (above) in Milner’s system
Mil “ Mil´́́`RSP˚ by a coinductive proof (below) over Mil´́́`tpremise of ιu with

LLEE-witness Ĉpf˚ ¨ 0q.

1-transitions that represent empty steps. Here and later we depict 1-transitions as dotted
arrows. For 1-charts, ‘1-bisimulation’ is the adequate concept of bisimulation (Definition 2.4).

We showed in [Gra21c, Gra20] that the process (chart) interpretation Cpeq of a star
expression e is the image of a 1-chart Cpeq with LLEE under a functional 1-bisimulation. In
this example, G “ Cph˚ ¨ 0q maps by a functional 1-bisimulation to interpretations of both
expressions in the conclusion. The correctness conditions for such coinductive proofs are
formed by the requirement that the left-, and respectively, the right-hand sides of formal
equations form ‘Mil´́́-provable solutions’ of the underlying process graph: an expression at a
vertex v can be reconstructed, provably in Mil´́́, from the transitions to, and the expressions
at, immediate successor vertices of v. Crucially we establish in Section 6, by a generalization
of arguments in [GF20a, GF20b] using RSP˚, that every LLEE-witnessed coinductive proof
over Mil´́́ can be transformed into a derivation in Mil with the same conclusion.

This raises the question of whether the fixed-point rule RSP˚ of Mil adds any derivational
power to Mil´́́ that goes beyond those of LLEE-witnessed coinductive proofs over Mil´́́,
and if so, how far precisely. In Section 7 we show that every instance of the fixed-point
rule RSP˚ can be mimicked by a LLEE-witnessed coinductive proof over Mil´́́ in which
also the premise of the rule may be used. It follows that the derivational power that RSP˚

adds to Mil´́́ within Mil consists of iterating such LLEE-witnessed coinductive proofs along
finite (meta-)prooftrees. The example in Figure 2 is intended to give a first idea of the
construction that we will use (in the proof of Lemma 7.2) to mimic instances of RSP˚. Here
this construction results in a coinductive proof that only differs slightly from the one with the
same underlying LLEE-1-chart we saw earlier. We will revisit this example in Example 7.6.

Based on the two transformations from coinductive proofs to derivations in Mil, and of
applications of the fixed-point rule to coinductive proofs, we reformulate Milner’s system Mil
as a theorem-equivalent proof system cMil. For this, we replace the fixed-point rule RSP˚

in Mil with a rule that permits to infer an equation e “ f from a finite set Γ of equations
if there is a LLEE-witnessed coinductive proof over Mil´́́ plus the equations in Γ that has
conclusion e “ f . We also define a theorem-equivalent system CLC (‘combining LLEE-wit-
nessed coinductive provability’) with the equational coinductive proof rule alone. In the
formalization of these systems we depart from the the exposition in [Gra21a, Gra21b]. There,
we used a hybrid concept of formulas that included entire coinductive proofs, which then
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could be used as specific rule premises. Here, the proof systems are purely equational, and
coinductive proofs occur only as side-conditions of rules that formalize coinductive provability.

Additionally, we formulate proof systems cMil and CC that arise from cMil and CLC
by dropping ‘LLEE-witnessed’ as a requirement for coinductive proofs. These systems are
(obviously) complete for bisimilarity of process interpretations, because they can mimic the
unique solvability rule scheme for guarded systems of specifications mentioned before.

Inspiration for cyclic proofs from related and previous work. Apart from their origin
from a question in process theory, the results described here were inspired by coinductively
motivated proof systems with derivations of cyclic form, and by our previous work on their
proof-theoretic links to traditional equational proof systems. This is a brief account of those
direct influences, without drawing wider connections to work on cyclic proofs.

About proofs by cyclic arguments that express bisimulations we learned from Rutten
and Jacobs [JR97, Rut98], and about formalized cyclic derivations via the coinductively
motivated proof systems by Brandt and Henglein [BH98]: BH“ for unwinding-equivalence,
and BHď for the subtyping relation between recursive types in µ-term notation. Derivations
in BH“ roughly represent bisimulations up to transitivity and symmetry. Via a connection
of BH“ to a tableaux-like system AK“ by Ariola and Klop [AK96] with cyclic deductions
we later recognized that a tableaux system HS with loop-detecting deductions of cyclic form
similar to AK“ had already been used earlier by Hüttel and Stirling in [HS91, HS98] to show
that bisimilarity of normed context-free processes is decidable. In [Gra05b] we developed a
simple coinductively motivated proof system G“L for language equivalence “L of regular
expressions. That system was later refined substantially (using more flexible rules, similar to
BH“), and generalized (similar to as BHď generalized BH“) to one for language containment
of regular expressions by Henglein and Nielsen in [HN11].

However, all of these proof systems use derivations in the form of proof-trees. Thus they
permit cyclic derivations only of ‘palm-tree’ form (ordered trees with backlinks, [Tar72]). In
contrast, we will permit cyclic derivations to have the form of general transition graphs. In
this manner we ‘free’ proof-graphs from the requirement to only exhibit ‘vertical sharing’
[Blo01], and move close to informal reasoning as used in coalgebra like in [JR97, Rut98].

The transformations that we construct in Section 6 and Section 7 have been inspired
by the proof-theoretic interpretations that we developed in [Gra05a] between the proof
system AC“ for unwinding-equality of recursive types by Amadio and Cardelli [AC93] (a
Hilbert-style proof system with a fixed-point rule analogous to RSP˚) and the system BH“ by
Brandt and Henglein. The transformation from cMil to Mil in Section 6 is also similar to one
we described in [Gra05b] that transforms derivations in G“L into derivations in Salomaa’s
system F1 [Sal66] for “L (where F1 contains a fixed-point rule just like RSP˚).

Relation with the conference article. This article provides significantly more details
and explanations than the article [Gra21b] in the proceedings of CALCO 2021. Furthermore
it contains the following additions of content:

Ź Detailed proofs for the proof transformations from cMil to Mil (in Section 6), and from
Mil to cMil (in Section 7).

Ź Proof-theoretic explanation of the transformations as the elimination of rules that are
derivable or admissible (based on Definition 2.9, Lemma 2.10 in Section 2).



17:6 C. Grabmayer Vol. 19:2

– For the proof transformation from the coinductive reformulation cMil to Milner’s system
Mil we show that circular coinductive proofs over the purely equational part Mil´́́ of
Mil are admissible in Mil (see Lemma 6.10).

– For the proof transformation from Milner’s system Mil to its coinductive reformulation
cMil we show that the fixed-point rule RSP˚ of Mil is derivable in cMil (see Lemma 7.4).

Ź A statement that illustrates that the transformation from cMil to Mil can provide inroads
for a completeness proof of Milner’s system Mil (see Corollary 6.14).

Ź A diagram that gives an overview of all developed proof transformations (see Figure 18).

Ź An example that provides a sanity-check on the proof transformation from cMil to Mil.
It demonstrates that this transformation cannot work for mimicking instances of the
fixed-point rule without guardedness side-condition (see Non-Example 7.7).

Ź An illustration of the difference between LEE-witnesses (witnesses of the loop existence
and elimination condition LEE), and witnesses of ‘layered LEE’ (LLEE-witnesses) by an
example that is based on different runs of the loop elimination procedure (see Figure 5).

Ź A section in which we informally link the concept of ‘provable solution’ (Definition 2.16)
that is the basis for our concept of ‘coinductive proof’ to a coalgebraic formulation of
this concept by Schmid, Rot, and Silva in [SRS21] (see Section 3).

Relation with the completeness proof of Milner’s system in [Gra22a]. The com-
pleteness proof of Milner’s system Mil summarized in [Gra22a] with report [Gra22b] was
finished and written only after the article [Gra21b] for CALCO 2021. Indeed, we found the
results in Section 6 of [Gra21b] and here in Section 7 (that instances of the fixed-point rule
RSP˚ can be mimicked by LLEE-witnessed coinductive proofs) in an effort to prepare for
that completeness proof. In particular, we wanted to be able to argue for the expedience
of the use of LLEE-1-charts (see Definition 4.9) despite of the fact that reasoning with
LLEE-1-charts towards a completeness proof of Mil encounters a crucial obstacle1. Without
any argumentation that links derivations in Milner’s system closely to LLEE-1-charts, it
could be conceivable that this obstacle does not have any wider significance. Namely, it
could be entirely specific to the use of LLEE-1-charts, while a completeness proof might
possibly be based on quite different concepts. The situation changed, however, after we
realized that instances of the fixed-point rule can always be modeled (see Lemma 7.4) by
cyclic proofs of the shape of guarded LLEE-1-charts (see Definition 5.1), and proofs in
Milner’s system can be transformed (see Theorem 7.8) into meta-prooftrees of such cyclic
proofs (derivations in the system CLC, see Definition 5.8). On the basis of these results we
could argue that in principle every completeness proof of Milner’s system Mil can be routed
through (see Section 8) arguments in which LLEE-1-charts appear front and central.

The completeness proof of Mil in [Gra22a, Gra22b] uses additional observations and
concepts (above all, a ‘crystallization procedure’ of LLEE-1-charts for minimization under
1-bisimilarity), and is not formulated in terms of the cyclic proof systems that we introduce
here. However, the results of Section 6, the transformation of LLEE-witnessed coinductive
proofs into derivations in Mil (see Proposition 6.8) are of central importance for formulating
the completeness proof in [Gra22a, Gra22b]. Indeed, they prove the lemmas (E) (extraction
of provable solutions from guarded LLEE-1-charts) and (SE) (provable solution equality in
guarded LLEE-1-charts) of the completeness proof as listed in Section 5 of [Gra22a, Gra22b].

1Namely the fact that LLEE-1-charts are not closed under ‘1-bisimulation collapse’, an observation that
is central for the crystallization procedure sketched in [Gra22a].



Vol. 19:2 A COINDUCTIVE REFORMULATION OF MILNER’S PROOF SYSTEM 17:7

Conversely, we here use another one of the lemmas in Section 5 of [Gra22a, Gra22b],
the lemma (T) (transfer of provable solutions conversely along functional 1-bisimulations),
for illustrating the results of Section 6: we prove two (specific) completeness properties of
LLEE-witnessed coinductive proofs in relation to Milner’s system (see Corollary 6.14).

The completeness proof for Milner’s system Mil with respect to process semantics
equality of star expressions implies that the coinductive versions cMil and CLC of Mil that
we introduce here are complete (in the same sense) as well. This is because our main result
(see Theorem 7.8) states that cMil and CLC have the same derivational power as Mil.
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Overview. We start in Section 2 with introducing basic definitions concerning the process
semantics of regular expressions, and concepts that we will need. We define star expressions,
finite process graphs with 1-transitions, (1-)bisimulations and 1-bisimilarity, and the process
semantics of star expressions. Then we introduce equational-logic based, and equation-based
proof systems, with Milner’s system Mil and two variants as first examples. Also, we define
when inference rules are derivable or admissible in such a proof system, and establish easy
interconnections. Finally we define the concept of solution for 1-charts with respect to an
equational proof system. In Section 3 we link to an insightful coalgebraic characterization
of provable solutions of 1-charts that is due to Schmid, Rot, and Silva in [SRS21]. We
reformulate it in our terminology, but do not prove it in detail, as our development does not
depend on it. In Section 4 we explain concepts and definitions concerning the (layered) loop
existence and elimination property (L)LEE from [GF20b, GF20a], and recall the ‘1-chart
interpretation’ of star expressions from [Gra20, Gra21c], which guarantees LLEE.

In Section 5 we introduce ‘coinductive proofs’ over equational proof systems. We
formulate proof systems CC and CLC with appropriate rule schemes that permit to use and
combine coinductive proofs, and respectively, LLEE-witnessed coinductive proofs. Then we
introduce the coinductive reformulation cMil of Mil as an extension of the equational part
Mil´́́ of Mil. We also establish basic proof-theoretic connections between these new systems.

In Section 6 we show that coinductive proofs over proof systems with derivational power
not greater than Milner’s system Mil can be transformed into derivations in Mil. We use
this fact to obtain a proof transformation from cMil to Mil.
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In Section 7 we demonstrate that every instance ι of the fixed-point rule RSP˚ of Mil
can be mimicked by a coinductive proof of the conclusion of ι where (correctness conditions
of) that proof may use the equational part Mil´́́ of Mil plus the premise equation of ι. We
apply this central observation for defining a proof transformation from Mil to cMil. With
this transformation and the one constructed in Section 6 we prove that the proof systems
CLC and cMil are theorem-equivalent with Milner’s system Mil.

In the final section, Section 8, we recapitulate our motivation for introducing coinductive
circular proofs, and summarize our results. We argue that the coinductive proof systems
CLC and cMil can be viewed as being located roughly half-way in between derivations in Mil
and bisimulations between process interpretations of star expressions. We conclude with
initial ideas about a proof strategy for a completeness proof of CLC and cMil, which would
yield a completeness of Mil.

2. Process semantics for star expressions, and Milner’s proof system

Here we fix terminology concerning star expressions, 1-charts, 1-bisimulations; we exhibit
Milner’s system (and a few variants), and recall the chart interpretation of star expressions.

Definition 2.1 (star expressions). Let A be a set of actions. The set StExppAq of star
expressions over actions in A are strings that are defined by the following grammar:

e, e1, e2 ::“ 0 | 1 | a | pe1 ` e2q | pe1 ¨ e2q | e˚ (where a P A)

We will drop outermost brackets, and those that are expendable according to the precedence
of star ˚ over composition ¨ and choice `, and of composition ¨ over choice `. We use e, f, g, h,
possibly indexed and/or decorated, as identifiers (for reasoning on the meta-level like with
‘syntactical variables’ [Sho67]) for star expressions. We write ” for syntactic equality between
star expressions denoted by such identifiers, and values of star expression functions, in a
given context, but we permit “ in formal equations between star expressions. We denote by
EqpAq the set of formal equations e “ f between two star expressions e, f P StExppAq.

We define sum expressions
řn

i“1 ei inductively as 0 if n “ 0, as e1 if n “ 1, and as

p
řn´1

i“1 eiq ` en if n ą 0, for n P N “ t0, 1, 2, . . .u. The (syntactic) star height |e|˚ of a star
expression e P StExppAq is the maximal nesting depth of stars in e, defined inductively by:
|0|˚ :“ |1|˚ :“ |a|˚ :“ 0, |e1 ` e2|˚ :“ |e1 ¨ e2|˚ :“ max t|e1|˚, |e2|˚u, and |e˚|˚ :“ 1 ` |e|˚.

Definition 2.2 (1-charts, and charts). A 1-chart is a 6-tuple xV,A, 1, vs,Ñ, Óy where V is a
finite set of vertices, A is a set of (proper) action labels, 1 R A is the specified empty step label,
vs P V is the start vertex (hence V ‰ ∅), Ñ Ď V ˆ A ˆ V is the labeled transition relation,
where A :“ A Y t1u is the set of action labels including 1, and Ó Ď V is a set of vertices with
immediate termination. In such a 1-chart, we call a transition in Ñ X pV ˆ A ˆ V q (labeled
by a proper action in A) a proper transition, and a transition in Ñ X pV ˆ t1u ˆ V q (labeled
by the empty-step symbol 1) a 1-transition. Reserving non-underlined action labels like
a, b, . . . for proper actions, we use underlined action label symbols like a for actions labels in
the set A; in doing so we highlight also in firebrick transition labels that may involve 1.

We say that a 1-chart is weakly guarded if it does not contain cycles of 1-transitions.
By a chart we mean a 1-chart C that is 1-transition free in the sense that all of its

transitions are proper. We will use the symbols C and C (also with subscripts) as identifiers
for 1-charts, and charts, respectively. We use the notations V pCq, and V pCq for quick reference
to the set of vertices of a 1-chart C, and of a chart C.
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Below we define the process semantics of star (regular) expressions as (1-free) charts, and
hence as finite, rooted labeled transition systems, which will be compared with (1-)bisimila-
rity. The charts that will be obtained in this way correspond to non-deterministic finite-state
automata that are defined by iterating partial derivatives [Ant96] (1996) of Antimirov (who
did not aim at a process semantics). Indeed, Antimirov’s result that every regular expression
only has finitely many iterated partial derivatives (Corollary 3.5 in [Ant96]) guarantees
finiteness of chart interpretations as defined below. We will use the notation Cpeq with as
meaning ‘the chart induced by (the process interpretation of) the star expression e’.

Definition 2.3. The chart interpretation of a star expression e P StExppAq is the 1-tran-
sition free chart Cpeq “ xV peq,A, 1, e,Ñ X pV peqˆAˆV peqq, Ó X V peqy, where V peq consists
of all star expressions that are reachable from e via the labeled transition relation Ñ Ď

StExppAq ˆ A ˆ StExppAq that is defined, together with the immediate-termination relation
Ó Ď StExppAq, via derivability in the transition system specification (TSS) T pAq, for a P A,
e, e1, e2, e

1, e11, e
1
2 P StExppAq:

1Ó

eiÓ

pe1 ` e2qÓ

e1Ó e2Ó

pe1 ¨ e2qÓ pe˚qÓ

a
a
ÝÑ 1

ei
a
ÝÑ e1i

e1 ` e2
a
ÝÑ e1i

e1
a
ÝÑ e11

e1 ¨ e2
a
ÝÑ e11 ¨ e2

e1Ó e2
a
ÝÑ e12

e1 ¨ e2
a
ÝÑ e12

e
a
ÝÑ e1

e˚
a
ÝÑ e1 ¨ e˚

If e
a
ÝÑ e1 is derivable in T pAq, for e, e1 P StExppAq, a P A, then we say that e1 is a derivative

of e. If eÓ is derivable in T pAq, then we say that e permits immediate termination.

In Section 4 we define a refinement of this interpretation from [Gra21c] into a 1-chart
interpretation. In both versions, (1-)charts obtained will be compared with respect to 1-bisimi-
larity that relates the behavior of ‘induced transitions’ of 1-charts. By an induced a-transition

v
pppasss
ÝÑ w, for a proper action a P A, in a 1-chart C we mean a path v

1
ÝÑ ¨ ¨ ¨

1
ÝÑ ¨

a
ÝÑ w in C

that consists of a finite number of 1-transitions that ends with a proper a-transition. By

induced termination vÓp1q, for v P V we mean that there is a path v
1
ÝÑ ¨ ¨ ¨

1
ÝÑ ṽ with ṽÓ in C.

Definition 2.4 ((1-)bisimulation). Let Ci “ xVi,A, 1, vs,i,Ñi, Óiy be 1-charts, for i P t1, 2u.
By a 1-bisimulation between C1 and C2 we mean a binary relation B Ď V1 ˆ V2 such

that xvs,1, vs,2y P B holds (that is, B relates the start vertices of C1 and C2), and for every
xv1, v2y P B the following three conditions hold:

(forth): @v11 P V1@a P A
`

v1
pppasss
ÝÑ1 v

1
1 ùñ Dv12 P V2

`

v2
pppasss
ÝÑ2 v

1
2 ^ xv11, v

1
2y P B q

˘

,

(back): @v12 P V2@a P A
`

Dv11 P V1
`

v1
pppasss
ÝÑ1 v

1
1 ^ xv11, v

1
2y P B q ðù v2

pppasss
ÝÑ2 v

1
2

˘

,

(termination): v1Ó
p1q

1 ðñ v2Ó
p1q

2 .

We write C1 ØB C2 if B is a 1-bisimulation between C1 and C2. We denote by C1 Ø C2 and
say that C1 and C2 are 1-bisimilar, if there is a 1-bisimulation between C1 and C2.

By a functional 1-bisimulation from C1 to C2 we mean a 1-bisimulation B between C1

and C2 that is defined by a function ϕ : V1 Ñ V2 as its graph, that is, by B “ graphpϕq “

txv, ϕpvqy | v P V u; in this case we write C1 Ñϕ C2. We write C1 Ñ C2 if there is a functional
1-bisimulation from C1 to C2.

We note that for 1-transition-free 1-charts the bisimulation conditions specialize to their

usual form: the induced transitions
ppp¨sss
ÝÑ in (forth) and (back) specialize to proper transitions

¨
ÝÑ, and induced termination Óp1q in (termination) specializes to immediate termination Ó.
Let C1 and C2 be charts (1-transition-free 1-charts). We write C1 ØB C2, and say that B
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is a bisimulation between C1 and C2 if B is a 1-bisimulation between C1 and C2. We write
C1 Ø C2, and say that C1 and C2 are bisimilar if there is a bisimulation between C1 and C2.
We write C1 Ñ C2 if there is 1-bisimulation from chart C1 to chart C2).

Let C be a 1-chart, and B Ď V pCq ˆ V pCq. We say that B is a 1-bisimulation on C if B
is a 1-bisimulation between C and C. Let C be a chart, and B Ď V pCq ˆ V pCq. We say that
B is a bisimulation on C if B is a bisimulation between C and C.

We now define ‘process semantics equality’ of two star expressions as bisimilarity of
their chart interpretations. We do not introduce the process semantics of star expressions as
‘star behaviors’ (bisimilarity equivalence classes of their chart interpretations) as Milner in
[Mil84], but only the relation that two star expressions denote the same star behavior.

Definition 2.5 (process semantics equality). We define process semantics equality as the
binary relation “J¨KP Ď StExppAq ˆ StExppAq by stipulating it, for all e, f P StExppAq, as
bisimilarity of the (1-free) chart interpretations of e and f :

e “J¨KP f : ðñ Cpeq Ø Cpfq .

Definition 2.6 (proof system EL, Eqp¨q-based/EL-based proof systems). Let A be a set.
By an EqpAq-based proof system we will mean a Hilbert-style proof system whose

formulas are the equations in EqpAq between star expressions over A. For an EqpAq-based
proof system S and a set Γ Ď EqpAq we denote by S`Γ the EqpAq-based proof system whose
rules are those of S, and whose axioms are those of S plus the equations in Γ.

The basic proof system ELpAq of equational logic for star expressions over A is an
EqpAq-based proof system that has the following rules:

Refl
e “ e

e “ f
Symm

f “ e

e “ f f “ g
Trans

e “ g

e “ f
Cxt

Cres “ Crf s

that is, the rules Refl (for reflexivity), and the rules Symm (for symmetry), Trans (for
transitivity), and Cxt (for filling a context), where Crs is a 1-hole star expression context.

By an ELpAq-based system we mean an EqpAq-based proof system whose rules include
the rules of the basic system ELpAq of equational logic (additionally, it may specify an
arbitrary set of axioms). We will use the letter S as identifier for EL-based proof systems.

Definition 2.7. Let S be an EqpAq-based proof system. Let e, f P StExppAq. We say that
e “ f is derivable in S, which we denote here by e1 “S e2 (instead of the more commonly
used notation $S e1 “ e2), if there is a derivation without assumptions in S that has
conclusion e “ f . If e “ f is derivable in S, we also say that e “ f is a theorem of S.

Definition 2.8 (sub-system, theorem equivalence/subsumption of Eqp¨q-based proof systems).
Let S1 and S2 be EqpAq-based proof systems.

We say that S1 is a sub-system of S2, denoted by S1 Ď S2, if every axiom of S1 is an
axiom of S2, and every rule of S1 is also a rule of S2. We say that S1 is theorem-subsumed
by S2, denoted by S1 À S2, if every theorem of S1 is also a theorem of S2, that is, if e “S1 f
implies e “S2 f , for all e, f P StExppAq. We say that S1 and S2 are theorem-equivalent,
denoted by S1 „ S2, if S1 and S2 have the same theorems (that is, if S1 À S2, and S2 À S1).

For the definitions of the concept of ‘derivable’, ‘correct’, and ‘admissible’ rule in
Definition 2.9 below for an EqpAq-based proof system we introduce an informal concept of
derivation rule that will suffice for our purpose. For abstract formulations of rules, and for
the concepts of derivability, correctness, and admissibility of rules we refer:
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(i) to [Gra05a], where these concepts have been gathered and formally treated for Hilbert-
style proof systems (as well as for natural-deduction style proof systems),

(ii) and to [Gra04], where for ‘abstract Hilbert systems’, systematic connections between
these concepts of rules have been studied, also with respect to how rules can be
eliminated from derivations.

Let S be an EqpAq-based proof system for star expressions over A. Let n P N. By a(n)
(n-premise) rule R for S we mean an inference scheme all of whose instances are of the form:

e1 “ f1 . . . en “ fn
R

e “ f

with star expressions e, f, e1, . . . , en, f1, . . . , fn P StExppAq. For such a rule R for S we denote
by S`R the EqpAq-based proof system that extends S by adding R as an additional rule.

Definition 2.9 (derivable, correct, and admissible rules). Let S be an EqpAq-based proof
system. Let R be a rule for S.

We say that R is derivable in S if every instance ι of R can be mimicked by a derivation
Dι in S by which we mean that the set of assumptions of Dι is contained in the set of
premises of ι, and the conclusion of Dι is the conclusion of ι.

We say that R is correct for S if instances of R can be eliminated from derivations in
S`R in the following limited sense: for every derivation D in S`R without assumptions that
terminates with an instance of R but all of whose immediate subderivations are derivations
in S there is a derivation D1 in S without assumptions, and with the same conclusion as D.

We say that R is admissible in S if S`R „ S holds, that is, the addition of R to S does
not extend the derivable formulas (the theorems) of S.

The definition of ‘R is admissible in S’ is easily understood to be equivalent with
the statement that instances of R can be eliminated from derivations in S`R without
assumptions in the unlimited sense: for every derivation D in S`R without assumptions
there is a derivation D1 in S without assumptions, and with the same conclusion as D.
Therefore rule admissibility implies rule correctness. This justifies the implication “ñ” in
item (i) of the lemma below that gathers basic relationships between the three properties of
rules with respect to a proof system as defined above.

Lemma 2.10. Let R be a rule for an EL-based proof system S for star expressions over A.
Then the following statements link derivability, correctness, and admissibility of R in/for S :

(i) R is admissible in S if and only if R is correct for S.
(ii) If R is derivable in S, then R is also correct for S, and due to (i) also admissible in S.

However, rule admissibility and correctness does not imply derivability in general.

Proof. Concerning statement (i) of the lemma we have already argued for the direction “ñ”
just above. The direction “ð” can be established by showing that, if R is correct for S,
then every given derivation D in S`R can be transformed into a derivation D1 in S with
the same conclusion by eliminating instances of R in top-down direction, using derivation
replacements as guaranteed by the defining statement of ‘R is correct for S’.

For showing the main part of statement (ii), we consider an n-premise rule R for S
that is a derivable rule of S. In order to show that R is correct for S, we have to show
that every derivation D in S`R that terminates with an instance ι of R but has immediate
subderivations in S can be transformed into a derivation D1 in S with the same conclusion.
Let D be such a derivation in S`R with instance ι of R at the bottom, as illustrated on the
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right below. Since R is derivable in S there is a derivation Dι in S that derives the conclusion
of ι from its n premises. Then D can be transformed according to the following step:

D

$

&

%

D1

e1 “ f1 . . .

Dn

en “ fnι R
e “ f

úùñ

D1

re1 “ f1s . . .

Dn

ren “ fns

Dι

e “ f

,

/

/

.

/

/

-

D1 (2.1)

(where re1 “ f1s, . . . ren “ fns denote the assumption classes of e1 “ fn, . . . , e1 “ fn in leafs
at the top of the prooftree Dι). The result of this step is a derivation D1 in S with the same
conclusion as D. Since D was chosen arbitrary in this statement but with a bottommost
instance of R and immediate subderivations in S, we have shown the desired transformation
statement, which guarantees that R is correct for S.

If a rule R is correct and admissible in an EL-based proof system S, then R does not
need to be derivable. This is because correctness of R in S cannot be used to mimic such
instances of R that do not have theorems of S as conclusion by derivations in S. As a trivial
example we take S “ ELpAq. In S only reflexivity axioms are theorems. A 1-premise rule
that leaves its premise unchanged is clearly admissible in S, but not derivable, because
instances with formulas e “ f where e ı f cannot be mimicked by derivations in S.

Now we introduce Milner’s proof system Mil, and two of its variants Mil1 and Mil1.
Afterwards we gather basic connections between these systems.

Definition 2.11 (Milner’s system Mil, variants and subsystems). Let A be a set of actions.
By the proof system Mil´́́pAq we mean the ELpAq-based proof system for star expressions

over A with the following axiom schemes:

passocp`qq pe ` fq ` g “ e ` pf ` gq pidlp¨qq 1 ¨ e “ e

pneutrp`qq e ` 0 “ e pidrp¨qq e ¨ 1 “ e

pcommp`qq e ` f “ f ` e pdeadlockq 0 ¨ e “ 0

pidempotp`qq e ` e “ e precp˚qq e˚ “ 1 ` e ¨ e˚

passocp¨qq pe ¨ fq ¨ g “ e ¨ pf ¨ gq ptrm-bodyp˚qq e˚ “ p1 ` eq˚

pr-distrp`, ¨qq pe ` fq ¨ g “ e ¨ g ` f ¨ g

where e, f, g P StExppAq, and with the rules of the system ELpAq of equational logic.
The recursive specification principle for star iteration RSP˚, the unique solvability

principle for star iteration USP1, and the general unique solvability principle USP are the
schematically defined rules with side-conditions of the following forms:

e “ f ¨ e ` g
RSP˚ (if f Ú )e “ f˚ ¨ g

e1 “ f ¨ e1 ` g e2 “ f ¨ e2 ` g
USP1 (if f Ú )e1 “ e2

!

ei,1 “
`
řni

j“1 fi,j ¨ ej,1
˘

` gi
˘

ei,2 “
`
řni

j“1 fi,j ¨ ej,2
˘

` gi
˘

)

i“1,...,n
USP

(if fi,j Ú
for all i, j)e1,1 “ e1,2

Milner’s proof system MilpAq is the extension of Mil´́́pAq by adding the rule RSP˚.
Its variant systems Mil1pAq, and Mil1pAq, arise from Mil´́́pAq by adding (instead of RSP˚)
the rule USP1, and respectively, the rule USP. ACIpAq is the system with the axioms for
associativity, commutativity, and idempotency for `. We will keep the action set A implicit
in the notation.
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Lemma 2.12. Milner’s system Mil and its variants Mil1 and Mil1 are related as follows:

(i) Mil1 À Mil1,

(ii) Mil „ Mil1.

Proof. Statement (i) of the lemma is due to the fact that instances the rule USP1 are also
instances of USP, and therefore Mil1 “ Mil´́́`USP1 À Mil´́́`USP “ Mil1 follows.

For establishing statement (ii) we show that USP1 is a derivable rule in Mil, and that
RSP˚ is a derivable rule in Mil1. Then, by Lemma 2.10, (ii), USP1 is an admissible rule of
Mil, thus Mil`USP1 „ Mil, and RSP˚ is an admissible rule of Mil1, hence Mil1`USP1 „ Mil1.
With this we can argue as follows:

Mil „ Mil`USP1 “ pMil´́́`RSP˚q`USP1 “ pMil´́́`USP1q`RSP˚ “ Mil1`RSP˚ „ Mil1

Then we obtain Mil „ Mil1 by transitivity of theorem equivalence „.
For showing that RSP˚ is derivable in Mil1, we consider an instance of RSP˚ as in

Definition 2.11, for fixed star expressions e, f with f Ú , and g. From its premise e “ f ¨ e` g
we have to show that the conclusion e “ f˚ ¨ g of the RSP˚ instance can be derived by
inferences in Mil1 “ Mil´́́`USP1. By stepwise use of axioms of Mil´́́ we obtain:

f˚ ¨ g “Mil´́́ p1 ` f ¨ f˚q ¨ g “Mil´́́ 1 ¨ g ` pf ¨ f˚q ¨ g

“Mil´́́ 1 ¨ g ` f ¨ pf˚ ¨ gq “Mil´́́ g ` f ¨ pf˚ ¨ gq “Mil´́́ f ¨ pf˚ ¨ gq ` g

Hence there is a derivation of f˚ ¨ g “ f ¨ pf˚ ¨ gq`g in Mil1. This derivation can be extended,
due to f Ú , by an instance of USP1 that is applied to e “ f ¨ e`g and f˚ ¨ g “ f ¨ pf˚ ¨ gq`g.
We obtain a derivation of e “ f˚ ¨ g in Mil1 from the assumption e “ f ¨ e ` g.

For showing that USP1 is derivable in Mil, we consider an instance of USP1 as in
Definition 2.11, with premises e1 “ f ¨ e1 ` g, and e2 “ f ¨ e2 ` g, for fixed star expressions
e1, e2, f with f Ú , and g. By two instances of RSP˚ we get e1 “ f˚ ¨ g, and e2 “ f˚ ¨ g.
By applying Symm below e2 “ f˚ ¨ g, we obtain f˚ ¨ g “ e2. Then by applying Trans to
e1 “ f˚ ¨ g and f˚ ¨ g “ e2 we obtain the conclusion e1 “ e2 of the USP1 instance.

Now we define soundness and completeness of equation-based proof systems for star
expressions with respect to equivalence relations on star expressions. Then we formulate
soundness of Milner’s system from [Mil84], and recall Milner’s completeness question.

Definition 2.13. Let S be an EqpAq-based proof system and let » be an equivalence relation
on StExppAq. We say that S is sound for » if, for all e, f P StExppAq, e “S f implies e » f .
We say that S is complete for » if, for all e, f P StExppAq, e » f implies e “S f .

Proposition 2.14 [Mil84]. Mil is sound for process semantics equality “J¨KP on regular
expressions. That is, for all e, f P StExppAq it holds: p e “Mil f ùñ e “J¨KP f q , and hence
p e “Mil f ùñ e “J¨KP f q .

Question 2.15 [Mil84]. Is Mil complete for bisimilarity of process interpretations? That is,
does for all e, f P StExppAq the implication p e “Mil f ðù Cpeq Ø Cpfq q hold?

Finally we define the crucial concept of provable solution of a 1-chart with respect to
an EL-based proof system. Intuitively, a ‘provable solution’ of a 1-chart C is a provable
solution of some recursive specification SpCq that is associated with C in a natural way (see
for example the two examples on page 2). Since associating specifications SpCq to 1-charts C
presupposes the use of some list representation for the set TCpvq of transitions from vertex v,
for every vertex v of C, any such association map cannot be unique. The definition of
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provable solutions of 1-charts below uses such list representations implicitly, and assumes
that associativity, commutativity, and reflexivity axioms are present in the underlying proof
system. In this way the concept of provable solution permits us to avoid defining associated
specifications for 1-charts in some canonical (but still necessarily arbitrary) way. In the next
section we explain an alternative characterization of provable solutions.

Definition 2.16 (provable solutions). Let S be an EL-based proof system for star expressions
over A that extends ACI. Let C “ xV,A, 1, vs,Ñ, Óy be a 1-chart.

By a star expression function on C we mean a function s : V Ñ StExppAq on the vertices
of C. Let v P V . We say that such a star expression function s on C is an S-provable solution
of C at v if it holds that:

spvq “S τCpvq `

n
ÿ

i“1

ai ¨ spviq , (2.2)

given the (possibly redundant) list representation TCpvq “
␣

v
ai
ÝÑ vi

ˇ

ˇ i P t1, . . . , nu
(

, of
transitions from v in C and where τCpvq is the termination constant τCpvq of C at v defined
as 0 if v Ú , and as 1 if vÓ. This definition does not depend on the specifically chosen list
representation of TCpvq, because S extends ACI, and therefore it contains the associativity,
commutativity, and idempotency axioms for `.

By an S-provable solution of C (with principal value spvsq at the start vertex vs) we mean
a star expression function s on C that is an S-provable solution of C at every vertex of C.

3. Characterization of provable solutions of 1-charts

This section is an intermezzo in which we link to an elegant coalgebraic formulation of the
concept of provable solution by Schmid, Rot, and Silva in [SRS21]. Their observation is a
crucial first part of a detailed and beautiful coalgebraic analysis of the completeness proof
in [GF20b, GF20a] by Fokkink and myself for a tailored restriction of Milner’s system Mil
to ‘1-free star expressions’. Here we reformulate their characterization of provable solution
by means of the terminology that we are using here, and explain the connection, but do not
prove the statements in detail. This is because we will only use this characterization later as
an additional motivation for our concept of ‘coinductive proof’, but not for developing the
proof transformations to and from the coinductive reformulation cMil of Milner’s system Mil.

Schmid, Rot, and Silva construe the operational process semantics that a transition
system like that in Definition 2.3 induces on the set StExp of all star expressions as a coalgebra
(also denoted by) StExp. Charts can also be represented as (finite) coalgebras due to their
structure as transition graphs. On this basis, they obtain the following characterization of
provable solutions for proof systems S like Mil and Mil´́́.

Lemma 3.1 („Lemma 2.2 in [SRS21]). For every chart C, for every star-expression function
s : V pCq Ñ StExp, and for S P

␣

Mil,Mil´́́
(

, the following two statements are equivalent:

(i) s is an S-provable solution of a chart C.

(ii) C
rss“S
ÝÑ StExp{“S is a coalgebra homomorphism, where rss“S

: V pCq Ñ StExp{“S

v ÞÑ rspvqs“S
.

By analyzing the proof of this statement on the basis of terminology we use here, we find
the following. Schmid, Rot, and Silva noticed that statements (a) and (b) below hold, and
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used them in conjunction with (c) (which is analogous to Proposition 2.9 in [GF20b, GF20a])
to obtain the characterization for charts above. We extend it to 1-charts here in (d):

(a) Provability in a system S like Milner’s defines a bisimulation relation on the the set of
star expressions when that is endowed with the process semantics. (See Lemma 3.3).

(b) Due to (a) a factor chart Cpeq{“S can be defined such that Cpeq Ñ Cpeq{“S holds, that
is, there is a functional bisimulation from Cpeq to Cpeq{“S . (See Lemma 3.5).

(c) Every star expression e is the principal value of a Mil-provable solution of the chart
interpretation Cpeq of e. (See Lemma 3.7). Equivalently, every star expression e can
be Mil-provably reconstructed from the transitions to its derivatives in the process
semantics. (See Lemma 3.6.)

(d) A star expression function s with principal value e is a Mil-provable solution of a
1-chart C if and only if the relativization rss“Mil

of s to “Mil -equivalence classes defines

a 1-bisimulation from C to Cpeq{“S . (See Proposition 3.8.)

We formulate these statements more precisely here below. We start with a general
definition of factor charts. But the property (b) of factor charts of the chart interpretation
with respect to provability will then only be shown in Lemma 3.4 below, after the formulation
of the property (a) in Lemma 3.3.

Definition 3.2 (factor chart). Let C “ xV,A, 1, vs,Ñ, Óy be a chart (that is, a 1-transition
free 1-chart). Let » be an equivalence relation on V . Then we define the factor chart C{»
of C with respect to » by:

C{» “ xV {»,A, 1, rvss» ,Ñ{», Ó{»y

where: V {» :“
␣

rvs»

ˇ

ˇ v P V
(

, and for all v, v1, v2 P V and a P A:

rv1s»
a
ÝÑ{» rv2s» : ðñ there are ṽ1, ṽ2 P V such that v1 » ṽ1

a
ÝÑ ṽ2 » v2 ,

prvs»qÓ{» : ðñ vÓ .

By the projection function from C to C{» we mean the function π» : V Ñ V {», v ÞÑ rvs».

Lemma 3.3. Let S P
␣

Mil´́́pAq,MilpAq
(

. Then provability “S with respect to S is a
bisimulation on the chart interpretation Cpeq of e, for every e P StExppAq.

Proof (Idea). By verifying the bisimulation conditions (forth), (back), (termination) for
conclusions of derivations in S, proceeding by induction on the depth of derivations in S. In
the base case, this is settled for the axioms of Mil´́́. In the induction step, it is settled for the
conclusions of the reflexivity, symmetry, and transitivity rules of EL, and of the fixed-point
rule RSP˚ in Mil. (The arguments are similar to the proof of Theorem 2.1 in [SRS21].)

Lemma 3.4. Let C “ xV,A, 1, vs,Ñ, Óy be a (1-free) chart. Let » be an equivalence relation
on V that is a bisimulation on C.

Then C Ñπ» C{» holds, that is, π» defines a functional bisimulation from C to C{».

Proof (hint). The (forth) and (termination) conditions for the graph graphpπ»q of π» to be
a bisimulation are easy to verify. For demonstrating also the (back) condition for graphpπ»q

to be a bisimulation it is crucial to use the assumption that » is a bisimulation on C.

Lemma 3.5. Cpeq Ñπ“S
Cpeq{“S for every e P StExppAq, and S P

␣

Mil´́́,Mil
(

.

Proof. Let S P
␣

Mil´́́,Mil
(

. Due to Lemma 3.3, “S is a bisimulation on Cpeq. Then we
obtain Cpeq Ñπ“S

Cpeq{“S by applying Lemma 3.4.



17:16 C. Grabmayer Vol. 19:2

The following lemma states that every star expression e can be reconstructed, provably
in Mil´́́, from the transitions that it facilitates in the process semantics, and the targets
of these transitions. Statements like this are frequently viewed as being analogous to the
fundamental theorem of calculus, which states that every differentiable function can be
reconstructed from its derivative function via integration.

Lemma 3.6. e “Mil´́́ τCpeqpeq `
řn

i“1 ai ¨ e1i holds, given a list representation TCpeqpwq “
␣

e
ai
ÝÑ e1i

ˇ

ˇ i P t1, . . . , nu
(

of the transitions from e in the chart interpretation Cpeq of e.

Proof (hint). The proof proceeds by induction on the structure of the star expression e. All
axioms of Mil´́́ (and hence all axioms of Mil) are necessary in the arguments. An analogous
statement that can be viewed as the restriction of the statement of Lemma 3.6 for ‘1-free
star expressions’ was proved as Lemma A.2 in [GF20b] , and as Theorem 2.2 in [SRS21].
Here we will prove an analogous statement, Lemma 4.20, in the next section.

Lemma 3.7. For every star expression e P StExppAq with chart interpretation Cpeq “

xV peq,A, 1, e,Ñ, Óy the identical star-expression function idVpeq : V peq Ñ StExppAq, e ÞÑ e is

a Mil´́́-provable solution of Cpeq with principal value e.

Proof. The correctness conditions for the star-expression function idVpeq to be a Mil´́́-provable
solution of the chart interpretation Cpeq of e are guaranteed by Lemma 3.6.

On the basis of these preparations we now reformulate the characterization of provable
solutions of charts by Schmid, Rot, and Silva as a characterization of provable solutions of
1-charts via functional 1-bisimulations to factor charts of appropriate chart interpretations.

Proposition 3.8. Let C “ xV,A, vs, 1,Ñ, Óy be a 1-chart. Let S P
␣

MilpAq,Mil´́́pAq
(

. Then
for all star expression functions s : V Ñ StExppAq it holds:

s is S-provable solution of C ðñ C Ñrss“S
Cpspvsqq{“S . (3.1)

where rss“S
:“ π“S ˝ s with the projection π“S : StExppAq Ñ StExppAq{“S , e ÞÑ res“S

.

Proof (sketch). A technical part of the proof consists in showing that for every star-ex-
pression function s : V Ñ StExppAq on a 1-chart C “ xV,A, 1, vs,Ñ, Óy the following two
statements are equivalent:

(i) s is an S-provable solution of C,
(ii) s is an S-provable solution of the ‘induced chart’ C

p¨sp¨sp¨s
“ xV,A, 1,

ppp¨sss
ÝÑ, Óp1qy of C that results

by using induced transitions as transitions, and induced termination as termination,
that is, with:

ppp¨sss
ÝÑ :“

␣

xv, a, v1y
ˇ

ˇ a P A, v, v1 P V, v
pppasss
ÝÑ v1

(

, Óp1q :“
␣

v
ˇ

ˇ v P V, vÓp1q
(

.

For the implication ‘ñ’ in (3.1) we assume that s is a S-provable solution of C. By
the auxiliary statement above, s is then also a S-provable solution of the induced chart C

p¨sp¨sp¨s

of C. Then it is not difficult to verify the 1-bisimulation conditions (forth), (back), and
(termination) for rss“S

to define a 1-bisimulation from C to Cpspvsqq{“S .

For the converse implication ‘ð’ in (3.1), we assume s : V Ñ StExppAq as a star
expression function with C Ñrss“S

Cpspvsqq{“S . Here Lemma 3.6, the possibility to S-pro-
vably reconstruct a star expression e from the transitions to its derivatives, can be employed
in order to recognize s as a S-provable solution of the induced chart C

p¨sp¨sp¨s
of C. Then by

applying the auxiliary statement, we obtain that s is also a S-provable solution of C.
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(L1)

v0

v1

v2

(L1),(L2),(L3) (L1),(L2),(L3)

v0

v1

v2

(L1),(L2),(L3)

loop 1-chart

v0

v1

v2

loop sub-1-chart

C

L

Figure 3: Four 1-charts (action labels ignored) that violate at least one loop 1-chart condition
(L1), (L2), or (L3), and a loop 1-chart C with one of its loop sub-1-charts L.

4. Layered loop existence and elimination, and LLEE-witnesses

In this subsection we recall definitions from [GF20a, Gra21c] of the loop existence and
elimination condition LEE, its ‘layered’ version LLEE, and of chart labelings that witness
these conditions. Specifically we will use the adaptation of these concepts to 1-charts that
has been introduced in [Gra21c], because the use of 1-charts with 1-transitions will be crucial
for the concept of ‘LLEE-witnessed coinductive proof’ in Section 5. For this purpose we also
recall the ‘1-chart interpretation’ of star expressions as introduced in [Gra21c] for which the
property LLEE is guaranteed in contrast to the chart interpretation from Definition 2.3. We
will keep formalities to a minimum as these are necessary for our purpose here, and have to
refer to [GF20a, Gra21c] and the appertaining reports [GF20b, Gra20] for more details.

We start with the definitions of loop 1-charts, and of loop sub(-1)charts, and examples
for these concepts.

Definition 4.1 (loop 1-chart). A 1-chart L “ xV,A, 1, vs,Ñ, Óy is called a loop 1-chart if it
satisfies three conditions:

(L1) There is an infinite path from the start vertex vs.

(L2) Every infinite path from vs returns to vs after a positive number of transitions.

(L3) Immediate termination is only permitted at the start vertex, that is, Ó Ď tvsu.

Transitions from vs are called loop-entry transitions, all other transitions loop-body transitions.

Example 4.2. In Figure 3 we have gathered, on the left, four examples of 1-charts (with
action labels ignored) that are not loop 1-charts: each of them violates one of the conditions
(L1), (L2), or (L3). The paths in red indicate violations of (L2), and (L3), respectively, where
the thicker arrows from the start vertex indicate transitions that would need to be (but are
not) loop-entry transitions. However, the 1-chart C in Figure 3 is indeed a loop 1-chart.

Definition 4.3 (loop sub-1-chart of 1-chart). Let C “ xV,A, 1, vs,Ñ, Óy be a 1-chart.
A loop sub-1-chart of a 1-chart C is a loop 1-chart L that is a sub-1-chart of C with some

vertex v P V of C as start vertex such that L is formed, for a nonempty set U of transitions
of C from v, by all vertices and transitions on paths that start with a transition in U and
continue onward until v is reached again; in this case the transitions in U are the loop-entry
transitions of L, and we say that the transitions in U induce L.
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Example 4.4. In the 1-chart C in Figure 3 we have illustrated (in the right copy of C) a
loop sub-1-chart L of C with start vertex v2 that is induced by the set U :“ txv2, a, v0yu that
consists of the single loop-entry transition from v2 to v0, assuming that its action label is a.
Then L consists of all colored transitions. – We note that also the generated sub-1-chart CÓv2˚
of C that is rooted at v2 is a loop sub-1-chart of C, because it is a loop 1-chart, and it that
is generated by the set of both of the two transitions from v2.

Definition 4.5 ((single-/multi-step) loop elimination). Let C “ xV,A, 1, vs,Ñ, Óy be a
1-chart. Suppose that L, L1, . . . , Ln are loop sub-1-charts with sets U,U1, . . . , Un of
loop-entry transitions from their start vertices v, v1, . . . , vn P V , respectively, for n P Nz t0u.

The 1-chart C1 that results by the elimination of (the loop sub-1-chart) L from C arises
by removing all loop-entry transitions in U of L from C, and then also removing all vertices
and transitions that become unreachable; in this case we write C ñelim C1, and also say that
C1 results by a single-step loop elimination from C.

Suppose that the loop sub-1-charts L1, . . . , Ln satisfy the following two conditions:

(ms-1) their sets U1, . . . , Un of loop-entry transitions are disjoint (that is, Ui X Uj ‰ ∅ for
all i, j P t1, . . . , nu with i ‰ j),

(ms-2) no start vertex of a loop sub-1-chart Li is in the body of another one Lj , for all
i, j P t1, . . . , nu with i ‰ j.

Then we say that a 1-chart C1 results by the multi-step loop elimination of L1, . . . , Ln from
C if C1 arises from C by removing all loop-entry transitions in U1, . . . , Un of L1, . . . , Ln from
C, and then also removing all vertices and transitions that become unreachable; in this case
we write C ùñelim C1, and say that C1 results by a multi-step loop elimination from C.

Lemma 4.6. ñelim Ď ùñelim Ď ñ
`
elim, and consequently ñ˚

elim “ ùñ˚
elim.

Proof. First, ñelim Ď ùñelim holds because every single-step loop elimination is also a
multi-step loop elimination. Crucially, ùñelim Ď ñ

`
elim holds, because every multi-step

loop elimination of loop sub-1-charts L1, . . . ,Ln in a 1-chart C with loop-entry transitions
U1, . . . , Un can be implemented as a sequence of single-step loop eliminations of L1, . . . ,Ln

irrespective of the chosen order: hereby (ms-1) guarantees that every loop-entry transition
belongs uniquely to one of L1, . . . ,Ln and thus is removed in precisely one step; and (ms-2)
ensures that, after the elimination of a loop sub-1-chart Li, another one Lj with j ‰ i that
has not yet been eliminated is still a loop sub-1-chart. Finally these statements imply that
the many-step versions of single-step and multi-step loop elimination coincide.

Definition 4.7 (LEE and LLEE). Let C “ xV,A, 1, vs,Ñ, Óy be a 1-chart.
We say that C has the loop existence and elimination property (LEE) if repeated loop

elimination started on C leads to a 1-chart without an infinite path, that is, if there is
multi-step loop elimination reduction sequence C ùñ˚

elim C1 (or by Lemma 4.6 equivalently, a
single-step loop elimination reduction sequence C ñ˚

elim C1) that leads to a 1-chart C1 without
an infinite path.

If, in a successful elimination sequence from a 1-chart C, loop-entry transitions are never
removed that depart from a vertex in the body of a previously eliminated loop sub-1-chart,
then we say that C satisfies layered LEE (LLEE), and that C is a LLEE-1-chart.

Example 4.8. In Figure 4 we have illustrated a successful run of the loop elimination
procedure for the 1-chart C there. The loop-entry transitions of loop sub-1-charts that are
eliminated in the next step, respectively, are marked in bold. We have neglected action
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elim
v

v1

v11

v2

v21

step 2

elim

multi-step 1
⃝⃝⃝

elim

v

v1

v11

v2

v21

remove

loop entries

C3
v

garbage
collect

step 3 / (multi-)step 2
⃝⃝⃝

elim

Figure 4: Example of a loop elimination process that witnesses LEE/LLEE for the 1-chart C.
Three single-step loop eliminations from C reach the same result C3 as two multi-
step loop eliminations (where the second multi-step is also a single step).

labels there, except for indicating 1-transitions by dotted arrows. Since the graph C3 that
is reached by three loop-subgraph elimination steps C ñ

`
elim C3 from the 1-chart C does

not have an infinite path, and since no loop-entry transitions have been removed from a
previously eliminated loop sub-1-chart, we conclude that C satisfies LEE and LLEE.

In Figure 5 we illustrate two runs of the loop elimination procedure from a 1-chart E :
The one from E to the left only witnesses LEE but not LLEE, since in the second elimination
step a loop-entry transition (drawn red) is removed from the body of the loop sub-1-chart
that is eliminated in the first step (drawn in green). The one from E to the right witnesses
LLEE, because transitions are only removed sequentially at the same vertex, and hence no
loop-entry transition is removed from the body of a loop 1-chart that was eliminated before.

The two process graphs G1 and G2 on page 2, which are not expressible by star
expressions modulo bisimilarity, do not satisfy LLEE nor LEE: neither of them has a loop
subchart (as argued in Example 4.2), yet both of them facilitate infinite paths.

v

r1s

pE
p1q

u
w1

r2s

w2

v

u

w1

v

u
w1

w2

step 2

elim v

E

u
w1

w2

step 1

elim v

u
w1

w2

step 1

elim v

step 2

elim v
r2s

r1s

pE
p2q

u
w1

w2

Figure 5: Two runs of the loop elimination procedure on the 1-chart E in the middle: the one
to the left witnesses LEE (but not LLEE, due to the removal of the red loop-entry
transition from the body of the green loop subchart removed earlier), its recording

is the (not layered) LEE-witness pE
p1q

of E ; the one to the right witnesses layered

LEE (LLEE), its recording is the LLEE-witness (layered LEE-witn.) pE
p2q

of E .
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Figure 6: Three LLEE-witnesses of the 1-chart C in Figure 4, of which pC
p1q

and pC
p3q

are the
recordings of the successful single-step and multi-step runs of the loop elimination
procedure in Figure 4, respectively.

v
E1

u
w1

w2

v

r1s
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u
r2s
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r3s

r1s

pE
p2q

1

u
r2s

w1

w2

Figure 7: A LEE-witness that is not layered (in the middle), and a LLEE-witness (right)
for a variation E1 of the LLEE-1-chart E in Figure 5.

Definition 4.9 (LLEE-witness). Let C “ xV,A, 1, vs,Ñ, Óy be a 1-chart.

By an entry/body-labeling of C we mean a 1-chart Ĉ “ xV,AˆN, 1, vs, Ñ̂, Óy with actions
in A ˆ N that results from C by attaching to every transition of C an additional marking
label in N (the transitions in Ñ̂ are marking-labeled versions of the transitions in Ñ).

A LLEE-witness Ĉ of a 1-chart C is an entry/body-labeling of C that is the recording of a
LLEE-guaranteeing, successful run C ùñ˚

elim C1 of the multi-step loop elimination procedure
on C that results by attaching to a transition τ of C the marking label n for n P N` (in
pictures indicated as rns, in steps as Ñrns) forming a loop-entry transition if τ is eliminated
in the n-th multi-step, and by attaching marking label 0 to all other transitions of C (in
pictures neglected, in steps indicated as Ñbo) forming a body transition.

We say that a LLEE-witness Ĉ of a 1-chart C is guarded if the action labels of the
loop-entry transitions of Ĉ are proper (different from 1). We say that a LLEE-1-chart C is
guarded if C has a guarded LLEE-witness.

The definition above of guardedness for LLEE-witnesses is justified in view of the fact
that loop-entry transitions divide infinite paths in LLEE-witnesses into finite segments
that consist only of body transitions with perhaps a leading loop-entry transition. This
is a consequence of the fact that LLEE-witnesses do not permit infinite paths of body
transitions (see Lemma 4.13, (ii)). Therefore guarded LLEE-witnesses, in which loop-entry
transitions must be proper, do not permit infinite paths of 1-transitions. It also follows that
the underlying (LLEE-)1-chart of a guarded LLEE-witness is weakly guarded.
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Example 4.10. The entry/body-labelings Ĉ1 and Ĉ3 in Figure 6 of the 1-chart C from
Figure 4 are LLEE-witnesses that arise from the successful runs of the loop elimination
procedure in Example 4.9: Ĉ1 is the recording on C of the three single-step loop eliminations
(viewed as trivial multi-steps in order to apply the clause for a LLEE-witness in Definition 4.9)

that lead to C3, and Ĉ3 is the recording on C of the two multi-step loop eliminations from C
to Ĉ3. The entry/body-labeling Ĉ2 in Figure 6 is another LLEE-witness of C that records
the successful process of four elimination steps of four loop sub-1-charts each of which is
induced by only a single loop-entry transition. The 1-chart C in Figure 4 has a property
that does not hold in general: C only admits layered LEE-witnesses.

Indeed, this does not hold for the 1-chart E in Figure 5: the entry/body-labeling pE
p1q

is
not a layered LLEE-witness, because it arises from a run of the loop elimination process
in which in the second step a loop-entry transition is eliminated from the body of a loop
sub-1-chart that was eliminated in the first step. But the entry/body-labeling pE

p2q

there is a

layered LLEE-witness of E . The situation is analogous for the two entry/body-labelings pE
p1q

1

and pE
p2q

1 of the slightly more involved LLEE-1-chart E1 in Figure 7, where pE
p2q

1 is a layered

LLEE-witness of E1, but pE
p1q

1 is a LEE-witness of E that is not layered.

Remark 4.11 (from LEE-witnesses to LLEE-witnesses). It can be shown that every LEE-wit-
ness that is not layered can be transformed into a layered LEE-witness (LLEE-witness) of

the same underlying 1-chart. Indeed, the step from the (not layered) LEE-witness pE
p1q

1 to
the LLEE-witness pE

p2q

1 in the example in Figure 7, which transfers the loop-entry transition
marking label r3s from the transition from w1 to w2 over to the transition from v to u, hints
at the proof of this statement. However, we do not need this result, because we will be
able to use the guaranteed existence of LLEE-witnesses (see Theorem 4.18) for the 1-chart
interpretation below (see Definition 4.15).

For the proofs in Section 6 we will need the ‘descends-in-loop-to’ relation ñ as defined
below, and the fact that it constitutes a ‘descent’ in a LLEE-witness. The latter is expressed
by the subsequent lemma together with termination of the body-step relation Ñbo. Both of
these properties can be established by arguing with the successful runs of the loop sub-1-chart
elimination procedure that underlies a LLEE-witness.

Definition 4.12. Let Ĉ be a LLEE-witness of a 1-chart C “ xV,A, 1, vs,Ñ, Óy.
Let v, w P V . We denote by v ñ w, and by w ð v, and say that v descends in a loop

to w, if w is in the body of the loop sub-1-chart at v, which means that there is a path
v Ñrns v

1 Ñ˚
bo w from v via a loop-entry transition and subsequent body transitions without

encountering v again.

Lemma 4.13. The relations ñ and Ñbo defined by a LLEE-witness Ĉ of a 1-chart C satisfy:

(i) ð` is a well-founded, strict partial order on V .
(ii) Ð

`
bo is a well-founded strict partial order on V .

Proof. Well-foundedness and irreflexivity of each of ð` and Ð
`
bo follows from termination of

ñ and Ñbo, respectively. These termination properties can be established in the same way
as for LLEE-charts without 1-transitions, for which they follow immediately from Lemma 5.2
in [GF20a, GF20b]. Since ð` and Ð

`
bo are transitive by definition, it follows that both

relations are well-founded strict partial orders.

While chart interpretations of ‘1-free’ star expressions always satisfy LEE, see [GF20b]),
we observed in [Gra21c] that this is not true for the chart interpretations of star expressions
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in general. As a remedy for this failure of LEE for chart interpretations, we introduced
‘1-chart interpretations’ of star expressions [Gra21c]. For such 1-chart interpretations we
showed that LEE is guaranteed, and that they refine chart interpretations in the sense
that there always is a functional 1-bisimulation from the 1-chart interpretation of a star
expression to its chart interpretation (see Theorem 4.18 below). For the definition of 1-chart
interpretations we extended the syntax of star expressions to obtain ‘stacked star expressions’,
see the definition below. The intuition behind the use of the ‘stack product’ symbol › is
to keep track of when a transition has descended into the body of an iteration expression
such that the iteration can be interpreted as a loop sub-1-chart or a tower of nested (and
possibly partially overlapping) loop sub-1-charts. This feature of › makes a transition system
specification possible (see Definition 4.15) which introduces 1-transitions only as ‘backlinks’
that lead from the body (the internal vertices) of some loop sub-1-chart L of a 1-chart
interpretation back to the start vertex of L.
Definition 4.14 (stacked star expressions). Let A be a set whose members we call actions.
The set StExpp›qpAq of stacked star expressions over (actions in) A is defined by the grammar:

E ::“ e | E ¨ e | E › e˚ (where e P StExppAq) .

Note that the set StExppAq of star expressions would arise if the clause E › e˚ were dropped.
The star height |E|˚ of stacked star expressions E is defined by adding the two clauses

|E ¨ e|˚ :“ max t|E|˚, |e|˚u, and |E › e˚|˚ :“ max t|E|˚, |e˚|˚u to the definition of the star
height of star expressions.

The projection function π : StExpp›qpAq Ñ StExppAq is defined by interpreting › as ¨ by
the clauses: πpE ¨ eq :“ πpEq ¨ e, πpE › e˚q :“ πpEq ¨ e˚, and πpeq :“ e, for all stacked star
expressions E P StExpp›qpAq, and star expressions e P StExppAq.

In line with [Gra21c] we introduce the 1-chart interpretation of a star expression e with
notation Cpeq as ‘the 1-chart induced by (the process interpretation of) e’. For understanding
the TSS in its definition below it is key to note that, by the rules for iterations, the stacked
product operation › helps to record that an expression has descended from the iteration
expression on the right-hand side of ›. This feature is used by the rule for stacked product to
introduce 1-transitions only as backlinks to expressions from which they have descended. The
rules for iteration expressions define loop-entry transitions and body transitions, respectively,
dependent on whether e is ‘strongly normed’ (symbolically denoted by nd`peq) in the sense
of facilitating a process trace to termination, and hence dependent on whether an iteration
induces a loop sub-1-chart (outside of inner loop sub-1-charts).

Definition 4.15 (1-chart interpretation of star expressions). By the 1-chart interpretation
Cpeq of a star expression e we mean the 1-chart that arises together with the entry/body-la-

beling Ĉpeq as the e-rooted labeled transition system with 1-transitions (1-LTS) generated
by teu according to the following TSS on the set StExpp›q of stacked star expressions, where
l P tbou Y trns | n P N`u are marking labels:

a
a
ÝÑbo 1

ei
a
ÝÑl E1i (i P t1, 2u)

e1 ` e2
a
ÝÑbo E1i

e
a
ÝÑl E1 (if nd`peq)

e˚
a
ÝÑr|e˚|˚s E1 › e˚

e
a
ÝÑl E1 (if ␣nd`peq)

e˚
a
ÝÑbo E1 › e˚

E1
a
ÝÑl E11

E1 ¨ e2
a
ÝÑl E11 ¨ e2

E1
a
ÝÑl E11

E1 › e˚2
a
ÝÑl E11 › e˚2

e1Ó e2
a
ÝÑl E12

e1 ¨ e2
a
ÝÑbo E12

e1Ó

e1 › e˚2
1
ÝÑbo e˚2

The condition nd`peq means a strengthening of normedness, namely, that e permits a positive
length path to an expression f with fÓ ; it is definable by induction. Immediate termination
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for expressions of Cpeq is defined by the same rules as in Definition 2.3 (for star expressions
only, preventing immediate termination for expressions with stacked product ›). We note
that finiteness of Cpeq as a 1-chart is guaranteed by Theorem 4.18, (ii), below.

We also extend the 1-chart interpretation of star expressions in the obvious way to all
stacked star expressions E P StExpp›q: by CpEq we mean the E-rooted sub-1-LTS generated
by tEu in the 1-LTS generated by the TSS above.

Definition 4.16. For every stacked star expression E P StExpp›qpAq, we define the set ABpEq

of action (partial) 1-derivatives of E, and the set BpEq of (partial) 1-derivatives of E by:

ABpEq :“
␣

xa, E1y
ˇ

ˇ E
a
ÝÑ E1

(

Ď A ˆ StExpp›qpAq ,

BpEq :“
␣

E1
ˇ

ˇ E
a
ÝÑ E1 for some a P A

(

Ď StExpp›qpAq ,

where the transitions are defined by the TSS in Definition 4.15.

Lemma 4.17. The action 1-derivatives ABpEq of a stacked star expression E over actions
in A satisfy the following recursive equations, for all a P A, e, e1, e2 P StExppAq, and stacked
star expressions E1 over actions in A:

ABp0q :“ ABp1q :“ ∅ ,

ABpaq :“ txa, 1yu ,

ABpe1 ` e2q :“ ABpe1q Y ABpe2q ,

ABpE1 ¨ e2q :“

#

␣

xa, E11 ¨ e2y
ˇ

ˇ xa, E11y P ABpE1q
(

if E1 Ú ,
␣

xa, E11 ¨ e2y
ˇ

ˇ xa, E11y P ABpE1q
(

Y ABpE2q if E1Ó,

ABpE1 › e˚2q :“

#

␣

xa, E11 ¨ e˚2y
ˇ

ˇ xa, E11y P ABpE1q
(

if E1 Ú ,
␣

xa, E11 ¨ e˚2y
ˇ

ˇ xa, E11y P ABpE1q
(

Y tx1, e˚2yu if E1Ó,

ABpe˚q :“
␣

xa, E1 › e˚y
ˇ

ˇ xa, E1y P ABpeq
(

.

Proof. By case-wise inspection of the definition of the TSS in Def. 4.15.

Theorem 4.18 [Gra20, Gra21c]. For every e P StExppAq, the following statements hold for
the concepts as introduced in Definition 4.15:

(i) The entry/body-labeling Ĉpeq of Cpeq is a guarded LLEE-witness of Cpeq.

(ii) The projection function π defines a 1-bisimulation from the 1-chart interpretation Cpeq
of e to the chart interpretation Cpeq of e, that is symbolically, CpeqÑπ Cpeq, and hence
also Cpeq Ñ Cpeq. Since the set of stacked star expressions that form the pre-image of
a star expression under the projection function is always finite, it follows that 1-chart
interpretations of star expressions are always finite as well.

For the proof of Lemma 4.21 below we will need the second of the two subsequent
lemmas, Lemma 4.20. Its proof uses the first lemma, which crucially states that every star
expression e with immediate termination can Mil´́́-provably be written as a star expression
1 ` f where f does not permit immediate termination.

Lemma 4.19. If eÓ for a star expression e P StExppAq, then there is a star expression
f P StExppAq with f Ú , e “Mil´́́ 1`f , |f |˚ “ |e|˚, and ppid ˆ πq ˝ ABqpfq “ ppid ˆ πq ˝ ABqpeq.

Proof. By a proof by induction on structure of e, in which all axioms of Mil´́́ are used.
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Lemma 4.20. πpEq “Mil´́́ τCpEqpEq `
řn

i“1 ai ¨ πpE1iq, given a list representation TCpEqpwq “
␣

E
ai
ÝÑ E1i

ˇ

ˇ i P t1, . . . , nu
(

of the transitions from E in CpEq.

Proof. We establish the lemma by induction on the star height |E|˚ of E with a subinduction
on the syntactical structure of E. All cases of stacked star expressions can be dealt with in
a quite straightforward manner, except for the case of star expressions with an outermost
iteration. There, an appeal to Lemma 4.19 is crucial. We treat this case in detail below.

Suppose that E ” e˚ for some star expression e P StExppAq (without occurrences of
stacked product ›). For showing the representation of πpEq as stated by the lemma, we
assume that the transitions from e in Cpeq as defined in Definition 4.15 are as follows:

TCpeqpeq “
␣

e
ai
ÝÑ E1i

ˇ

ˇ i “ 1, . . . n
(

, (4.1)

for some stacked star expression E11, . . . , E
1
n, which are 1-derivatives of e. Note that according

to the TSS in Definition 4.15 only proper transitions (those with proper action labels in A)
can depart from the star expression e (which does not contain stacked products ›). Then it
follows, again from the TSS in Definition 4.15 that:

TCpEqpEq “ TCpe˚qpe
˚q “

␣

e˚
ai
ÝÑ E1i › e˚

ˇ

ˇ i “ 1, . . . n
(

. (4.2)

We assume now that eÓ holds. (We will see that if eÚ holds, the argumentation below
becomes easier). Then by Lemma 4.19 there is a star expression f P StExppAq with f Ú , and
such that 1 ` f “Mil´́́ e, |f |˚ “ |e|˚, and ppid ˆ πq ˝ ABqpfq “ ppid ˆ πq ˝ ABqpeq hold. From
the latter it follows with (4.1):

TCpfqpfq “
␣

f
ai
ÝÑ F 1i

ˇ

ˇ i “ 1, . . . n
(

, (4.3)

πpF 1iq “ πpE1iq (for all i “ 1, . . . n) , (4.4)

for some stacked star expression F 11, . . . , F
1
n, which are 1-derivatives of f . Note again that

only proper transitions can depart from the star expression f according to Definition 4.15.
On the basis of these assumptions we can now argue as follows:

πpEq ” πpe˚q (due to E ” e˚ in this case)

” e˚ (since e˚ does not contain ›)

“Mil´́́ p1 ` fq˚ (by the choice of f with 1 ` f “Mil´́́ e)

“Mil´́́ f˚ (by axiom (trm-bodyp˚q))

“Mil´́́ 1 ` f ¨ f˚ (by axiom (recp˚q))

“Mil´́́ 1 ` f ¨ p1 ` fq˚ (by axiom (trm-bodyp˚q))

“Mil´́́ 1 ` f ¨ e˚ (by the choice of f with 1 ` f “Mil´́́ e)

“Mil´́́ 1 `
`

τCpfqpfq `

n
ÿ

i“1

ai ¨πpF 1iq
˘

¨ e˚
(by the induction hypothesis, due to

|f |˚ “ |e|˚ ă |e|˚ ` 1 “ |e˚|˚ “ |E|˚,
and in view of (4.3))

” 1 `
`

0 `

n
ÿ

i“1

ai ¨πpE1iq
˘

¨ e˚
(by τCpfqpfq ” 0 due to f Ú
and by using (4.4))

“Mil´́́ τCpe˚qpe
˚q `

n
ÿ

i“1

ai ¨ pπpE1iq ¨ e˚q
(by axioms (neutrp`q), (r-distrp`, ¨q),
(assocp¨q), τCpe˚qpe

˚q ” 1 due to pe˚qÓ
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C

Cpe1q{“Mil
Cpe2q{“Mil

LLEE, guarded

rL1s“Mil
rL2s“Mil

Figure 8: A coinductive proof xC, Ly over Mil of e1 “ e2 gives rise to functional 1-bisimula-
tions to factor charts of Cpe1q and Cpe2q with respect to provability in Mil.

” τCpEqpEq `

n
ÿ

i“1

ai ¨πpE1i › e˚q (by the definition of the projection π).

In view of (4.2), this chain of Mil´́́-provable equalities verifies the statement in the lemma
in this case E “ e˚ with eÓ. If e Ú holds, then the detour via f is not necessary, and the
argument is much simpler. The statement of the lemma holds true then as well.

Lemma 4.21. For every star expression e P StExppAq with 1-chart interpretation Cpeq “

xV peq,A, 1, e,Ñ, Óy the star-expression function s : V peq Ñ StExppAq, E ÞÑ πpEq is a
Mil´́́-provable solution of Cpeq with principal value e.

Proof. The statement of the lemma is an immediate consequence of Lemma 4.20.

5. Coinductive version of Milner’s proof system

In this section we motivate and define ‘coinductive proofs’, introduce coinductive versions of
Milner’s system Mil, and establish first interconnections between these proof systems.

As the central concept we now introduce ‘coinductive proofs’ over EL-based proof
systems S. We have seen examples for such circular deductions earlier in Figure 1 and
Figure 2. We define a coinductive proof over S as a weakly guarded 1-chart C whose vertices
are labeled by equations between star expressions such that the left-, and the right-hand
sides of the equations form S-provable solutions of C. The conclusion of such a proof is
the equation that labels the start vertex of C. If S is theorem-subsumed by Mil (formally,
S À Mil holds), then a coinductive proof with 1-chart C, conclusion e1 “ e2, and left- and
right-hand side labeling functions L1 and L2 can be viewed, due to Proposition 3.8, as a pair
of 1-bisimulations defined by rL1s“Mil

and by rL2s“Mil
from C to Cpe1q{“Mil

, and to Cpe2q{“Mil

(see Figure 8). In this case we can show that the conclusion e1 “ e2 of the coinductive proof
is semantically sound (see Proposition 5.6). Indeed a stronger statement holds, and its proof
will form the central part of Section 6: if S À Mil holds, and the underlying chart of the
coinductive proof of e1 “ e2 over S is a LLEE-1-chart, then that proof can be transformed
into a proof of e1 “ e2 in Milner’s system Mil (see Proposition 6.8 in the next section).

In order to guarantee that coinductive proofs over a proof system S can only derive
semantically valid equations, it is necessary to demand that S is sound for process-semantics
equality “J¨KP (for example if S À Mil, using Proposition 2.14). This notwithstanding, we do
not include this requirement in the definition below, but add it later to statements when it
is needed. The reason is that in Section 7 we want to be able to show (see Lemma 7.3) that
even instances of the fixed-point rule RSP˚ with premises that are not semantically valid
can be mimicked by coinductive proofs over appropriate proof systems that are unsound.
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pp1 ¨a˚q¨b˚q¨pa˚ ¨b˚q˚ “ 1 ¨pa ` bq˚ p1 ¨b˚q¨pa˚ ¨b˚q˚ “ 1 ¨pa ` bq˚

pa˚ ¨b˚q¨pa˚ ¨b˚q˚ “ pa ` bq˚ b˚ ¨pa˚ ¨b˚q˚ “ pa ` bq˚

pa˚ ¨b˚q˚ “ pa ` bq˚

v11

v1

a r1s

b

v21

v2

br1s

vs
a
r2s

b
r2s

Figure 9: LLEE-witnessed coinductive proof of pa˚ ¨ b˚q˚ “ pa ` bq˚ over Mil´́́ (see Ex. 5.2).

Definition 5.1 ((LLEE-witnessed) coinductive proofs). Let A be a set of actions. Let S be
an ELpAq-based proof system with ACI Ď S. Let e1, e2 P StExppAq be star expressions.

By a coinductive proof over S of e1 “ e2 we mean a pair CP “ xC, Ly that consists of
a weakly guarded 1-chart C “ xV,A, 1, vs,Ñ, Óy, and a labeling function L : V Ñ EqpAq of
vertices of C by formal equations over A such that for the functions L1, L2 : V Ñ StExppAq

that denote the star expressions L1pvq, and L2pvq, on the left-, and on the right-hand side of
the equation Lpvq, respectively, the following conditions hold:

(cp1) L1 and L2 are S-provable solutions of C,
(cp2) e1 ” L1pvsq and e2 ” L2pvsq (e1 and e2 are principal values of L1 and L2, respectively).

We denote by e1
coind
“““S e2 that there is a coinductive proof over S of e1 “ e2.

By a LLEE-witnessed coinductive proof over S we mean a coinductive proof CP “ xC, Ly

where C is a guarded LLEE-1-chart. We denote by e1
LLEE
“““S e2 that there is a LLEE-wit-

nessed coinductive proof over S of e1 “ e2.

While the restriction to guardedness of the LLEE-1-chart underlying LLEE-witnessed
coinductive proofs could be relaxed to weak guardedness, we have required guardedness in
this definition in order to (somewhat) reduce technicalities in the proofs in Section 6.

We provide two examples of LLEE-witnessed coinductive proofs. First we develop a
new one, and then we revisit and justify the example in Figure 1 from the introduction.

Example 5.2. In Figure 9 we have illustrated a LLEE-witnessed coinductive proof over Mil´́́

of the statement pa˚ ¨ b˚q˚
LLEE
“““Mil´́́ pa ` bq˚. Formally this proof is of the form CP “ xC, Ly

where C “ Cppa˚ ¨ b˚q˚q has the guarded LLEE-witness Ĉppa˚ ¨ b˚q˚q (see Theorem 4.18) as
indicated in Figure 9 where framed boxes contain vertex names.

In this illustration we have drawn the 1-chart C that carries the equations with its start
vertex below in order to adhere to the prooftree intuition for the represented derivation,
namely with the conclusion at the bottom. We will do so repeatedly also below. Solution
correctness for the left-hand sides L1 of the equations L on C in Figure 9 follow from
Lemma 4.21, because C “ Cppa˚ ¨ b˚q˚q where pa˚ ¨ b˚q˚ is the left-hand side of the conclusion.
This notwithstanding, below we verify the correctness conditions in C for the left-hand side L1

and the right-hand side L2 of the equation labeling function L for the (most involved) case
of vertex v1 as follows (we neglect some associative brackets, and combine some applications
of axioms in Mil´́́):
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L1pv1q ” pa˚ ¨ b˚q ¨ pa˚ ¨ b˚q˚

“Mil´́́ pp1 ` a ¨ a˚q ¨ p1 ` b ¨ b˚qq ¨ pa˚ ¨ b˚q˚

“Mil´́́ p1 ¨ 1 ` a ¨ a˚ ¨ 1 ` 1 ¨ b ¨ b˚ ` a ¨ a˚ ¨ b ¨ b˚q ¨ pa˚ ¨ b˚q˚

“Mil´́́ p1 ` a ¨ a˚ ` a ¨ a˚ ¨ b ¨ b˚ ` b ¨ b˚q ¨ pa˚ ¨ b˚q˚

“Mil´́́ p1 ` a ¨ a˚ ¨ p1 ` b ¨ b˚q ` b ¨ b˚q ¨ pa˚ ¨ b˚q˚

“Mil´́́ p1 ` a ¨ a˚ ¨ b˚ ` b ¨ b˚q ¨ pa˚ ¨ b˚q˚

“Mil´́́ 1 ¨ pa˚ ¨ b˚q˚ ` a ¨ ppp1 ¨ a˚q ¨ b˚q ¨ pa˚ ¨ b˚q˚q ` b ¨ pp1 ¨ b˚q ¨ pa˚ ¨ b˚q˚q

” 1 ¨ L1pvsq ` a ¨ L1pv11q ` b ¨ L1pv21q

L2pv1q ” pa ` bq˚

“Mil´́́ pa ` bq˚ ` pa ` bq˚ “Mil´́́ 1 ` pa ` bq ¨ pa ` bq˚ ` 1 ` pa ` bq ¨ pa ` bq˚

“Mil´́́ 1 ` 1 ` pa ` bq ¨ pa ` bq˚ ` a ¨ pa ` bq˚ ` b ¨ pa ` bq˚

“Mil´́́ 1 ` pa ` bq ¨ pa ` bq˚ ` a ¨ p1 ¨ pa ` bq˚q ` b ¨ p1 ¨ pa ` bq˚q

“Mil´́́ 1 ¨ pa ` bq˚ ` a ¨ p1 ¨ pa ` bq˚q ` b ¨ p1 ¨ pa ` bq˚q

” 1 ¨ L2pvsq ` a ¨ L2pv11q ` b ¨ L2pv21q

Note that the form of these two correctness conditions at v1 arise from the outgoing transitions
from v1 in C in Figure 9: the 1-transition from v1 to vs, the a-transition from v1 to v11, and
the b-transition from v1 to v21.

The solution conditions for L “ xL1, L2y at the vertices v and v2 can be verified
analogously. At v11 and at v21 the solution conditions follow by using the axiom idlp¨q of Mil´́́.

Example 5.3. For the statement g˚ ¨ 0 ” pa`bq˚ ¨ 0
LLEE
“““Mil´́́ pa ¨ pa` bq `bq˚ ¨ 0 ” h˚ ¨ 0, we

illustrated in Figure 2 the coinductive proof CP “ xCph˚ ¨ 0q, Ly over Mil´́́ with underlying

guarded LLEE-witness Ĉph˚ ¨ 0q, where Cph˚ ¨ 0q and Ĉph˚ ¨ 0q is the 1-chart interpretation
as defined according to Definition 4.15, and the equation-labeling function L on Cph˚ ¨ 0q is
defined as in the figure.

The correctness conditions at the start vertex (at the bottom) can be verified as follows:

g˚ ¨ 0 ” pa ` bq˚ ¨ 0 “Mil´́́ p1 ` pa ` bq ¨ pa ` bq˚q ¨ 0 “Mil´́́ 1 ¨ 0 ` ppa ` bq ¨ g˚q ¨ 0

“Mil´́́ 0 ` pa ¨ g˚ ` b ¨ g˚q ¨ 0 “Mil´́́ pa ¨ g˚ ` b ¨ g˚q ¨ 0

“Mil´́́ pa ¨ g˚q ¨ 0 ` pb ¨ g˚q ¨ 0 “Mil´́́ a ¨ pg˚ ¨ 0q ` b ¨ pg˚ ¨ 0q

“Mil´́́ a ¨ pp1 ¨ g˚q ¨ 0q ` b ¨ pp1 ¨ g˚q ¨ 0q ,

h˚ ¨ 0 ” pa ¨ pa ` bq ` bq˚ ¨ 0 “Mil´́́ p1 ` pa ¨ pa ` bq ` bq ¨ pa ¨ pa ` bq ` bq˚q ¨ 0

“Mil´́́ 1 ¨ 0 ` ppa ¨ pa ` bq ` bq ¨h˚q ¨ 0 “Mil´́́ 0 ` ppa ¨ pa ` bqq ¨h˚ ` b ¨h˚q ¨ 0

“Mil´́́ pa ¨ ppa ` bq ¨h˚q ` b ¨h˚q ¨ 0 “Mil´́́ ppa ¨ ppa ` bq ¨h˚qq ¨ 0 ` pb ¨h˚q ¨ 0

“Mil´́́ a ¨ ppa ` bq ¨h˚q ¨ 0q ` b ¨ ph˚ ¨ 0q

“Mil´́́ a ¨ pp1 ¨ pa ` bqq ¨h˚q ¨ 0q ` b ¨ pp1 ¨h˚q ¨ 0q .

From the provable equality for g˚ ¨ 0 the correctness condition for p1 ¨ g˚q ¨ 0 at the left upper
vertex of Cph˚ ¨ 0q can be obtained by additional uses of the axiom (idlp¨q). The correctness
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C

Cpe1q Cpe1q{“Mil
Cpe2q{“Mil

Cpe2q

LLEE, guarded

(by Lem. 3.5)

rL1s“Mil
rL2s“Mil

(by Lem. 3.5)

xC, Ly

coinductive proof
of e1 “ e2

over S À Mil

,

/

.

/

-

" Cpe1q Ø Cpe2q

e1 “J¨KP
e2(Prop. 3.8)

Figure 10: Coinductive proofs over S À Mil guarantee equality of process semantics.

condition for pp1 ¨ pa`bqq ¨h˚q ¨ 0 at the left upper vertex of Cph˚ ¨ 0q can be verified as follows:

pp1 ¨ pa ` bqq ¨h˚q ¨ 0 “Mil´́́ ppa ` bq ¨h˚q ¨ 0 “Mil´́́ pa ¨h˚ ` b ¨h˚q ¨ 0

“Mil´́́ pa ¨h˚q ¨ 0 ` pb ¨h˚q ¨ 0 “Mil´́́ a ¨ ph˚ ¨ 0q ` b ¨ ph˚ ¨ 0q

“Mil´́́ a ¨ pp1 ¨h˚q ¨ 0q ` b ¨ pp1 ¨h˚q ¨ 0q .

Finally, the correctness conditions at the right upper vertex of Cph˚ ¨ 0q can be obtained by
applications of the axiom (idlp¨q) only.

As a direct consequence of Definition 5.1, the following lemma states that LLEE-wit-
nessed coinductive provability of an equation implies its coinductive provability. The
subsequent lemma states easy observations about the composition of coinductive provability
over a proof system S with provability “S in S.

Lemma 5.4. e1
LLEE
“““S e2 implies e1

coind
“““S e2, for all e1, e2 P StExppAq, where S is an

EL-based proof system over StExppAq with ACI Ď S that is sound with respect to “J¨KP .

Lemma 5.5. Let R P
␣coind

“““S ,
LLEE
“““S

(

for some EL-based proof system S with ACI Ď S.
Then R is reflexive, symmetric, and satisfies “S ˝ R Ď R, R ˝ “S Ď R, and “S Ď R.

The proposition below, and the subsequent remark are evidence for the fact, mentioned
at the start of this section, that coinductive proofs over proof systems that are sound with
respect to “J¨KP derive semantically valid conclusions themselves. Rather than formulating
their statements for all semantically sound proof systems, we restrict our attention to systems
that are theorem-subsumed by Mil.

Proposition 5.6. Let S be an EL-based proof system over StExppAq with ACI Ď S À Mil.
Then for all e1, e2 P StExppAq it holds:

e1
coind
“““S e2 ùñ Cpe1q Ø Cpe2q , (5.1)

That is, if there is a coinductive proof over S of e1 “ e2, then the chart interpretations of e1
and e2 are bisimilar.

Proof. We have illustrated the proof of this proposition in Figure 10: In every coinductive
proof xC, Ly over S with S À Mil of an equation e1 “ e2, the star-expression functions L1 and
L2 are Mil-provable solutions of C. Then by using Proposition 3.8 and Lemma 3.5 we get the
link of functional (1-)bisimulations between Cpe1q and Cpe2q as drawn in that picture. Since
(functional) bisimulations compose with (functional) 1-bisimulations to 1-bisimulations, and
1-bisimulations between charts are bisimulations, we obtain that Cpe1q Ø Cpe2q holds, and
consequently, that e1 “J¨KP e2 holds.
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Remark 5.7. For every coinductive proof CP “ xC, Ly, whether CP is LLEE-witnessed or
not, over an EL-based proof system S with ACI Ď S À Mil the finite relation defined by:

B :“
!A

τCpvq `

n
ÿ

i“1

ai ¨L1pviq, τCpvq `

n
ÿ

i“1

ai ¨L2pviq
E ˇ

ˇ

ˇ

TCpvq “
␣

v
ai
ÝÑ vi

ˇ

ˇ i P t1, . . . , nu
(

,
v P V pCq, the set of vertices of C

)

is a 1-bisimulation up to “S with respect to the labeled transition system on all star
expressions that is defined by the TSS in Definition 2.3. This can be shown by using that
the left-hand sides L1pvq, and respectively the right-hand sides L2pvq, of the equations Lpvq

in CP, for v P V pCq, form S-provable solutions of the 1-chart C that underlies CP.

We now define two proof systems CLC and CC for combining LLEE-witnessed coinductive
provability. Each of these systems consists of a single rule scheme, a more specific one
for CLC, and a more liberal one for CC. Instances of rules of these two schemes formalize
LLEE-witnessed coinductive provability in CLC, and respectively coinductive provability
in CC, of equations between star expressions from assumed equations. Different from the
exposition in [Gra21a, Gra21b], where we permitted entire coinductive proofs as formulas
and as premises of rules, we here keep the proof systems EqpAq-based by externalizing
coinductive proofs from the rules by ‘hiding’ them in side-conditions.2 The more restricted
proof system CLC will form the core of our coinductive reformulation of Milner’s system.

Definition 5.8 (proof systems CLC, CC for combining (LLEE-witn.) coinductive provability).
Let A be a set of actions. We define EqpAq-based proof systems CLCpAq and CCpAq.

The proof system CLCpAq for combining LLEE-witnessed coinductive provability (over
extensions of Mil´́́pAq) of equations between star expressions over A is an EqpAq-based proof
system without axioms, but with the rules of the scheme:

g1 “ h1 . . . gn “ hn LCoProofn (if (5.3) holds)
e “ f

(5.2)

e
LLEE
“““Mil´́́`Γ f for Γ “ tg1 “ h1, . . . , gn “ hnu with n P N (including n “ 0). (5.3)

The proof system CCpAq for combining coinductive provability (over extensions of
Mil´́́pAq) is an EqpAq-based proof system without axioms, but with the rules of the scheme:

g1 “ h1 . . . gn “ hn CoProofn (if (5.4) holds)
e “ f

e
coind
“““Mil´́́`Γ f for Γ “ tg1 “ h1, . . . , gn “ hnu with n P N (including n “ 0). (5.4)

We will keep the set A implicit, and write CLC and CC for CLCpAq and CCpAq, respectively.

Note that the systems CLC and CC do not contain the rules of EL nor any axioms.
Instead, derivations in these systems have to start with 0-premise instances of LCoProof0
or CoProof0. Due to Lemma 5.4 every instance of the rule LCoProofn of CLC for some n P N
is also an instance of the rule CoProofn of CC. It follows that derivability of an equation
e “ f in CLC implies derivability of e “ f in CC, that is, CLC À CC holds, see Lemma 5.11,
(i), below.

Based on CLC, we now define the system that we call the coinductive variant cMil of
Milner’s proof system Mil. For this, we replace the fixed-point rule in Mil by the rule scheme

2Keeping the systems equation-based (by avoiding coinductive proofs as formulas as in [Gra21a, Gra21b])

permits us to then compare the coinductive proof systems CLC, CC, and later cMil, and cMil via rule
derivability and admissibility to Milner’s system Mil and its variants Mil1, and Mil1.
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of CLC, or equivalently, by adding this rule scheme to the purely equational part Mil´́́ of Mil.
By adding the rule scheme of CC to Mil´́́, we also define an extension cMil of cMil.

Definition 5.9 (proof systems cMil, cMil1, and cMil). Let A be a set of actions.
The proof system cMilpAq, the coinductive variant of MilpAq, is an EL-based proof

system whose axioms are those of Mil´́́pAq, and whose rules are those of ELpAq, plus the
rule scheme tLCoProofnunPN from CLCpAq. By cMil1pAq we mean the simple coinductive
variant of MilpAq, an EL-based proof system that arises by only adding the rule LCoProof1
of CLCpAq to the rules and axioms of Mil´́́pAq.

By cMilpAq we mean the variant of cMilpAq in which the more general rule scheme
tCoProofnunPN from CCpAq is used (instead of tLCoProofnunPN from CLCpAq).

We again permit to write cMil, cMil1, cMil for cMilpAq, cMil1pAq, and cMilpAq, respectively.

We now prove a lemma (Lemma 5.11 below) that gathers elementary theorem equivalence
and theorem subsumption statements between the coinductive variants of Milner’s system
defined above. For its proof we argue with subsystem relationships as gathered by Lemma 5.10
below, and we explain basic proof transformations between these systems.

Lemma 5.10. The following subsystem relationships hold between the coinductive proof
systems defined above: (i) CLC Ď cMil, (ii) cMil1 Ď cMil, (iii) CC Ď cMil.

Lemma 5.11. The following theorem subsumption and theorem equivalence statements hold:

(i) CLC À CC,

(ii) cMil1 À cMil À cMil,

(iii) CLC „ cMil,

(iv) CC „ cMil.

Proof. We have argued for statement (i) above, below Definition 5.8: every instance of the
rule LCoProofn of CLC, for n P N, is also an instance of the rule CoProofn of CC. This also
implies the part cMil À cMil of statement (ii), because it shows in every derivation D of
an equation e “ f in cMil every instance of LCoProofn, for n P N, can be replaced by an
instance of CoProofn with as result a derivation D1 of e “ f in cMil. The part cMil1 À cMil
of statement (ii) follows from the fact that cMil1 is a subsystem of cMil by Lemma 5.10, (ii).

For statement (iii), the theorem-subsumption part CLC À cMil follows from CLC Ď cMil,
see Lemma 5.10, (i). For showing the converse implication, CLC Á cMil, we will demonstrate
the proof-transformation statement (5.5) below by first showing its special case (5.6):

Every derivation D in cMil can be transformed into a derivation D1 in CLC
with the same conclusion.

)

(5.5)

The transformation statement (5.5) holds for every derivation D in cMil with
an instance of LCoProofn, for some n P N, at the bottom.

*

(5.6)

The idea for both of these proof transformation statements is to ‘hide’ derivation parts
that consist of axioms and rules in Mil´́́ into the correctness statements of coinductive proofs
that appear as side-conditions in instances of the coinductive rule in CLC. More precisely,
the idea is to replace derivation parts D0 in Mil´́́ of a derivation D in cMil, where D0 consists
of the inference in Mil´́́ of an equation g “ h from a set Γ of m assumption equations, by
an instance of the coinductive rule LCoProofm that has the m assumptions of D0 in Γ as
its premises. Then whenever g “ h is needed to justify a correctness conditions it can be
reconstructed from the premises, provably in Mil´́́, on the basis of the derivation D0 in Mil´́́.
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We start by showing (5.6), and proceed for this purpose by induction on the depth |D|

of D. Suppose that D is a derivation in cMil with an occurrence of an instance ι of LCoProofn
at the bottom. To perform the induction step for D, we need to transform D into a derivation
D1 in CLC with the same conclusion. We may assume that the immediate subderivations
D1, . . . , Dn of D (just above the instance ι) contain axioms and/or rules of Mil´́́, because
otherwise D is already a derivation in CLC. To keep the illustration of the transformation step
simple, we assume that only the i-th subderivation Di contains axioms and/or rules of Mil;
the general case will become clear through this example. We assume that D is of the form:

D1

g1 “ h1

Di1

pgi1 “ hi1q ¨ ¨ ¨

Dim

pgim “ himq

Di0

. . . gi “ hi . . .
Dn

gn “ hn
LCoProofne “ f

(5.7)

with side-condition e
LLEE
“““Mil´́́`Γ f for Γ “ tg1 “ h1, . . . gn “ hnu , (5.8)

where D1, . . . ,Di´1,Di`1, . . .Dn are already derivations in CLC (with bottommost instances
of LCoProofni that are suggested by dashed lines), but Di contains axioms and/or rule
instances of Mil´́́, and can be construed with a bottom part Di0 in Mil´́́ below m conclusions
gi1 “ hi1, . . . , gim “ him of instances of coinductive rules from tLCoProofjujPN.

Then we apply the induction hypothesis to the subderivations Di1, . . . ,Dim of D0, which
is possible due to |Di1| , . . . , |Dim| ă |Di| ă |D|, to obtain derivations D1i1, . . . ,D1im in CLC
with the same conclusions gi1 “ hi1, . . . , gim “ him, respectively. Then we transform D
by replacing the instance of LCoProofn at the bottom by an instance of LCoProofn`m´1,
keeping the first i´1 and the last n`1´i premises and their subderivations, but replacing the
i-th premise and its immediate subderivation Di by m additional premises with immediate
subderivations D1i1, . . . , D1im, thereby obtaining:

D1

g1 “ h1 . . .

D1i1
gi1 “ hi1 . . .

D1im
gim “ him . . .

Dn

gn “ hn LCoProofn`m´1
e “ f

(5.9)

However, we need to show the side-condition for the displayed instance of LCoProofn`m´1:

e
LLEE
“““Mil´́́`Γ1 f with Γ1 “

␣

g1 “ h1, . . . gi´1 “ hi´1, gi`1 “ hi`1, . . . , gn “ hn
(

Y ∆ ,

where: ∆ :“
␣

gi1 “ hi1, . . . gim “ him
(

the set of conclusions of D1i1, . . . ,D1im.

(5.10)

Now due to (5.8) there is a LLEE-witnessed coinductive proof LCP of e “ f over Mil´́́`Γ.
But now LCP is also a LLEE-witnessed coinductive proof of e “ f over Mil´́́`Γ1, and
thus over a different set of premises, which we recognize as follows. The equations in ∆,
which have been added to Γ in order to get Γ1 after removing gi “ hi, are derivable in
Mil´́́`Γ by means for the derivation D0. Therefore the correctness conditions for LCP as a
LLEE-witnessed coinductive proof over Mil´́́`Γ imply the correctness conditions for LCP
as a LLEE-witnessed coinductive proof over Mil´́́`Γ1. This shows (5.10). Therefore the
resulting derivation D1 in (5.9) is a derivation in CLC with the same conclusion as D. (This
transformation step can obviously be generalized to the situation in which not just Di, but
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also others among the immediate subderivations D1, . . . ,Dn of D contain axioms and/or
rules of Mil´́́.) In this way we have performed the induction step.

Finally we establish (5.5) in full generality. For this we consider the remaining situation
in which the derivation D in cMil does not terminate with an instance of a coinductive rule.
Then D can be construed with a part derivation D0 in Mil´́́ above its conclusion, and below
m P N subderivations D1, . . . , Dm, each of which terminates with a coinductive rule (see
below on the left). Note that m “ 0 is possible if D is a derivation in Mil´́́. By applying
(5.6) to D1, . . . ,Dm we obtain derivations D11, . . . ,D1m in CLC with the same conclusions,
respectively. By combining these derivations in CLC with an instance of LCoProofm we can
perform the following transformation step in order to obtain a derivation D1 in CLC :

D1

pe1 “ f1q . . .

Dm

pem “ fmq

D0

e “ f

ùñ

D11
e1 “ f1 . . .

D1m
em “ fm

LCoProofme “ f

(5.11)

Here we need to establish the following side-condition for the instance of LCoProofm at the
bottom of D1:

e
LLEE
“““Mil´́́`Γ f where Γ :“ te1 “ f1, . . . , em “ fmu . (5.12)

We can establish this coinductive-provability statement by recognizing that xCpeq, Ly with
Cpeq the 1-chart interpretation of e, and with equation labeling function:

L : V pCpeqq Ñ StExppAq , G ÞÑ

"

G “ G if G ı e
e “ f if G ” e

is a LLEE-witnessed coinductive proof over Mil´́́`Γ of e “ f . To verify this statement, we
use that Cpeq is a guarded LLEE-1-chart by Theorem 4.18, (i), and we have to check the
correctness conditions for L1 and L2 with L “ xL1, L2y to be Mil´́́`Γ-provable solutions
of Cpeq. We first note that e “ f is provable in Mil´́́`Γ (i.e. e “Mil´́́`Γ f) since D0 is a

derivation of e “ f in Mil´́́ from the assumptions in Γ. Then we argue as follows:

‚ The correctness conditions for L1 to be a pMil´́́`Γq-provable solution of Cpeq follow from
the fact that L1 is a Mil´́́-provable solution of Cpeq due to Lemma 4.21.

‚ L2 differs from L1 only in the value for the start vertex e, where L2peq ” f , but L1peq ” e.
From this it follows, in view of e “Mil´́́`Γ f , that the correctness conditions for L1 imply
the correctness conditions for L2, because they differ only up to expressions that are
provably equal in Mil´́́`Γ and also need to hold up to pMil´́́`Γq-provability.

This argument shows (5.12), which justifies the side-condition of the instance of LCoProofm
at the bottom of the derivation D1 on the right in (5.11). Therefore we have indeed obtained
from D a derivation in CLC with the same conclusion as D. In this way we have completed
the proof of cMil À CLC, the remaining part of (iii).

Statement (iv) can be shown entirely analogously as statement (iii).

Remark 5.12 (completeness of CC, cMil, Mil1). The proof systems CC and cMil, as well
as the variant Mil1 of Milner’s system with the general unique solvability principle USP
are complete for bisimilarity of star expressions. This can be established along Salomaa’s
completeness proof for his inference system for language equality of regular expressions
[Sal66], by an argument that we can outline as follows. Given star expressions e and f with
Cpeq Ø Cpfq, e and f can be shown to be principal values of Mil´́́-provable solutions of Cpeq
and Cpfq, respectively (by a lemma for the chart interpretation similar to Lemma 4.21).
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C

Cpe1q{“Mil
Cpe2q{“Mil

rL1s“Mil
rL2s“Mil

xC, Ly

LLEE-witnessed
coinductive proof

of e1 “ e2
over S À Mil

,

/

/

/

.

/

/

/

-

LLEE, guarded

e1 “Mil e2
(Prop. 3.8) (Prop. 6.8, together

with “ð” in Prop. 3.8
for S “ Mil)

Figure 11: Statement underlying the proof transformation from cMil to Mil.

These solutions can be transferred to the (1-free) product chart C of Cpeq and Cpfq, with e
and f as principal values of Mil´́́-provable solutions L1 and L2 of C, respectively. From this
we obtain a (not necessarily LLEE-witnessed) coinductive proof xC, Ly of e “ f over Mil´́́.
It follows that e “ f is provable in CC, and in cMil. Now since the correctness conditions
for the Mil´́́-provable solutions L1 and L2 of C at each of the vertices of C together form a
guarded system of linear equations to which the rule USP can be applied (as C is 1-free), we
obtain that e “ f is also provable in Mil1.

6. From LLEE-witnessed coinductive proofs to Milner’s system

In this Section we develop a proof-theoretic interpretation of the coinductive variant system
cMil of Mil in Milner’s original system Mil. Since cMil and Mil differ only by the coinductive
rule scheme tLCoProofnunPN (which is part of cMil, but not of Mil), and by the fixed-point
rule RSP˚ (which is part of Mil, but not of cMil), the crucial step for this proof transformation
is to show that instances of LCoProofn, for n P N, can be mimicked in Mil if their premise
equations are derivable in Mil. We will do so by showing that the rules LCoProofn, for n P N,
are correct for Mil. This implies that these rules are admissible in Mil (by Lemma 2.10),
and also, that they can be eliminated from derivations in Mil`tLCoProofnunPN, which is an
extension of cMil. In this way we obtain the proof-theoretic interpretation of cMil in Mil.

For proving correctness of LCoProofn for Mil, where n P N, we will show that every
LLEE-witnessed coinductive proof xC, Ly over a proof system S that is theorem-subsumed
by Mil of an equation e1 “ e2 can also be established by a proof of e1 “ e2 in Milner’s
system Mil. Informally, this statement is illustrated in Figure 11 by informally employing
the characterization in Proposition 3.8 of the provable solutions in such LLEE-witnessed
coinductive proofs. We establish the indicated informal second step in this section, where
it will be guaranteed by Proposition 6.8. In particular, our proof of this step will use the
following two statements:

(SE) (solution extraction) from a LLEE-witness Ĉ of C a Mil-provable solution sC of C can
be extracted (Lemma 6.4), and

(SU) (solution uniqueness) every Mil-provable solution of the LLEE-1-chart C (such as L1

and L2) is Mil-provably equal to the solution sC extracted from Ĉ (Lemma 6.7).

By these statements we will obtain for every LLEE-witnessed coinductive proof xC, Ly of
e1 “ e2, assuming that vs is the star vertex of C and hence L1pvsq ” e1 as well as L2pvsq ” e2
hold, that e1 ” L1pvsq “Mil sĈpvsq “Mil L2pvsq ” e2 holds, and therefore e1 “Mil e2.

The proofs of the statements (SE) and (SU) below are adaptations to LLEE-1-charts
of proofs of analogous statements for LLEE-charts in Section 5 of [GF20a, GF20b]. We
have to, at places substantially, refine the extraction technique of star expressions from
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process graphs with LLEE that was first described in [GF20a, GF20b]. However, we will
use the simplification to only reason about guarded LLEE-witnesses, in which loop-entry
transition are proper transitions. We can do so because the 1-chart interpretation Cpeq of a

star expression e is guaranteed to have a guarded LLEE-witness Ĉpeq by Theorem 4.18.
For developing and proving the extraction statement (SE) we use that the hierarchical

loop structure of a 1-chart C with LLEE-witness Ĉ facilitates the extraction of a Mil´́́-provable
solution of C (see Lemma 6.4). The reason is as follows. The process behavior at every vertex
w in C can be split into an iteration part that is induced via the loop-entry transitions from
w in Ĉ (which induce loop sub-1-charts with inner loop sub-1-charts whose behavior can be
synthesized recursively), and an exit part that is induced via the body transitions from w in

Ĉ. This intuition leads us to the definition below. We define the ‘extraction function’ sĈ of Ĉ
from a ‘relative extraction function’ tĈ of Ĉ, whose values tĈpw, vq capture the behavior at w
in a loop sub-1-chart at v until v is reached.

Definition 6.1 ((relative) extraction function). Let C “ xV,A, 1, vs,Ñ, Óy be a (guarded)

LLEE-1-chart with guarded LLEE-witness Ĉ.
The extraction function sĈ : V Ñ StExppAq of Ĉ is defined from the relative extraction

function tĈ : txw, vy | w, v P V pCq, w ð“ vu Ñ StExppAq of Ĉ for w, v P V :

tĈpw, vq :“

$

’

&

’

%

1 if w “ v,
´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´

m
ÿ

i“1

bi ¨ tĈpui, vq

¯

if w ð v,

sĈpwq :“
´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´

τCpwq `

m
ÿ

i“1

bi ¨ sĈpuiq
¯

,

provided: TĈpwq “
␣

w
ai
ÝÑrlis wi

ˇ

ˇ li P N`, i P t1, . . . , nu
(

Y
␣

w
bi
ÝÑrbos ui

ˇ

ˇ i P t1, . . . ,mu
(

,

induction for tĈ on: xw1, v1y ălex xw2, v2y : ðñ v1 ð` v2 _ p v1 “ v2 ^ w1 Ð
`
bo w2 q ,

induction for sĈ on the strict partial order Ð
`
bo (see Lemma 4.13) ,

where ălex is a well-founded strict partial order due to Lemma 4.13. The choice of the list
representations of action-target sets of Ĉ changes the definitions of these functions only up
to provability in ACI.

We exemplify the extraction process defined above by a concrete example.

Example 6.2. We consider the 1-chart C, and the LLEE-witness Ĉ of C, in the LLEE-wit-
nessed coinductive proof CP “ xC, Ly of pa˚ ¨ b˚q˚ “ pa ` bq˚ in Example 5.2. We detail in

Figure 12 the process of computing the principal value sĈpvsq of the extraction function sĈ of Ĉ.
The statement of Lemma 6.4 below will guarantee that sĈ is a Mil´́́-provable solution of C.

In order to show that the extraction function of a guarded LLEE-witness of a 1-chart C
defines a Mil´́́-provable solution of C, see Lemma 6.4 and its proof later, we first have
to establish a Mil´́́-provable connection between the relative extraction function and the
extraction function of a guarded LLEE-witness. For this we prove the following lemma.

Lemma 6.3. Let C be a (guarded) LLEE-1-chart with guarded LLEE-witness Ĉ. Then
sĈpwq “Mil´́́ tĈpw, vq ¨ sĈpvq holds for all vertices w, v P V pCq such that w ð“ v.

Proof. Let C “ xV,A, 1, vs,Ñ, Óy be a LLEE-1-chart with guarded LLEE-witness Ĉ.
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C, Ĉ

v11

v1

a
r1s b

v21

v2

b
r1s

vs

a r2s b

r2s

tĈpv21, v2q :“ 0˚ ¨ p1 ¨ tĈpv2, v2qq ” 0˚ ¨ p1 ¨ 1q “Mil´́́ 1

tĈpv2, vsq :“ pb ¨ tĈpv21, v2qq˚ ¨ p1 ¨ tĈpvs, vsqq “Mil´́́ b˚

tĈpv21, vsq :“ 0˚ ¨ p1 ¨ tĈpv2, vsqq “Mil´́́ 1 ¨ b˚ “Mil´́́ b˚

tĈpv11, v1q :“ 0˚ ¨ p1 ¨ tĈpv1, v1qq ” 0˚ ¨ p1 ¨ 1q “Mil´́́ 1

tĈpv1, vsq :“ pa ¨ tĈpv11, vsqq˚ ¨ pb ¨ tĈpv21, vsq ` 1 ¨ tĈpvs, vsqq

“Mil´́́ a˚ ¨ pb ¨ b˚ ` 1q “Mil´́́ a˚ ¨ b˚

tĈpv11, vsq :“ 0˚ ¨ p1 ¨ tĈpv1, vsqq “Mil´́́ a˚ ¨ b˚

sĈpvsq :“ pa ¨ tĈpv11, vsq ` b ¨ tĈpv21, vsqq˚ ¨ 1

“Mil´́́ pa ¨ pa˚ ¨ b˚q ` b ¨ b˚q˚

Figure 12: Extraction of the principal value of aMil´́́-provable solution sĈ from the LLEE-wit-

ness Ĉ in the coinductive proof in Example 5.2, with Mil´́́-provable simplifications.

We have to show that spwq “Mil´́́ tĈpw, vq ¨ spvq holds for all w, v P V with w ð“ v. We

first notice that this statement holds obviously for w “ v, due tĈpw, vq ” tĈpv, vq ” 1, and

the presence of the axiom pidlp¨qq in Mil´́́. Therefore it suffices to show, by also using this fact,
that spwq “Mil´́́ tĈpw, vq ¨ spvq holds for all w, v P V with w ð v. We will show this by using

the same induction as for the definition of the relative extraction function tĈ in Definition 6.1,

that is, by complete induction on the (converse) lexicographic partial order ălex of ð` and
Ð
`
bo on V ˆV defined by: xw1, v1y ălex xw2, v2y :ðñ v1 ð` v2 _ p v1 “ v2 ^ w1 Ð

`
bo w2 q,

which is well-founded by Lemma 4.13. For our argument we assume to have given, underlying
the definition of the relative extraction function tĈ and the extraction function sĈ, list

representations TĈpwq of the transitions from w in Ĉ as in Definition 6.1, for all w P V .

In order to carry out the induction step, we let w, v P V be arbitrary, but such that
w ð v. On the basis of the form of TĈpwq as in Definition 6.1 we argue as follows, starting

with a step in which we use the definition of sĈ, and followed by a second step in which we

use that τCpwq ” 0 holds, because w cannot have immediate termination as due to w ð v it
is in the body of the loop at v (cf. condition (L3) for loop 1-charts in Section 4):

sĈpwq ”

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

”

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` 0
¯

“Mil´́́

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

(by axiom pneutrp`qq)
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“Mil´́́

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

m
ÿ

i“1

bi ¨ ptĈpui, vq ¨ sĈpvqq

`

if ui “ v, then sĈpuiq “Mil´́́ tĈpui, vq ¨ sCpvqq due to tĈpv, vq “ 1;

if ui ‰ v, we can apply the induction hypothesis to sĈpuiq,

as w Ñbo ui (see TĈpwq as in Def. 6.1) and ui ‰ v

imply ui ð v, and ui Ðbo w entails xui, vy ălex xw, vy)

“Mil´́́

´´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´

m
ÿ

i“1

bi ¨ tĈpui, vq

¯¯

¨ sĈpvq

(by axioms pr-distrp`, ¨qq, and passocp¨qq)

” tĈpw, vq ¨ sĈpvq

(by w ð v, and the definition of tĈpw, vq in Def. 6.1)

We note that this reasoning also applies for the special cases n “ 0, and with a slight change
also for m “ 0, where

řm
i“1 bi ¨ sĈpuiq ”

řm
i“1 bi ¨ ptĈpui, vq ¨ sĈpvqq ”

řm
i“1 bi ¨ tĈpui, vq ” 0,

and then an axiom (deadlock) has to be used. In this way we have shown, due to ACI Ď Mil´́́,
the desired Mil´́́-provable equality spwq “Mil´́́ tĈpw, vq ¨ spvq for the vertices v and w that

we picked with the property w ð v.
Since w, v P V with w ð v were arbitrary above, we have successfully carried out the

proof by induction that sĈpwq “Mil´́́ tĈpw, vq ¨ sCpvq holds for all w, v P V with w ð v. As

we have argued that the statement also holds for w “ v, we have proved the lemma.

Lemma 6.4 (extracted function is provable solution). Let C be a LLEE-1-chart with guarded

LLEE-witness Ĉ. Then the extraction function sĈ of Ĉ is a Mil´́́-provable solution of C.

Proof. Let C “ xV,A, 1, vs,Ñ, Óy be a (guarded) LLEE-1-chart with guarded LLEE-witness Ĉ.
We show that the extraction function sĈ of Ĉ is a Mil´́́-provable solution of C by verifying

the Mil´́́-provable correctness conditions for sĈ at every vertex w P V . For the argument we

assume to have given, underlying the definition of the relative extraction function tĈ and the

extraction function sĈ, list representations TĈpwq of the transitions from w in Ĉ as written in

Definition 6.1, for all vertices w P V .
We let w P V be arbitrary. Starting from the definition of sĈ in Definition 6.1 on the

basis of the form of TĈpwq, we argue by the following steps:

sĈpwq ”

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

“Mil´́́

´

1 `

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚¯

¨

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

(by axiom precp˚qq)
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“Mil´́́

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

`

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨

´´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯¯

(by axioms pr-distrp`, ¨qq, pidlp¨qq, and passocp¨qq)

”

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

`

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨ sĈpwq

(by definition of sĈpwq in Def. 6.1)

“Mil´́́

´

n
ÿ

i“1

ai ¨
`

tĈpwi, wq ¨ sĈpwq
˘

¯

`

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

(by axioms pcommp`qq, pr-distrp`, ¨qq, and passocp¨qq)

“Mil´́́

´

n
ÿ

i“1

ai ¨ sĈpwiq

¯

`

´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

(by Lemma 6.3, due to wi ð“ w, which follows from w Ñrlis wi

(see TĈpwq as in Def. 6.1), and by axioms passocp`qq ).

“ACI τCpwq `

´

n
ÿ

i“1

ai ¨ sĈpwiq

¯

`

´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

.

Since ACI Ď Mil´́́, this chain of equalities yields a Mil´́́-provable equality that establishes,
in view of TĈpwq as in Definition 6.1, the correctness condition for sĈ to be a Mil´́́-provable

solution at the vertex w that we picked.
Since w P V was arbitrary, we have established that the extraction function sĈ of Ĉ is a

Mil´́́-provable solution of C.

For showing the solution uniqueness statement (SU) we can also use the hierarchical

loop structure of a 1-chart C with LLEE-witness Ĉ for carrying out proofs by induction.
We repurpose the two-step approach of the proof of Lemma 6.4 that used the Mil-provable
relationship between the extraction function sĈ of Ĉ and the relative extraction function tĈ
of Ĉ in Lemma 6.3. In doing so we first establish, for every Mil-provable solution s of C, a
connection with the relative extraction function tC of Ĉ, see Lemma 6.5 below. The proof of
this lemma proceeds by an induction that starts at innermost loop sub-1-charts of the given
LLEE-witness, and then progresses to outer loop sub-1-charts. Different from Lemma 6.3, it
will be crucial here to employ the fixed-point rule RSP˚ of Mil in the proof.

Lemma 6.5. Let C be a LLEE-1-chart with guarded LLEE-witness Ĉ. Furthermore, let S
be an ELpAq-based proof system such that ACI Ď S À Mil.

Let s : V pCq Ñ StExppAq be an S-provable solution of C. Then spwq “Mil tĈpw, vq ¨ spvq

holds for all vertices w, v P V pCq with w ð“ v.

Proof. Let Ĉ be a guarded LLEE-witness of a (guarded) LLEE-1-chart C “ xV,A, 1, vs,Ñ, Óy.
Let s : V Ñ StExppAq be an S-provable solution of C.

We have to show that spwq “Mil tĈpw, vq ¨ spvq holds for all w, v P V with w ð“ v.

We first notice that this statement holds obviously for w “ v, due tĈpw, vq ” tĈpv, vq ” 1.
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Therefore it suffices to show, by also using this fact, that spwq “Mil tĈpw, vq ¨ spvq holds

for all w, v P V with w ð v. We will show this by using the same induction as for the
definition of the relative extraction function in Definition 6.1, that is, by complete induction
on the (converse) lexicographic partial order ălex of ð` and Ð

`
bo on V ˆ V defined by:

xw1, v1y ălex xw2, v2y :ðñ v1 ð` v2 _ p v1 “ v2 ^ w1 Ð
`
bo w2 q, which is well-founded due

to Lemma 4.13. For our argument we suppose to have given, underlying the definition of
the relative extraction function tĈ and the extraction function sĈ, list representations TĈpwq

of the transitions from w in Ĉ as written in Definition 6.1, for all w P V .
In order to carry out the induction step, we let w, v P V be arbitrary such that w ð v.

On the basis of the form of TĈpwq as in Definition 6.1 we argue as follows, starting with a

step in which we use that s is an S-provable solution of C, and followed by a second step in
which we use that τCpwq ” 0 holds, because w cannot have immediate termination as due to
w ð v it is in the body of the loop at v (see condition (L3) for loop 1-charts in Section 4):

spwq “S τCpwq `

´´

n
ÿ

i“1

ai ¨ spwiq

¯

`

´

m
ÿ

i“1

bi ¨ spuiq
¯¯

“Mil´́́

´

n
ÿ

i“1

ai ¨ spwiq

¯

`

´

m
ÿ

i“1

bi ¨ spuiq
¯

“Mil

´

n
ÿ

i“1

ai ¨
`

tĈpwi, wq ¨ spwq
˘

¯

`

´

m
ÿ

i“1

bi ¨ spuiq
¯

`

if wi “ w, then spwiq “Mil tĈpwi, wq ¨ spwqq due to tĈpw, wq “ 1;

if wi ‰ w, we can apply the induction hypothesis to spwiq,
because then w Ñrlis wi (see TĈpwq as in Def. 6.1) implies wi ð w,

and due to w ð v we get xwi, wy ălex xw, vy)

“Mil

´

n
ÿ

i“1

ai ¨
`

tĈpwi, wq ¨ spwq
˘

¯

`

´

m
ÿ

i“1

bi ¨
`

tĈpui, vq ¨ spvq
˘

¯

`

if ui “ v, then spuiq “Mil tĈpui, vq ¨ spvqq due to tĈpv, vq “ 1;

if ui ‰ v, we can apply the induction hypothesis to spuiq,
as w Ñbo ui (see TĈpwq as in Def. 6.1) and ui ‰ v

imply ui ð v, and ui Ðbo w entails xui, vy ălex xw, vy)

“Mil´́́

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨ spwq `

´

m
ÿ

i“1

bi ¨ tĈpui, vq

¯

¨ spvq

(by axioms passocp¨qq, and pr-distrp`, ¨qq).

We note that these equalities also hold for the special cases in which n “ 0 or/and m “ 0,
where in the case m “ 0 an axiom (deadlock) needs to be used in the last step. Since
ACI Ď S À Mil, and Mil´́́ Ď Mil, we have obtained the following provable equality:

spwq “Mil

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨ spwq `

´

m
ÿ

i“1

bi ¨ tĈpui, vq

¯

¨ spvq ,
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Since
`
řn

i“1 ai ¨ tĈpwi, wq
˘

Ú holds, we can apply RSP˚ in order to obtain, and reason further:

spwq “Mil

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´´

m
ÿ

i“1

bi ¨ tĈpui, vq

¯

¨ spvq

¯

“Mil´́́

´´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´

m
ÿ

i“1

bi ¨ tĈpui, vq

¯¯

¨ spvq

(by axiom passocp¨qq)

” tĈpw, vq ¨ spvq

(by w ð v, and the definition of tĈpw, vq in Def. 6.1)

In this way we have shown, due to Mil´́́ Ď Mil, the desired Mil-provable equality spwq “Mil

tĈpw, vq ¨ spvq for the vertices v and w that we picked with the property w ð v.

Since w, v P V with w ð v were arbitrary for this argument, we have successfully carried
out the proof by induction spwq “Mil tĈpw, vq ¨ spvq holds for all w, v P V with w ð v. As

we have argued that the statement also holds for w “ v, we have proved the lemma.

Definition 6.6. For an EqpAq-based proof system S we say that two star expression functions
s1, s2 : V Ñ StExppAq are S-provably equal if s1pvq “S s2pvq holds for all v P V .

Now we use the relationship of arbitrary Mil-provable solutions of a guarded LLEE-wit-
ness Ĉ with the relative extraction function sĈ of Ĉ as stated by Lemma 4.13 in order to
demonstrate the solution uniqueness statement (SU). The proof can be viewed as proceeding
on the maximal length of body transition paths from vertices v, where for descents from v
via a loop-entry transition into an inner loop the statement of Lemma 6.5 is used. Again the
use of the fixed-point rule RSP˚ of Mil´́́ is crucial, because any two Mil´́́-provable solutions
of a guarded LLEE-1-chart cannot be expected to be Mil´́́-provably equal in general.3

Lemma 6.7 (provable equality of solutions of LLEE-1-charts). Let C be a guarded LLEE-
1-chart, and let S be an EL-based proof system over StExppAq such that ACI Ď S À Mil.

Then any two S-provable solutions of C are Mil-provably equal.

Proof. Let C “ xV,A, 1, vs,Ñ, Óy be a LLEE-1-chart with guarded LLEE-witness Ĉ, and
let S an EL-based proof system as assumed in the lemma. In order to show that any two
S-provable solutions of C are Mil-provably equal, it suffices to show that every S-provable
solution of C is Mil-provably equal to the extraction function sĈ of Ĉ.

For demonstrating this, let s : V Ñ StExppAq be an S-provable solution of C. We have
to show that spwq “Mil sĈpwq holds for all w P V . We proceed by complete induction on the

well-founded relation Ð
`
bo (see Lemma 4.13, (ii)), which does not require us to treat base

cases separately. For our argument we assume to have given, underlying the definition of
the relative extraction function tĈ and the extraction function sC , list representations TĈpwq

of the transitions from w in Ĉ as written in Definition 6.1, for all w P V .
Let w P V be arbitrary. On the basis of TĈpwq as in Definition 6.1 we argue as follows,

starting with a step in which we use that s is an S-provable solution of C in view of the

3As a simple example, the use of RSP˚ is necessary for proving equal in Mil the two Mil´́́-provable solutions
of the guarded LLEE-1-chart Cppa ¨ aq

˚
¨ 0q with the principal values a˚

¨ 0 and pa ¨ aq
˚

¨ 0, respectively.
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assumed form of TĈpwq :

spwq “S τCpwq `

´´

n
ÿ

i“1

ai ¨ spwiq

¯

`

´

m
ÿ

i“1

bi ¨ spuiq
¯¯

“ACI

´

n
ÿ

i“1

ai ¨ spwiq

¯

`

´´

m
ÿ

i“1

bi ¨ spuiq
¯

` τCpwq

¯¯

“Mil

´

n
ÿ

i“1

ai ¨ ptĈpwi, wq ¨ spwqq

¯

`

´´

m
ÿ

i“1

bi ¨ spuiq
¯

` τCpwq

¯

(w Ñrlis wi (due to TĈpwq as in Definition 6.1) implies wi ð“ w,

from which Lemma 6.5 yields spwiq “Mil tĈpwi, wq ¨ spwq )

“Mil´́́

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨ spwq `

´´

m
ÿ

i“1

bi ¨ spuiq
¯

` τCpwq

¯

(by axioms passocp¨qq and pr-distrp`, ¨qq)

“Mil

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨ spwq `

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

(due to w Ñbo ui (see TĈpwq as in Definition 6.1), and hence ui Ðbo w,

spuiq “Mil sĈpuiq follows from the induction hypothesis).

Since ACI Ď S À Mil, and Mil´́́ Ď Mil, we have obtained the following provable equality:

spwq “Mil

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯

¨ spwq `

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

Now since
`
řn

i“1 ai ¨ tĈpwi, wq
˘

Ú holds, we can apply the rule RSP˚ to this in order to obtain:

spwq “Mil

´

n
ÿ

i“1

ai ¨ tĈpwi, wq

¯˚

¨

´´

m
ÿ

i“1

bi ¨ sĈpuiq
¯

` τCpwq

¯

” sĈpwq (by the definition of sĈ in Definition 6.1)

Thus we have verified the proof obligation spwq “Mil sĈpwq for the induction step, for the

vertex w as picked.
By having performed the induction step, we have successfully carried out the proof by

complete induction on Ðbo that spwq “Mil sĈpwq holds for all w P V , and for an arbitrary

S-provable solution s of C. This implies the statement of the lemma, that any two S-provable
solutions of C are Mil-provably equal.

Proposition 6.8. For every EL-based proof system S over StExppAq with ACI Ď S À Mil,
provability by LLEE-witnessed coinductive proofs over S implies derivability in Mil:

`

e1
LLEE
“““S e2 ùñ e1 “Mil e2

˘

for all e1, e2 P StExppAq. (6.1)

Proof. For showing (6.1), let e, f P StExppAq be such that e
LLEE
“““S f . Then there is a

LLEE-witnessed coinductive proof LCP “ xC, Ly of e1 “ e2 over S, which consists of a
guarded LLEE-1-chart C and S-provable solutions L1, L2 : V pCq Ñ StExppAq of C with
e1 ” L1pvsq and e2 ” L2pvsq. By applying Lemma 6.7 to LCP we find that L1 and L2 are
Mil-provably equal. This entails e1 ” L1pvsq “Mil L2pvsq ” e2, and thus e1 “Mil e2.
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Lipv11q Lipv21q

Lipv1q Lipv2q

Lipvsq

C, Ĉ

a
r1s b

b

r1s

a r2s
b

r2s

Lipv21q “
(sol)

Mil´́́
1 ¨ Lipv2q “Mil´́́ Lipv2q

(“
(sol)

Mil´́́
means use of ‘is Mil´́́-provable solution’)

Lipv2q “
(sol)

Mil´́́
b ¨ Lipv21q ` 1 ¨ Lipvsq “Mil´́́ b ¨ Lipv2q ` Lipvsq

ó applying RSP˚

Lipv2q “Mil b˚ ¨ Lipvsq

Lipv11q “
(sol)

Mil´́́
1 ¨ Lipv1q “Mil´́́ Lipv1q

Lipv1q “Mil´́́ a ¨ Lipv11q ` b ¨ Lipv21q ` 1 ¨ Lipvsq

“Mil a ¨ Lipv1q ` pb ¨ b˚ ` 1q ¨ Lipvsq

“Mil´́́ a ¨ Lipv1q ` b˚ ¨ Lipvsq

ó applying RSP˚

Lipv1q “Mil a˚ ¨ pb˚ ¨ Lipvsqq “Mil´́́ pa˚ ¨ b˚q ¨ Lipvsq

Lipvsq “
(sol)

Mil´́́
1 ` a ¨ Lipv11q ` b ¨ Lipv21q “Mil´́́ 1 ` a ¨ Lipv1q ` b ¨ Lipv2q

“Mil pa ¨ pa˚ ¨ b˚q ` b ¨ b˚q ¨ Lipvsq ` 1

ó applying RSP˚

Lipvsq “Mil pa ¨ pa˚ ¨ b˚q ` b ¨ b˚q˚ ¨ 1 “Mil´́́ pa ¨ pa˚ ¨ b˚q ` b ¨ b˚q˚ “Mil´́́ sĈpvsq

Figure 13: Showing for the coinductive proof xC, Ly in Example 5.2 that the principal value
Lipvsq of the Mil´́́-provable solution Li for i P t1, 2u is Mil-provably equal to the

principal value sĈpvsq of the solution sĈ extracted the underlying LLEE-witness Ĉ.

Example 6.9. We consider again the LLEE-witnessed coinductive proof CP “ xC, Ly of
pa˚ ¨ b˚q˚ “ pa ` bq˚ in Example 5.2. In Figure 13 we exhibit the extraction process of

derivations in Mil of L1pvsq “ sCpvq and L2pvsq “ sCpvq from the guarded LLEE-witness Ĉ
of C. These two derivations in Mil can be combined by using EL rules in order to obtain a
derivation in Mil of pa˚ ¨ b˚q˚ ” L1pvsq “ L2pvsq ” pa ` bq˚.

Lemma 6.10. The rules LCoProofn are correct for Mil, for all n P N. This statement
also holds effectively: Every derivation D in Mil`LCoProofn that consists of a bottommost
instance of LCoProofn, where n P N, whose immediate subderivations are derivations in Mil
can be transformed effectively into a derivation D1 in Mil that has the same conclusion as D.

Proof. We let n P N. In order to show correctness of the rule LCoProofn for Mil, we consider
a derivation D in Mil`LCoProofn that has immediate subderivations D1, . . . , Dn in Mil,
and that terminates with an instance ι of LCoProofn , where Γ :“ tg1 “ h1, . . . , g1 “ h1u :

D1

g1 “ h1 . . .

Dn

gn “ hnι LCoProofne “ f

and e
LLEE
“““Mil´́́`Γ f holds as side-condition on the instance ι of LCoProofn. Then there is a

LLEE-witnessed coinductive proof LCP “ xC, Ly of e “ f over Mil´́́`Γ. We have to show
that there is a derivation D1 in Mil with the same conclusion e “ f .

Since D1, . . . , Dn are derivations in Mil, their conclusions in Γ are derivable in Mil. This
implies Mil`Γ À Mil. It follows that LCP is also a LLEE-witnessed coinductive proof of
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e “ f over Mil, that is, it holds:

e
LLEE
“““Mil f .

From this we obtain e “Mil f by applying Proposition 6.8, which guarantees a derivation D1
in Mil with conclusion e “ f as desired. The proof of Proposition 6.8 furthermore guarantees
that such a derivation D1 in Mil can be constructed effectively from the coinductive proof of
e “ f over Mil´́́`Γ (and hence over Mil) and the derivations D1, . . . , Dn in Mil.

Theorem 6.11. cMil À Mil. Moreover, every derivation in cMil with conclusion e “ f can
be transformed effectively into a derivation in Mil that has the same conclusion.

Proof. Due to Lemma 6.10, every rule LCoProofn, for n P N, is correct for Mil. Then by
using Lemma 2.10, (i), we find that each of these rules are admissible in Mil. This means that
Mil`LCoProofn „ Mil holds for all n P N, which implies, with an argument by induction on
the prooftree size of derivations in Mil`tLCoProofnunPN, that Mil`tLCoProofnunPN „ Mil
holds as well. With this statement we can now argue as follows:

cMil “ Mil´́́`tLCoProofnunPN (by Definition 5.9)

Ď pMil´́́`tLCoProofnunPNq`RSP˚ (by extension via adding the rule RSP˚)

“ pMil´́́`RSP˚q`tLCoProofnunPN (by construing the same system differently)

“ Mil`tLCoProofnunPN (by Definition 2.11)

„ Mil (as argued above) .

From this we obtain cMil À Mil in view of pĎ ¨ „q Ď pÀ ¨ „q Ď À.
For demonstrating the effective transformation statement of the theorem we use the

transformation from the proof of the implication “ð” in Lemma 2.10, (i), which states
that correct rules are also admissible. We have to show that every derivation D in cMil can
be transformed effectively into a derivation D1 in Mil with the same conclusion. In order
to establish this statement by induction we prove it for all derivations D in the extension
cMil`RSP˚ “ Mil´́́`tLCoProofnunPN`RSP˚ “ Mil`tLCoProofnunPN of cMil.

We proceed by induction on the number of instances of rules LCoProofn, for n P N,
in D. Let D be a derivation Mil´́́`tLCoProofnunPN`RSP˚. If D does not contain an
instance of LCoProofn with n P N, then D is already a derivation in Mil “ Mil´́́`RSP˚,
and no further transformation is necessary. Otherwise D contains at least one instance of
LCoProofn with n P N. We pick an instance ι in D of a rule LCoProofn0 with n0 P N that
is topmost among the instances of the coinductive rule in D, that is, none of the immediate
subderivations of the instance ι in D contains any instance of a rule LCoProofn for n P N.
Let D0 be the subderivation of D that ends in ι. Since ι is topmost, all of the immediate
subderivations of ι and D0 in D are derivations in Mil “ Mil´́́`RSP˚, and D0 is a derivation
in Mil´́́`LCoProofn0`RSP˚ “ Mil`LCoProofn0 . Therefore we can apply the effective part
of Lemma 6.10 to the subderivation D0. We obtain a derivation D10 in Mil with the same

conclusion as ι and D0. Then by replacing D0 in D with D10 we obtain a derivation D̃ in
Mil´́́`tLCoProofnunPN`RSP˚ that has the same conclusion as D, but that has one instance

of a coinductive rule less than D. Now we can apply the induction hypothesis to D̃ in order
to effectively transform it in a derivation D1 in Mil that has the same conclusion as D. In
this way we have performed the induction step.

We conclude this section with an illustrative application of the results obtained here
that provides in-roads for a completeness proof for Milner’s system Mil. Specifically we
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C
LLEE, guarded

Cpe1q Cpe2q

e1 “Mil e2
Cor. 6.14, (i) Cor. 6.14, (ii)

Cpe1q Cpe2q

C
LLEE, guarded

Figure 14: Illustration of the statements (for arbitrary given e1, e2 P StExp) of Corollary 6.14:
Milner’s system Mil is complete for 1-bisimilarity of chart interpretations via
guarded LLEE-1-charts as joint expansion or as joint minimization.

apply Proposition 6.8, the transformation of LLEE-witnessed coinductive proofs over Mil
into derivations in Mil. We show (see Corollary 6.14 below) that Milner’s system is complete
for bisimilarity of chart interpretations of star expressions when bisimilarity is witnessed
by joint expansion or joint minimization to a guarded LLEE-1-chart via functional 1-bi-
simulations (see Definition 6.12). For showing this statement we must, however, use here
without proof a technical result from [Gra22a]: Mil-provable solutions of 1-charts can be
transferred backwards over functional 1-bisimulations (see Lemma 6.13). This statement
is a generalization to 1-charts of Proposition 5.1 in [GF20a], which states that S-provable
solutions of charts, for ACI Ě S, can be transferred backwards over functional bisimulations.

Definition 6.12. Let C, C1, and C2 be 1-charts. We say that C1 and C2 are 1-bisimilar via
C as (their) joint expansion (C1 and C2 are 1-bisimilar via C as (their) joint minimization)
if C1 Ð C Ñ C2 holds (respectively, if C1 Ñ C Ð C2 holds).

Lemma 6.13 („Lemma 3.8, (i), in [Gra22a]). Mil-Provable solvability with principal value
e is preserved under converse functional 1-bisimilarity, on weakly guarded 1-charts, for all
star expressions e P StExp.

Corollary 6.14. The following two statements hold (see Figure 14 for their illustrations):
(i) Mil is complete for 1-bisimilarity of chart interpretations of two star expressions via a
guarded LLEE-1-chart as joint expansion. (ii) Mil is complete for 1-bisimilarity of chart
interpretations of two star expressions via a guarded LLEE-1-chart as joint minimization.

Proof. For showing statement (i), let e1, e2 P StExppAq be such that there is a guarded
LLEE-1-chart C with Cpe1q Ð C Ñ Cpe2q. We have to show e1 “Mil e2.

Due to Lemma 3.7, there are Mil´́́-provable (and thus Mil-provable) solutions of Cpe1q and
Cpe2q with principal values e1, and e2, respectively. Then we obtain by applying Lemma 6.13,
in view of the converse functional 1-bisimulations from Cpe1q and Cpe2q to C, that there are
two Mil-provable solutions L1 and L2 of C with the principal values e1 and e2, respectively.
These two Mil-provable solutions of the guarded LLEE-1-chart C can be combined to obtain
a LLEE-witnessed coinductive proof xC, Ly of e1 “ e2 over Mil. Thus we obtain:

e1
LLEE
“““Mil e2 .

From this we arrive at e1 “Mil e2 by Proposition 6.8.

For showing statement (ii), let e1, e2 P StExppAq be such that there is a guarded
LLEE-1-chart C with Cpe1q Ñ C Ð Cpe2q. We have to show e1 “Mil e2.
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We first note that due to Lemma 6.3 the extraction function sĈ of a (guarded) LLEE-wit-

ness Ĉ of the guarded LLEE-1-chart C yields a Mil´́́-provable (and hence also a Mil-provable)
solution s of C whose principal value we denote by e. Next we apply Theorem 4.18, (ii), to
extend the assumed functional 1-bisimulations to C above the chart interpretations Cpe1q
and Cpe2q to start from the 1-chart interpretations Cpe1q and Cpe2q: we obtain Cpe1q Ñ

Cpe1q Ñ C Ð Cpe2q Ð Cpe2q. By Theorem 4.18, (i), we find that Cpe1q and Cpe2q are guarded
LLEE-1-charts. By transitivity of Ñ we obtain Cpe1q Ñ C Ð Cpe2q. Now we can apply
Lemma 6.13 to obtain, from the Mil-provable solution s of C, a Mil-provable solution Le1,2 of
Cpe1q with principal value e, and Le2,2 of Cpe2q also with principal value e. By Lemma 4.21
we furthermore obtain Mil´́́-provable (and hence Mil-provable) solutions Le1,1 of Cpe1q with
principal value e1, and Le2,1 of Cpe2q with principal value e2. The two Mil-provable solutions
Le1,1 and Le1,2 of the guarded LLEE-1-chart Cpe1q can be combined to a LLEE-witnessed
coinductive proof xCpe1q, Le1y of e1 “ e over Mil. Analogously, the two Mil-provable solutions
Le2,1 and Le2,2 of the guarded LLEE-1-chart Cpe2q can be combined to a LLEE-witnessed
coinductive proof xCpe2q, Le2y of e2 “ e over Mil. Together we obtain:

e1
LLEE
“““Mil e and e2

LLEE
“““Mil e .

Now by an appeal to Proposition 6.8 we obtain e1 “Mil e and e2 “Mil e. Finally, by applying
of symmetry and transitivity rules in Mil we obtain e1 “Mil e2.

Remark 6.15. While both of the statements (i) and (ii) of Corollary 6.14 were important
pieces of the puzzle for constructing the completeness proof for Mil as sketched in [Gra22a],
neither of them yields such a proof directly. This is because of the following two facts: First,
two bisimilar chart interpretations do not always have a guarded LLEE-1-chart as their
joint expansion along Ð. This can be demonstrated with the counterexample of the charts
in Example 4.1 of [GF20a]. As a consequence, (i) is sometimes not applicable. Second, two
bisimilar chart interpretations do not in general have a guarded LLEE-1-chart as their joint
minimization along Ñ. This is an easy consequence of the counterexample that is described
in [Gra22a, Sect. 6]. Therefore direct application of (ii) is also excluded in some situations.

Yet more sophisticated applications of (i) and (ii) can still turn out to be expedient.
Indeed, a strengthening of (ii) has helped us settle a subcase, and a refinement of (ii)
has led to completeness proof for Mil as sketched in [Gra22a]. In [GF20a], Fokkink and
I have employed the stronger and more specific version of the joint minimization idea in
Corollary 6.14, (ii), for a completeness proof of an adaptation BBP by Bergstra, Bethke, and
Ponse of Mil to ‘1-free star expressions’ (without 1, and with binary iteration instead of unary
iteration). Concretely, we used that bisimilar chart interpretations of 1-free star expressions
have LLEE-charts as their bisimulation collapses (and thus have guarded LLEE-1-charts
as joint minimizations). The completeness proof for Mil as summarized in [Gra22a] has
been built around a more involved argument that employs ‘crystallized’ LLEE-1-chart
approximations of the joint bisimulation collapse of bisimilar chart interpretations.

7. From Milner’s system to LLEE-witnessed coinductive proofs

In this section we develop a proof-theoretic interpretation of Mil in the subsystem cMil1
of cMil, and hence also a proof-theoretic interpretation of Mil in cMil. Since Mil and cMil1
differ only by the fixed-point rule RSP˚ (which is part of Mil, but not of cMil) and the
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pp1 › a˚q ¨ b˚q › f˚

pp1 ¨ a˚q ¨ b˚q › f˚
a

b pa˚ ¨ b˚q › f˚
a

r1s

b

p1 › b˚q › f˚

p1 ¨ b˚q › f˚
b

b˚ › f˚
b

r1s

ppa ¨ a˚ ` bq ¨ b˚q˚
looooooooomooooooooon

f˚

a

r2s

b

r2s

Figure 15: The 1-chart interpretation Cpf˚q for f˚ as in (7.1) in Example 7.1.

rule LCoProof1 (which is part of cMil1, but not of Mil), the crucial step for this proof
transformation is to show that instances of RSP˚ can be mimicked in cMil1.

We will do so by showing that instances of RSP˚ are derivable in cMil1, and in particular,
can be mimicked by instances of LCoProof1. More precisely, we will show that every instance ι
of the fixed-point rule RSP˚ of Mil can be mimicked by an instance of LCoProof1 that has
the same premise and conclusion, and that uses as its side-condition a LLEE-witnessed
coinductive proof over Mil´́́ in which the premise of ι may be used. Still more explicitly, we
show that every RSP˚-instance with premise e “ f ¨ e ` g such that fÓ and with conclusion
e “ f˚ ¨ g gives rise to a coinductive proof of e “ f˚ ¨ g over Mil´́́`te “ f ¨ e ` gu with

underlying 1-chart Cpf˚ ¨ gq and guarded LLEE-witness Ĉpf˚ ¨ gq.
We first illustrate this mimicking step by a concrete example (see Example 7.1), in

order to motivate and convey the idea of this proof transformation. It will be built on
three auxiliary statements (see after Example 7.1) two of which we have shown already in
Section 4. Subsequently we prove the remaining crucial auxiliary statement (Lemma 7.2),
and then establish the transformation by showing that RSP˚ is a derivable rule in cMil1
(Lemma 7.4, using Lemma 7.3). Finally we use derivability of RSP˚ in cMil1 in order to
obtain the proof transformation from Mil to cMil1 (see Theorem 7.5).

Example 7.1. We consider an instance of RSP˚ that corresponds, up to an application of
r-distrp`, ¨q, to the instance of RSP˚ at the bottom in Figure 13:

e
hkkkikkkj

pa ` bq˚ “

f
hkkkkkkkkkikkkkkkkkkj

ppa ¨ a˚ ` bq ¨ b˚q ¨

e
hkkkikkkj

pa ` bq˚`

g
hkkikkj

1
RSP˚ (where f Ú )

pa ` bq˚
looomooon

e

“ ppa ¨ a˚ ` bq ¨ b˚q˚
loooooooooomoooooooooon

f˚

¨ 1
loomoon

g

(7.1)

We want to mimic this instance of RSP˚ by an instance of LCoProof1 that uses a LLEE-wit-
nessed coinductive proof of e “ f˚ ¨ g over Mil´́́ plus the premise of the RSP˚ instance
(7.1). We first obtain the 1-chart interpretation Cpf˚q of f˚ according to Definition 4.15, see

Figure 15, together with its LLEE-witness Ĉpf˚q that is guaranteed by Theorem 4.18.
Due to Lemma 4.21 the iterated partial 1-derivatives as depicted define a Mil´́́-provable

solution of Cpf˚q when stacked products › are replaced by products ¨ . From this LLEE-wit-
ness that carries a Mil-provable solution we now obtain a LLEE-witnessed coinductive
proof of f ¨ e ` g “ f˚ ¨ g under the assumption of e “ f ¨ e ` g, as follows. By replacing
parts p. . .q › f˚ by πpp. . .qq ¨ e in the Mil-provable solution of Cpf˚q, and respectively, by
replacing p. . .q › f˚ by pπpp. . .qq ¨ f˚q ¨ g we obtain the left- and the right-hand sides of the
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pp1 ¨ a˚q ¨ b˚q ¨ e “ ppp1 ¨ a˚q ¨ b˚q ¨ f˚q ¨ g

pp1 ¨ a˚q ¨ b˚q ¨ e “ ppp1 ¨ a˚q ¨ b˚q ¨ f˚q ¨ g

a b

pa˚ ¨ b˚q ¨ e “ ppa˚ ¨ b˚q ¨ f˚q ¨ g
a

r1s
b

p1 ¨ b˚q ¨ e “ pp1 ¨ b˚q ¨ f˚q ¨ g

p1 ¨ b˚q ¨ e “ pp1 ¨ b˚q ¨ f˚q ¨ g

b

b˚ ¨ e “ pb˚ ¨ f˚q ¨ g

b
r1s

ppa ¨ a˚ ` bq ¨ b˚q
looooooooomooooooooon

f

¨ pa ` bq˚

looomooon

e

` 1
loomoon

g
loooooooooooooooooooooomoooooooooooooooooooooon

“ e (by rule assumption)

“ pppa ¨ a˚ ` bq ¨ b˚q˚

loooooooooomoooooooooon

f˚

¨ 1
loomoon

g

a

r2s

b
r2s

Figure 16: LLEE-witnessed coinductive proof of f ¨ e` g “ f˚ ¨ g over Mil´́́`te “ f ¨ e ` gu .

formal equations in the cyclic derivation in Figure 16. That derivation is a LLEE-witnessed
coinductive proof LCP of f ¨ e ` g “ f˚ ¨ g over Mil´́́`te “ f ¨ e ` gu : The right-hand sides
form a Mil-provable solution of Cpf˚ ¨ gq due to Lemma 4.21 (note that Cpf˚ ¨ gq is isomorphic
to Cpf˚q due to g ” 1). The left-hand sides also form a solution of Cpf˚ ¨ gq (see Lemma 7.2
below), noting that for the 1-transitions back to the conclusion the assumption e “ f ¨ e ` g
must be used in addition to Mil´́́. By using this assumption again, the result LCP 1 of
replacing f ¨ e ` g in the conclusion of LCP by e is also a LLEE-witnessed coinductive proof
over Mil´́́`te “ f ¨ e ` gu. Consequently:

e “ f ¨ e ` g LCPMil´́́`te“f ¨e`gupe “ f˚ ¨ gq
LCoProof1e “ f˚ ¨ g

(7.2)

is a rule instance of cMil and CLC by which we have mimicked the RSP˚ instance in (7.1).

By examining the steps that we used in the example above, we find that three main
auxiliary statements were used for the construction of a LLEE-witnessed coinductive proof
that mimics an instance of the fixed-point rule RSP˚ by an instance of LCoProof1. In
relation to an instance of RSP˚ of the generic form as in Definition 2.11, these are the
statements that, for all star expressions e, f , and g, it holds:

(a) The 1-chart interpretation Cpeq of a star expressions e is a guarded LLEE-1-chart.

(b) e is the principal value of a Mil´́́-provable solution of the 1-chart interpretation Cpeq of e.

(c) e is the principal value of a pMil´́́`te “ f ¨ e ` guq-provable solution of the 1-chart
interpretation Cpf˚ ¨ gq of f˚ ¨ g.

While (a) is guaranteed by Theorem 4.18, and (b) by Lemma 4.21, we are now going to
justify the central statement (c) by proving the following lemma.

Lemma 7.2. Let e, f, g P StExppAq with f Ú , and let Γ :“ te “ f ¨ e ` gu. Then e is the
principal value of a pMil´́́`Γq-provable solution of the 1-chart interpretation Cpf˚ ¨ gq of f˚ ¨ g.

Proof. First, it can be verified that the vertices of Cpf˚ ¨ gq are of either of three forms:

V pCpf˚ ¨ gqq “ tf˚ ¨ gu Y
␣

pF › f˚q ¨ g
ˇ

ˇ F P B`pfq
(

Y
␣

G | G P B`pgq
(

, (7.3)
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where B`pfq means the set of iterated 1-derivatives of f according to the TSS in Def. 4.15.
This facilitates to define a function s : V pCpf˚ ¨ gqq Ñ StExppAq on Cpf˚ ¨ gq by:

spf˚ ¨ gq :“ e ,

sppF › f˚q ¨ gq :“ πpFq ¨ e , (for F P B`pfq),

spGq :“ πpGq (for G P B`pgq),

We will show that s is a pMil´́́`Γq-provable solution of Cpf˚ ¨ gq. Instead of verifying the
correctness conditions for s for list representations of transitions, we will argue more loosely
with sums over action 1-derivatives sets ABpHq of stacked star expressions H where such
sums are only well-defined up to ACI. Due to ACI Ď Mil´́́ such an argumentation is possible.
Specifically we will demonstrate, for all E P V pCpf˚ ¨ gqq, that s is a pMil´́́`Γq-provable
solution at E, that is, that it holds:

spEq “Mil´́́`Γ τCpEqpEq `
ÿ

xa,E1yPABpEq

a ¨ spE1q , (7.4)

where by the sum on the right-hand side we mean an arbitrary representative of the ACI
equivalence class of star expressions that is described by the sum expression of this form.

For showing (7.4), we distinguish the three cases of vertices E P V pCpf˚ ¨ gqq according to
(7.3), that is, E ” f˚ ¨ g, E ” pF › f˚q ¨ g for some F P B`pfq, and E ” G for some G P B`pgq.
We will see that the assumption Γ will only be needed for the treatment of the first case.

In the first case, we consider E ” f˚ ¨ g. We find by Lemma 4.17 (or by inspecting the
TSS in Definition 4.15), and in view of (7.3):

ABpf˚ ¨ gq “ txa, pF › f˚q ¨ gy | xa, F y P ABpfqu Y ABpgq , (7.5)

Bpf˚ ¨ gq “ tpF › f˚q ¨ g | F P Bpfqu Y Bpgq

Ď
␣

pF › f˚q ¨ g | F P B`pfq
(

Y B`pgq Ď V pCpf˚ ¨ gqq .
(7.6)

Then (7.6) guarantees that s is defined for all partial 1-derivatives of E ” f˚ ¨ g. With this
knowledge we can argue as follows:

spEq ” spf˚ ¨ gq (by E ” f˚ ¨ g)

” e (by the definition of s)

“Mil´́́`Γ f ¨ e ` g (since Γ “ te “ f ¨ e ` gu)

“Mil´́́

´

τCpfqpfq `
ÿ

xa,F yPABpfq

a ¨πpFq

¯

¨ e `

´

τCpgqpgq `
ÿ

xa,GyPABpgq

a ¨πpGq

¯

(by using Lemma 4.20)

“Mil´́́

´

τCpfqpfq ¨ e `
ÿ

xa,F yPABpfq

a ¨ pπpFq ¨ eq

¯

`

´

τCpgqpgq `
ÿ

xa,GyPABpgq

a ¨πpGq

¯

(by using (r-distrp`, ¨q) and (assocp¨q))

“Mil´́́

´

ÿ

xa,F yPABpfq

a ¨ pπpFq ¨ eq

¯

`

´

τCpf˚ ¨ gqpf
˚ ¨ gq `

ÿ

xa,GyPABpgq

a ¨πpGq

¯

(since τCpfqpfq ” 0 due to f Ú , by using axiom (deadlock),
and τCpf˚ ¨ gqpf

˚ ¨ gq ” τCpgqpgq)
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“ACI τCpf˚ ¨ gqpf
˚ ¨ gq `

´

ÿ

xa,F yPABpfq

a ¨ psppF › f˚q ¨ gqq

¯

`
ÿ

xa,GyPABpgq

a ¨ spGq

(by definition of s, axioms (commp`q))

“ACI τCpEqpEq `
ÿ

xa,E1yPABpf˚¨gq“ABpEq

a ¨ spE1q

(by E ” f˚ ¨ g and (7.5)).

Due to ACI Ď Mil´́́ Ď Mil´́́`Γ this chain of equalities is provable in Mil´́́`Γ, which verifies
(7.4) for E as considered here, or in other words, s is a pMil´́́`Γq-provable solution of at E.

In the second case we consider E ” pF › f˚q ¨ g P V pCpf˚ ¨ gqq. Then F P B`pfq, and
τCpEqpEq ” τCppF › f˚q ¨ gqppF › f˚q ¨ gq ” 0 holds, because expressions with stacked product
occurring do not have immediate termination by Definition 4.15. We distinguish the subcases
FÓ and F Ú .

For the first subcase we assume F Ú . Then τCpFqpFq ” 0 holds, and we find by Lemma 4.17

(or by inspecting the TSS in Definition 4.15), by F P B`pfq, and from (7.3):

ABppF › f˚q ¨ gq “
␣

xa, pF 1 › f˚q ¨ gy | xa, F 1y P ABpFq
(

, (7.7)

BppF › f˚q ¨ gq “
␣

pF 1 › f˚q ¨ g | F 1 P BpFq
(

Ď
␣

pF 1 › f˚q ¨ g | F 1 P B`pfq
(

Ď V pCpf˚ ¨ gqq .
(7.8)

Due to (7.8), s is defined for all partial 1-derivatives of E ” pF › f˚q ¨ g. We argue as follows:

spEq ” sppF › f˚q ¨ gq (by E ” pF › f˚q ¨ g)

” πpFq ¨ e (by the definition of s)

“Mil´́́

´

τCpFqpFq `
ÿ

xa,F 1yPABpFq

a ¨πpF 1q
¯

¨ e (by using Lemma 4.20)

“Mil´́́ 0 ¨ e `
ÿ

xa,F 1yPABpFq

a ¨ pπpF 1q ¨ eq
(by τCpFqpFq ” 0, due to F Ú , and
axioms (r-distrp`, ¨q), (assocp¨q))

“Mil´́́ 0 `
ÿ

xa,F 1yPABpFq

a ¨ sppF 1 › f˚q ¨ gq (by ax. (deadlock) and def. of s)

“ACI τCppF › f˚q ¨ gqppF › f˚q ¨ gq `
ÿ

xa,E1yPABppF › f˚q ¨ gq

a ¨ spE1q (due to (7.7), and τCpEqpEq ” 0q

” τCpEqpEq `
ÿ

xa,E1yPABpEq

a ¨ spE1q (by E ” pF › f˚q ¨ g).

For the second subcase we assume FÓ. Then F P StExppAq (that is, F does not contain a
stacked product symbol), and τCpFqpFq ” 1 holds. Furthermore, we find, again by inspecting

the TSS in Definition 4.15, by F P B`pfq, and in view of (7.3):

ABppF › f˚q ¨ gq “ tx1, f˚ ¨ gyu Y
␣

xa, pF 1 › f˚q ¨ gy | xa, F 1y P ABpFq
(

. (7.9)

BppF › f˚q ¨ gq “ tf˚ ¨ gu Y
␣

pF 1 › f˚q ¨ g | F 1 P BpFq
(

Ď tf˚ ¨ gu Y
␣

pF 1 › f˚q ¨ g | F 1 P B`pfq
(

Ď V pCpf˚ ¨ gqq .
(7.10)
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Due to (7.10), s is defined for all partial 1-derivatives of E ” pF › f˚q ¨ g also in this subcase.
Then we can argue as follows:

spEq ” sppF › f˚q ¨ eq (by E ” pF › f˚q ¨ g)

” πpFq ¨ e (by the definition of s)

“Mil´́́

´

τCpFqpFq `
ÿ

xa,F 1yPABpFq

a ¨πpF 1q
¯

¨ e (by using Lemma 4.20)

“Mil´́́ 1 ¨ e `
ÿ

xa,F 1yPABpfq

a ¨ pπpF 1q ¨ eq
(by τCpFqpFq ” 1, and
axioms (r-distrp`, ¨q), (assocp¨q))

” 1 ¨ spf˚ ¨ gq `
ÿ

xa,F 1yPABpfq

a ¨ sppF 1 › f˚q ¨ gq (by the definition of s)

“ACI 0 `
ÿ

xa,E1yPABppF › f˚q ¨ gq

a ¨ spE1q
(by (7.9), using axioms
(commp`q), and (assocp`q))

” τCpEqpEq `
ÿ

xa,E1yPABpEq

a ¨ spE1q (by E ” pF › f˚q ¨ g, and τCpEqpEq ” 0).

Due to ACI Ď Mil´́́ Ď Mil´́́`Γ the chains of equalities in both subcases are provable in
Mil´́́`Γ, and therefore we have now verified (7.4) also in the (entire) second case, that is,
that s is a pMil´́́`Γq-provable solution of Cpf˚ ¨ gq at E as in this case.

In the final case, E ” G with G P B`pgq. Since then 1-derivatives of G are in B`pgq as
well, and hence by (7.3) also in V pCpf˚ ¨ gqq, it follows that s is defined for all 1-derivatives
of G and E. With this knowledge we can argue as follows:

spEq ” spGq (by E ” G)

” πpGq (by the definition of s)

“Mil´́́ τCpGqpGq `
ÿ

xa,G1yPABpGq

a ¨πpG1q (by using Lemma 4.20)

“ACI τCpGqpGq `
ÿ

xa,G1yPABpGq

a ¨ spG1q (by the definition of s)

“ACI τCpEqpEq `
ÿ

xa,E1yPABpEq

a ¨ spE1q (by E ” G).

Due to ACI Ď Mil´́́ Ď Mil´́́`Γ this chain of equalities verifies (7.4) also in this case.
By having established (7.4) for the, according to (7.3), three possible forms of stacked star

expressions that are vertices of Cpf˚ ¨ gq, we have shown that s is indeed a pMil´́́`Γq-provable
solution of Cpf˚ ¨ gq.

After having proved statement (c), we can combine the statements (a), (b), and (c) as
above in order construct LLEE-witnessed coinductive proofs with which instances of RSP˚

can be mimicked by instances of LCoProof1. This leads us to Lemma 7.3 below, and, as it
can show derivability of RSP˚ in cMil1, to Lemma 7.4.

Lemma 7.3. Let e, f, g P StExppAq with f Ú , and let Γ :“ te “ f ¨ e ` gu. Then it holds that

e
LLEE
“““pMil´́́`Γq f

˚ ¨ g.
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Proof. First, there is a Mil´́́`Γ-provable solution s1 of Cpf˚ ¨ gq with s1pf˚ ¨ gq ” e, due to
Lemma 7.2. Second, there is a Mil´́́-provable solution s2 of Cpf˚ ¨ gq with s2pf˚ ¨ gq ” f˚ ¨ g,
due to Lemma 4.21. Then xCpf˚ ¨ gq, Ly with Lpvq :“ s1pvq “ s2pvq for all v P V pCpf˚ ¨ gqq is
a LLEE-witnessed coinductive proof of e “ f˚ ¨ g over Mil´́́`Γ, because Cpf˚ ¨ gq has the

guarded LLEE-witness Ĉpf˚ ¨ gq by Theorem 4.18.

We note that the equation in the set Γ in the assumption of Lemma 7.3 does not need
to be sound semantically. Therefore it was crucial for the formulation of this lemma that
we did not require proof systems S to be sound with respect to “J¨KP for the definition of
coinductive proofs in Definition 5.1. Indeed we have done so there in order to be able to
formulate this lemma, which states that also instances of the fixed-point rule RSP˚ with
premises that are not semantically sound can be mimicked by appropriate coinductive proofs.

Lemma 7.4. RSP˚ is a derivable rule in cMil.

Proof. Every instance ι of RSP˚ can be replaced by a mimicking derivation Dι in cMil1
according to the following step, where f Ú holds as the side-condition of the instance of RSP˚ :

e “ f ¨ e ` g
ι RSP˚
e “ f˚ ¨ g

úùñ
e “ f ¨ e ` g

LCoProof1e “ f˚ ¨ g
(7.11)

Here the side-condition e
LLEE
“““pMil´́́`te“f ¨e`guq f

˚ ¨ g of the instance of LCoProof1 in the

derivation Dι on the right is guaranteed by Lemma 7.3.

We now can show the main result of this section, the proof transformation from Mil to
cMil1. We obtain this transformation by using derivability of RSP˚ in cMil1 as stated by this
lemma, and by combining basic proof-theoretic transformations that eliminate derivable, and
hence correct and admissible, rules from derivations as described in the proof of Lemma 2.10.

Theorem 7.5. Mil À cMil1. What is more, every derivation in Mil with conclusion e “ f
can be transformed effectively into a derivation with conclusion e “ f in cMil1.

Proof. Due to Lemma 7.4, RSP˚ is a derivable rule in cMil1. Then by Lemma 2.10, (ii),
RSP˚ is also an admissible rule in cMil1, and hence cMil1`RSP˚ „ cMil1 holds. With that
we can now argue as follows:

Mil “ Mil´́́`RSP˚ Ď pMil´́́`RSP˚q`LCoProof1

“ pMil´́́`LCoProof1q`RSP˚ “ cMil1`RSP˚ „ cMil1 .

From this we can infer Mil À cMil1, because Ď implies À, and À ¨ „ Ď „. That every
derivation D in Mil can be transformed effectively into a derivation D1 in cMil with the same
conclusion follows from derivability of RSP˚ in cMil: then in D every instance of RSP˚ can
be replaced by a corresponding instance of LCoProof1 as described in (7.11) of the proof
of Lemma 7.4 with as result a derivation D1 in cMil1 with the same conclusion as D. This
argument instantiates the implication from rule derivability to rule admissibility, and the
transformations explained in the proof of Lemma 2.10, (i) and (ii), specifically (2.1).

Example 7.6. In Figure 2 we provided a first illustration for translating an instance of the
fixed-point rule into a coinductive proof in Figure 2 on page 4. Specifically, we mimicked
the instance ι (see below) of the fixed-point rule RSP˚ in Milner’s system Mil “ Mil´́́`RSP˚

by a coinductive proof over Mil´́́`tpremise of ιu with LLEE-witness Ĉpf˚ ¨ 0q.
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The correctness conditions that have to be satisfied for the right-hand sides in order
to recognize this prooftree as a LLEE-witnessed coinductive proof Mil´́́`tpremise of ιu are
the same as those that we have verified for the right-hand sides of the coinductive proof
over Mil´́́ with the same LLEE-witness in Example 5.3. Note that the premise of ι is not
used for the correctness conditions of the right-hand sides. The correctness condition for the
left-hand side e˚0 ¨ 0 at the bottom vertex of Cpf˚ ¨ 0q can be verified as follows, now making
use of the premise of the considered instance ι of RSP˚ :

e˚0 ¨ 0 “tpremise of ιu f ¨ pe˚0 ¨ 0q ` 0

“Mil´́́ pa ¨ pa ` bq ` bq ¨ pe˚0 ¨ 0q

“Mil´́́ pa ¨ pa ` bqq ¨ pe˚0 ¨ 0q ` b ¨ pe˚0 ¨ 0q

“Mil´́́ a ¨ ppa ` bq ¨ pe˚0 ¨ 0qq ` b ¨ p1 ¨ pe˚0 ¨ 0qq

“Mil´́́ a ¨ pp1 ¨ pa ` bqq ¨ pe˚0 ¨ 0qq ` b ¨ p1 ¨ pe˚0 ¨ 0qq

Together this yields the provable equation:

e˚0 ¨ 0 “Mil´́́`tpremise of ιu a ¨ pp1 ¨ pa ` bqq ¨ pe˚0 ¨ 0qq ` b ¨ p1 ¨ pe˚0 ¨ 0qq ,

which demonstrates the correctness condition for the left-hand side e˚0 ¨ 0 at the bottom
vertex of Cpf˚ ¨ 0q. The correctness condition for the left-hand side a ¨ pp1 ¨ pa ` bqq at the
top left vertex of Cpf˚ ¨ 0q can be verified without using the premise of ι as follows:

pp1 ¨ pa ` bqq ¨ pe˚0 ¨ 0q “Mil´́́ ppa ` bq ¨ pe˚0 ¨ 0q “Mil´́́ a ¨ pe˚0 ¨ 0q ` b ¨ pe˚0 ¨ 0q

“Mil´́́ a ¨ p1 ¨ pe˚0 ¨ 0qq ` b ¨ p1 ¨ pe˚0 ¨ 0qq .

Finally, the correctness condition of the left-hand side 1 ¨ pe˚0 ¨ 0q at the right upper vertex of
Cpf˚ ¨ 0q can be obtained by an application of the axiom (idlp¨q) only.

We close this section by giving an example that provides an additional sanity check for
the proof transformation from Mil to cMil that we developed above. The example below
shows that the construction of a LLEE-witnessed coinductive proof fails for an inference
that is not an instance of the fixed-point rule RSP˚ because the side-condition is violated.

Non-Example 7.7. We consider the following (not semantically valid) inference according
to a (semantically unsound) extension RSP˚ of the fixed-point rule RSP˚ that does not
require the guardedness side-condition f Ú (see Definition 2.11):

e
hkkkikkkj

pa ` cq˚ “

f
hkkikkj

pa ` 1q ¨

e
hkkkikkkj

pa ` cq˚`

g
hkkikkj

1
RSP˚ (but not RSP˚ since f ” pa ` 1qÓ)

pa ` cq˚ “ pa ` 1q˚
looomooon

f˚

¨ 1
loomoon

g

The premise is semantically valid by Proposition 2.14 because it is provable in Mil´́́:

pa ` cq˚ “Mil´́́ 1 ` pa ` cq ¨ pa ` cq˚ “Mil´́́ 1 ` a ¨ pa ` cq˚ ` c ¨ pa ` cq˚

“Mil´́́ 1 ` a ¨ pa ` cq˚ ` 1 ` a ¨ pa ` cq˚ ` c ¨ pa ` cq˚

“Mil´́́ 1 ` a ¨ pa ` cq˚ ` pa ` cq˚ “Mil´́́ 1 ` a ¨ pa ` cq˚ ` 1 ¨ pa ` cq˚

“Mil´́́ 1 ` pa ` 1q ¨ pa ` cq˚ “Mil´́́ pa ` 1q ¨ pa ` cq˚ ` 1 .

But the conclusion of the inference is obviously not valid semantically, because its left-hand
side can iterate c-transitions, while its right-hand side does not permit c-transitions.
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Cpf ˚q 1 › f˚

pa ` 1q˚
looomooon

f˚

a r1s

1 ¨

pa`cq˚
hkkikkj

e

pa ` 1q
loomoon

f

¨ pa ` cq˚
looomooon

e

` 1
loomoon

g
loooooooooooooooomoooooooooooooooon

“ e (by rule assumption)

a r1s

ˆ

p1 ¨ f˚q ¨ g

pa ` 1q˚
looomooon

f˚

¨ 1
loomoon

g

a r1s

Figure 17: Failure of the construction a Mil´́́-provable solution for a coinductive proof that
would mimic an instance of a fixed-point rule like RSP˚ without side-condition.

Now by mechanically performing the same construction of a coinductive proof as we
illustrated it in Example 7.1 and in Example 7.6, we obtain the LLEE-1-chart Cpf˚q and
the star expression assignments to it as in Figure 17. There we recognize that, while f˚ ¨ g
is the principal value of a Mil´́́-provable solution of Cpf˚ ¨ gq (see on the right), we have not
obtained a Mil`te “ f ¨ e ` gu-provable solution of Cpf˚ ¨ gq with principal value f ¨ e ` g
(see in the middle). This is because the correctness condition is violated at the bottom
vertex, because pa ` 1q ¨ pa ` cq˚ ` 1 “Mil´́́ 1 ` a ¨ p1 ¨ pa ` cq˚q does not hold: otherwise it
would have to be semantically valid by Proposition 2.14, but it is not, because only the
left-hand side permits an initial c-transition.

Therefore the construction does not give rise to a LLEE-witnessed coinductive proof of
the (not semantically valid) formal equation pa ` cq˚ “ pa ` 1q ¨ pa ` cq˚ ` 1.

Based on the proof transformations that we have developed in this section and earlier
in Section 6, we now obtain our main result. It justifies that we called the proof system cMil
a reformulation of Milner’s system Mil.

Theorem 7.8. Mil „ cMil1 „ cMil „ CLC, i.e. these proof systems are theorem-equivalent.

Proof. By combining the statements of Theorem 7.5, Lemma 5.11, and Theorem 6.11 we
obtain the theorem-subsumption statements Mil À cMil1 À cMil p„ CLCq À Mil, which
together justify the theorem-equivalence of Mil with each of cMil1, cMil, and CLC.

8. Summary and Conclusion

We set out on a proof-theoretic investigation of the problem of whether Milner’s system Mil
is complete for process-semantics equality “J¨KP on regular expressions (which Milner calls
‘star expressions’ for disambiguation when interpreted according to the process semantics).
Specifically we aimed at characterizing the derivational power that the fixed-point rule RSP˚

in Mil adds to its purely equational part Mil´́́.
In order to define a substitute for the rule RSP˚ we based ours on two results that we

have obtained earlier (the first in joint work with Fokkink):

(S/U) Linear specifications of the shape4 of transition graphs that satisfy the layered loop
existence and elimination property LLEE are:

4The two examples on page 2 illustrate the correspondence between a recursive specifications and its
associated transition graph. But note that these graphs do not satisfy LLEE (see Example 4.8).
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Milner’s system
and variants

Coinductive reformulation of Milner’s system
and variant systems

Mil “ Mil´́́`RSP˚ cMil “ Mil´́́`tLCoProofnun CLC “ tLCoProofnun

Mil1 “ Mil´́́`USP1 cMil1 “ Mil´́́`LCoProof1

Mil1 “ Mil´́́`USP cMil “ Mil´́́`tCoProofnun CC “ tCoProofnun

Thm.7.5

Thm.7.5

Lem.2.12,(i)

Thm.6.11 Lem.5.11,(iii)

Lem.5.11,(i)

Lem.5.11,(iii)

Lem.5.11,(i)

Lem.2.12,(ii)

Lem.5.11,(ii)

Lem.5.11,(ii)

Lem.5.11,(iv)Rem. 5.12

Lem.5.11,(iv)

Figure 18: Web of proof transformations between Milner’s system Mil and variants, and the
coinductive reformulation cMil of Mil with kernel system CLC and variants.

(S) solvable by star expressions modulo provability in Mil´́́ (and modulo Ø).

(U) uniquely solvable by star expressions modulo provability in Mil (and mod. Ø).
These statements were crucial steps in the completeness proof [GF20b, GF20a] by
Fokkink and myself for a tailored restriction BBP of Mil to ‘1-free’ star expressions.

(IV)1 While the chart interpretation Cpeq of a star expression e does not always satisfy
LLEE, there is a variant 1-chart interpretation Cpeq (typically with 1-transitions) that
is (1-)bisimilar to e, and satisfies LLEE, for all star expressions e. (See Definition 4.15,
and [Gra20, Gra21c]). Hereby 1-transitions are interpreted as empty-step processes.

Now in order to obtain results for 1-charts that are analogous to (S) and (U), we have
generalized these statements to guarded 1-charts in Section 6. In doing so, we obtained:

(S/U)1 Guarded linear specifications of the shape of 1-charts that satisfy the loop existence
and elimination property LLEE are:
(S)1 solvable by star expressions modulo provability in Mil´́́ (see (SE)),

(U)1 uniquely solvable by star expressions modulo provability in Mil (see (SU)).
These statements correspond to the statements (SE) and (SU) in Section 6 which
we have proved as Lemma 6.4, and Lemma 6.7, respectively.

These statements motivated us to define ‘coinductive proofs’ as pairs of solutions for guarded
LLEE-1-charts, because every pair of Mil´́́-provable, or Mil-provable solutions can be proved
equal in Mil. On the basis of this idea we developed the following concepts and results (we
emphasize earlier introduced terminology again here below):

1 LLEE-witnessed coinductive proof over an equational proof system S (Definition 5.1):
We defined a coinductive proof as a weakly guarded LLEE-1-chart C whose vertices are
labeled by equations between the values of two S-provable solutions of C.

2 Coinductive reformulation cMil of Milner’s system Mil (Definition 5.9): We defined cMil
as the result of replacing the fixed-point rule RSP˚ in Mil with rules of the scheme
tLCoProofiuiPN that formalize provability by LLEE-witnessed coinductive proofs.
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e1 “Mil e2 e1 “cMil e2 e1 “CLC e2
Cpe1q Ø Cpe2q

e1 “J¨KP e2

Thm.7.5

Thm.6.11

Lem.5.11,(iii)

Lem.5.11,(iii)

due to Prop.2.14

?

Figure 19: The coinductive proof system CLC (next to cMil) as potential beachhead for a
completeness proof of Mil. We label with a question mark the transformation
that is not defined here (it can be extracted from the completeness proof of Mil).

Ź As the ‘kernel’ of cMil we defined the system CLC (Definition 5.8) for combining
LLEE-witnessed coinductive proofs with only the rules of the scheme tLCoProofiuiPN.

3 Proof transformations between cMil and Mil that show their theorem-equivalence.

Ź We showed that the rules of tLCoProofiuiPN are correct and admissible for Mil, and
that this implies that every derivation in cMil can be transformed into one in Mil with
the same conclusion by eliminating occurrences of these rules. (See Section 6.)

Ź We showed that the fixed-point rule RSP˚ of Mil is derivable in cMil, because every
instance ι can be mimicked by an instance of LCoProof1 that uses the premise of ι, and,
as a side-condition, a LLEE-witnessed coinductive proof over Mil´́́. As a consequence
we showed that every derivation in Mil can be transformed into one in cMil with the
same conclusion by eliminating occurrences of RSP˚. (See Section 7.)

4 Coinductive reformulation cMil of the variant Mil1 (with the powerful rule USP, see Defi-
nition 2.11) of Mil: We formulated systems cMil (Definition 5.9) and CC (Definition 5.8)
based on coinductive proofs without LLEE-witnesses. The systems cMil and CC can be
recognized as complete variants of cMil and CLC. We have, however, only argued that in
Remark 5.12 (on the basis of earlier work [Gra06]), but not proved it in detail here.

5 Proof transformations between cMil and CLC, and cMil and CC that show their theorem-
equivalence. Here the idea of the non-trivial transformations from cMil to CLC was to
‘hide’ all derivation parts that consist of axioms or rules of the purely equational part
Mil´́́ of Mil into the correctness conditions of solutions in LLEE-witnessed coinductive
proofs, which occur as side-conditions of instances of rules of tLCoProofiuiPN in CLC. The

transformation from cMil to CC operates analogously. (See Lemma 5.11, (iii), and (iv).)

In Figure 18 we have illustrated the web of proof transformations between, on the one hand,
Milner’s systems and its variants as defined in Definition 2.11, and, on the other hand, the
coinductive reformulations cMil and cMil1 of Mil, and cMil of Mil1 in Definition 5.9, as well
as the coinductive kernel systems CLC of cMil, and CC of cMil in Definition 5.8.

The coinductive reformulation cMil of Mil, and its coinductive kernel CLC, can be looked
upon as being situated roughly half-way in between Mil and bisimulations between chart
interpretations of star expressions. We illustrate this in Figure 19. This picture arises
from the highest level in Figure 18, when instantiated for specified conclusions e1 “Mil e2,
e1 “cMil e2, and e1 “CLC e2, and by extending it further to Cpe1q Ø Cpe2q, and hence to
e1 “J¨KP e2. For the last step we use soundness of CLC, which follows from soundness of
Mil with respect to “J¨KP , see Proposition 2.14, in view of the proof transformations that
link CLC via cMil to Mil. Now we note that derivations of CLC represent proof-trees of
coinductive proofs each of which defines a bisimulation up to provability by Proposition 5.6,
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and Remark 5.7. Therefore we can argue that prooftrees in CLC, and by proof-theoretic
association also prooftrees in cMil, are situated roughly half-way in between prooftrees in Mil
and bisimulations between chart interpretation of star expressions. We think that Figure 19
provides a reasonable suggestion of the proof-theoretic closeness of these systems.

The proof-theoretic connections of CLC with cMil and Mil guarantee that completeness
of Mil (with respect to “J¨KP ) is equivalent to completeness of cMil, and also to completeness
of CLC. Stronger still, the proof transformations between CLC, cMil, and Mil guarantee that
every completeness proof of Mil can be ‘routed through’ CLC (and also through cMil). Such
a ‘rerouting’ through CLC of a completeness proof of Mil does, however, not need to be
equally natural as a ‘direct’ completeness proof of Mil. But since CLC is intuitively much
closer to “J¨KP than Mil (as suggested by Figure 19), much hope was warranted to obtain a
completeness proof for Mil by finding a completeness proof for CLC first, or to at least to
use concepts that we have introduced here. (The latter hope turned out to be justified.)

Indeed, since the proof systems cMil and CLC are tied to process graphs via the circular
deductions they permit and to bisimulations up to provability, and since cMil and CLC are
theorem-equivalent with Mil, they were conceived as (and still can be) natural beachheads
for a completeness proof of Milner’s system. In Figure 19 we have indicated the step to CLC
that is missing here for a completeness proof of Mil with a question mark: a completeness
proof of CLC, and that is, an argument that, for every bisimulation between Cpe1q and Cpe2q
where e1 and e2 are given star expressions, yields a prooftree in CLC with conclusion e1 “ e2.

Due to their feature of permitting derivations that can be construed as combinations
of 1-bisimulations (up to provability), we were confident that the proof system cMil and
its coinductive kernel CLC substantially increase the space for graph-based approaches to
finding a completeness proof of Mil. A concrete indication for this expectation was the
following. By closely analyzing the completeness proof in [GF20b, GF20a] for the tailored
restriction BBP of Mil to ‘1-free’ star expressions we find:

Valid equations between 1-free star expressions admit derivations in CLC of
depth less than or equal to 2.

*

(8.1)

This fact suggests the following research question:

Can derivations in CLC (derivations in cMil) always be simplified to some kind
of normal form that is of bounded depth (respectively, of bounded nesting
depth of LLEE-witnessed coinductive proofs)?

,

.

-

(8.2)

Despite of the fact that this question admits a trivial answer in view of the completeness
proof of Mil in [Gra22a], see (C2) and (C3) below, it can be desirable to also find an answer
that is based on a proof-theoretic analysis, and that leads to a workable concept of ‘normal
form’ for derivations in CLC or in cMil. Intuitions for finding such a concept may be found
in developing simplification steps of 1-charts with LLEE under 1-bisimilarity, as those
are used in the completeness proofs for BBP with respect to ‘1-free’ star expressions in
[GF20b, GF20a], and for Mil with respect to all star expressions in [Gra22a, Gra22b]. We
close by listing consequences of the latter (one is direct, the other two are a bit technical).

Consequences of the completeness proof of Mil in [Gra22a]. Below we list the most
important consequences that the completeness proof of Mil as summarized in [Gra22a] has
for the line of investigation on coinductive versions of Mil as reported here:
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(C1) The coinductive versions cMil and CLC of Milner’s system Mil are (just like Mil)
complete with respect to process semantics equality “J¨KP of star expressions. (This
follows directly from Theorem 5.1 in [Gra22a] in view of Theorem 7.8 here.)

(C2) Valid equations between star expressions admit derivations in CLC of depth less than
or equal to 2. (This generalization of (8.1) can be shown by a close analysis of the
structure of the completeness proof of Mil in Section 5 of [Gra22a]. The proof is similar
to that of Corollary 6.14, (ii), and also similar to the argumentation for the analogous
statement concerning ‘1-free’ star expressions and the system BBP as reported above.)

(C3) As a consequence of (C2) the research question (8.2) admits the trivial answer “yes”,
albeit one that avoids a close proof-theoretic analysis. (Yet we still think that an answer
that is based on a fine-grained proof-theoretic analysis would be more desirable).
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